Extended Search

- in all fields
- in the title
- in key words
- in the abstract
- in the bibliography
Issue
Name
Authors
Category
2018/3
Effect of heat removal into pumped product on pipe wall temperature gradient during the welding repair of corroded pinholes
Geosciences

Authors: Sergei I. SENСOV graduated from Gubkin Russian State University of Oil and Gas in 1978, he is Doctor of Technical Sciences, Professor of the Department of Construction and Repair of Gas and Oil Pipelines and Storage Facilities of Gubkin Russian State University of Oil and Gas (National research university). He is specialist in the field of construction of gas and oil pipelines and storage facilities and author of over 70 scientific and educational-methodical works. E-mail: srgnp@mail.ru
Vasiliy A. RYBIN graduated from the Tyumen State Oil and Gas University in 2006. Senior researcher of the laboratory of conducting trade registries, Pipeline Transport Institute. Specialist in the field of welding, including welding works in construction and repair of linear part of main gas and oil pipelines. Author of more than 14 scientific articles and a textbook. E-mail: vtec11@mail.ru
Svetlana G. IVANTSOVA graduated from Gubkin Russian State University of Oil and Gas in 1982, she is Doctor of Technical Sciences, Professor of the Department of Construction and Repair of Gas and Oil Pipelines and Storage Facilities of Gubkin Russian State University of Oil and Gas (National research university). She is specialist in the field with construction of gas and oil pipelines and storage facilities. She is author of over 60 scientific and educational-methodical works. E-mail: sivants11@gmail.com

Abstract: Currently, welding is the most progressive method of repairing local corrosion damage on the outer surface of the linear part of the mains. However, heating of the pipe wall by welding, which occurs due to the action of a concentrated source of heat (welding arc) softens the metal of the repaired surface, which creates the risk of an emergency. The authors present the results of the studies of thermal processes occurring in the pipe wall repaired by welding. The authors have identified the zone of guaranteed strength properties, providing a reserve for temporary resistance to metal pipe rupture during repair, and also established the relationship between the thickness of the specified area and the amount of running energy and heat removal into the pumped product during repair. A mathematical model describing the polynomial dependence of the thickness of the zone of guaranteed strength properties on the effective thermal power of the welding arc, the speed of its movement and the residual thickness of the pipe wall at the repair site are presented

Index UDK: 621.644

Keywords: oil trunk pipelines, repair method, local corrosion, thermal processes, running energy

Bibliography:
1. Hagen Yu.V., Taran V.D. Thermal analysis in welding of piping and structures. Serpukhov, Serpukhov printing house, 1970, 86 p.
2. Rykalin H.H. Calculations of thermal processes in welding. Moscow, Mashgiz, 1951, 296 p.
3. Rykalin H.H. thermal parameters of the welding arc. Thermal processes in welding. Proceedings of the section on scientific development of problems of electric welding and electrothermy, 1953, vol. 2, p. 10-58, 87.

2018/3
Technical means of measurement and accounting of oil and oil products losses
Geosciences

Authors: Elena S. SHATSKIСH graduated from Gubkin Russian State University of Oil and Gas in 2005. She is post graduate student of the Department of Pipeline and Storage Facilities Construction and Rehabilitation at Gubkin Russian State University of Oil and Gas (National Research University), chief technologist PAO Transneft. E-mail: shatskihes@ak.transneft.ru
Semen N. LEVIN graduated from National Polytechnic University in 1980. He is Associate Professor of the Department of Pipeline and Storage Facilities Construction and Rehabilitation of Gubkin Russian State University of Oil and Gas (National Research University). He has a number of scientific publications. E-mail: 6330504@mail.ru
Victor M. PISAREVSKIY graduated from Moscow Institute of Chemical Machine-Building in 1959. He is Doctor of Technical Sciences, Professor of the Department of Gas and Oil Pipelines Engineering and Operation of Gubkin Russian State University of Oil and Gas (National Research University). He is author of 95 scientific publications. E-mail: pegnp@gubkin.ru

Abstract: This article assesses the methods of determining the amount of oil and petroleum products stored in tanks or transported in oil tankers and railway tanks. The shortcomings of various methods of determining the amount of oil and oil products, as well as accounting for losses are analyzed and identified

Index UDK: 622.691.4

Keywords: tank, measurement systems, transport tanks, volume-weight method, losses, flow meters

Bibliography:
1. Nesgovorov A.M., Frolov YU.A., Muftahova V.N. Pod red. V.F. Novoselova. Kontrol’ kolichestva i kachestva nefteproduktov. M.: Nedra, 1994, 151 р.
2. Abdulaev A.A., Blank V.V., Yufin V.A. Kontrol’ v processah transporta i hraneniya nefteproduktov. M.: Nedra, 1990, 263 p.
3. Abuzova F.F., Telyasheva G.D., Mishin Yu.F. Puti sokrashcheniya poter’ uglevodorodov ot ispareniya pri hranenii i transportirovanii nefti i nefteproduktov. Tematicheskij obzor. M., 1989, 58 р.
4. Tugunov P.I., Novoselov V.F., Abuzova F.F., Blejher Eh.M., Nechval’ M.V., Transport i hranenie nefti i gaza. M.: Nedra. 1975, 125 р.

2018/3
Development of competitive-oriented standards for import substitution programme of oil and gas facilities in Russia
Technical sciences

Authors: Tatiana A. GUSEVA graduated from Gubkin Russian State University of Oil and Gas in 2009. She is Candidate of Technical Sciences, assistant professor of the Department of Standardization, Certification and Quality Management of Oil and Gas Equipment Pro-duction of Gubkin Russian State University of Oil and Gas (National Research University). She is specialist in the field of standardization of oil and gas equipment. She is author of more than 20 scientific publications. E-mail: tguseva14@yandex.ru

Abstract: The paper discusses the advantages and disadvantages of the procedure for harmonizing national standards with international standards. It also analyzes approaches to updating Russian standardization documents. The author substan- tiates the necessity to develop fundamentally new domestic documents i.e. competitive oriented standards that are the driving force for increasing the level of competitiveness of industrial equipment in order to implement the program of its import substitution in the Russian oil and gas industry

Index UDK: 006.053

Keywords: harmonization of a standard, updating of a standard, competitive orientd standard, import substitution

Bibliography:
1. Guseva T.A., Novikov O.A. Specific features of development of draft national standards for import substitution of oil and gas facilities in Russia. Trudy Rossiyskogo gosudarstvennogo universiteta nefti i gaza imeni I.M. Gubkina. Proceedings of Gubkin Russian State University of Oil and Gas, 2018, no. 2, p. 75-83 (in Russian).
2. Kershenbaum V.Ya. From import-dependence to competitiveness. Realities and Myths: Scientific Edition. M.: Natsional’nyy institut nefti i gaza, 2017, 400 p. (in Russian).
3. Kershenbaum V.Ya., Guseva T.A., Panteleev A.S. The problem of import substitution from the perspective of the competitiveness of oil and gas equipment. Oborudovanie i tekhnologii dlya neftegazovogo kompleksa. Equipment and technologies for oil and gas complex, 2018, no. 2, p. 8-16 (in Russian).
4. Samkov V.M., Mel’kov Yu.O. Standards as a tool to support import substitution. [Standarty i kachestvo]. Standards and Quality, 2017, no.10, p. 28-32 (in Russian).
5. Aronov I.Z. Brief overview of technical regulation measures under the import substitution policy. [Standarty i kachestvo]. Standards and Quality, 2015, no.1, p. 28-33 (in Russian).

2018/3
Module for description of lines in technological processes of manufacturing gas and oil engineering products
Technical sciences

Authors: Oleg A. NOVIKOV graduated from Gubkin Moscow Institute of Petrochemical and Gas Industry in 1975. He is Doctor of Technical Sciences, professor of the Department of Stan-dardization, Certification and Quality Management of Oil and Gas Equipment Production of Gubkin Russian State University of Oil and Gas (National Research University). He is specialist in the field of engineering technology, mathematical modeling of processes in mechanical engineering. He is author of more than 100 scientific publications. E-mail: noviktexnolog@yandex.ru

Abstract: The article substantiates the modular approach to the development of CAD elements for technological purposes, describes the structure of the module, the tools that allow a formalized description of the set of lines of a technological operation and record the results of the description in the design tasks database. A description of a fragment of a design task by the CAD tools in a specialized programming language is considered. A description of the operators of the design task is given, the formal parameters of these are used as formal parameters of the line description operator — masks (formalized description of the string in the operation of the technological process). The expediency of using the description of mask strings in the text of the design task of operators is shown, since at the start of the design task formal parameters in the operators are replaced with their values. This allows to automatically generate a description of the lines of operation of the technological process, the format of which corresponds to the requirements for the preparation of technological documenttation

Index UDK: 622.276

Keywords: information technologies, universal software, integrated technology automation system, module, correspondence tables, operation line, mask string, tools, formalized description, design task bases

Bibliography:
1. Novikov O.A. Komarov Yu.Yu., Baibakov S.V. Automation of design works in technological preparation of machine-building production. Moscow: Izd-vo MAI, 2007, 260 р.
2. Designing engineering technologies for computers: Textbook for universities O.V. Taratynov, B.M. Bazrov, V.V. Klepikov, O.I. Averyanov and others. Ed. O.V. Taratynova. Moscow: MGGIU, 2006, 519 p.
3. Addition to the catalogs. (Turning tools and Rotating tools and for updating the range of CoroPak 12.2, 13.2 and 14.1. PRECISION, CUTTING AND PROCESSING, ROLLING, MILLING, DRILLING, THREADING OF TAPES, INSTRUMENTAL SYSTEMS), 2014, 171 р.
4. Seco catalogs (Seco tool). Update of the SECO tool program. Turning. Milling. Plates. Hole Machining. Auxiliary Tool, 2014, 164 р.
5. Our business is customer value. Turning, drilling, threading and milling. Product innovations Edition, 2014, 176 p.
6. New Products catalog. Metric Version, 2013. Edition 4, 256 p.

2018/3
Simulation of real fluid flow in centrifugal nozzle
Technical sciences

Authors: Vladimir V. MULENKO graduated from Gubkin Moscow Institute of Petrochemical and Gas Industry in 1980. He is Candidate of Technical Sciences. Аssociate Рrofessor of the Department of Machines and Equipment for Oil and Gas Industry, at Gubkin Russian State University (National Research University) of Oil and Gas. His scientific interests are computer simulation and computer aided design. He is author of 30 scientific publications. E-mail: vmulenko@mail.ru
Alexander I. KHODYREV graduated from Gubkin Moscow Institute of Petrochemical and Gas Industry in 1980. He is Doctor of Technical Sciences. Рrofessor of the Department of Machines and Equipment for Oil and Gas Industry, at Gubkin Russian State University (National Research University) of Oil and Gas. He is specialist in the equipment for liquid injection in the implementation of various technologies. Author of 100 scientific publications. E-mail: aihod@mail.ru

Abstract: The paper discusses calculation methodologies based on using maximum flow principle for centrifugal nozzles, and analyzes both their advantages and disadvantages. Basing on fundamental physical dependencies a mathematical model of viscous fluid flowing through atomizer of centrifugal nozzle is described. The results of research of the influence of atomizer geometry, surface roughness and fluid viscosity on nozzle characteristics are demonstrated. It is also shown that the developed mathematical model for fine spray nozzles calculation allows to obtain the results that agree well to the data of the bench test carried out with water and viscous fluid (till 30 cPz)

Index UDK: 66.069.83

Keywords: centrifugal nozzle, fluid atomization, atomizer, viscous fluid, flow coefficient, calculation, modeling

Bibliography:
1. Abramovich G.N. Theory of centrifugal nozzle. Promyshlennaya aerodynamica [Industrial Aerodynamics]. Moscow, BIT of TSAGI, 1944, p. 84-88 (in Russian).
2. Ditjakin Ju.F., Kljachko L.A., Novikov B.V., Jagodkin V.I. Atomization of liquids. Moscow, Mashinostroenie, 1977, 208 p. (in Russian).
3. Borodin V.A., Ditjakin Ju.F., Kljachko L.A., Jagodkin V.I. Atomization of liquids. Moscow, Mashinostroenie, 1967, 263 p. (in Russian).
4. Pazhi D.G., Galustov B.C. Atomizers for a fluid. Moscow, Himija, 1979, 216 p. (in Russian).
5. Khavkin Y.I. Centrifugal nozzles. Leningrad, Mashinostroenie, 1976, 168 p. (In Russian).
6. Khodyrev A.I., Mulenko V.V. Aerosol application of the inhibitor film in the gas pipelines of small diameter. Gazovaya promyshlennost [Gas Industry], 1995, no. 11, p. 18-19 (in Russian).
7. Khodyrev A.I. The development and effective use of the equipment for inhibitor protection of gas pipelines from hydrogen sulfide corrosion. [Territorija NEFTEGAZ], 2010, no. 3, p. 40-52 (in Russian).
8. Mulenko V.V. Razrabotka i issledovanie tsentrobejnykh forsunok dlya aerozolnogo ingibirovaniya gazoprovodov. Doct. Diss. [Development and research of centrifugal nozzles for aerosol inhibition of gas pipelines. Doct. Diss.], Moscow, 2005, 198 p. (In Russian).
9. Altshul A.D. Hydraulic resistance. Moscow, Nedra, 1982, 224 p. (In Russian).
10. Khodyrev A.I. The methodology for calculating parameters of centrifugal nozzles for oil and gas facilities. [Neft, Gaz i Bizness  Oil, Gas and Business], 2005, no. 6, p. 57-60 (in Russian).
11. Khodyrev A.I., Khodyrev D.A., Blokhina M.G. About the Distribution of the Droplets by Size in Spectrum Atomizing Liquids by Centrifugal Atomizer. Trudy RGU nefti i gaza imeni I.M. Gubkina [Proc. of the Gubkin State University of Oil and Gaz], 2017. no. 4, p. 101-113 (in Russian).
12. Khodyrev A.I., Mulenko V.V. Laboratory reseach of corrosion inhibitors atomization by various temperature. Tezisy docladov 2 Mezhdynarodnogo Congressa «Zaschita-95» [Abstracts The Second International Congress «Protection-95»], Мoscow, 20-24 November 1995, p. 130-131 (in Russian).

2018/3
Monitoring of metalworking tool parameters
Technical sciences

Authors: Mikhail Z. KhOSTIKOEV graduated from Moscow Institute of Machine Tool Design in 1969. Doctor of Technical Sciences, professor of the Department of Standardization, certification and quality management of oil and gas equipment production of Gubkin Russian State University of Oil and Gas (National Research University). Specialist in the field of development of theoretical foundations, methods and means for increasing the efficiency of technological processes of machining and improving the quality of threaded joints of pi- pes and couplings of the oil assortment. He is an author of more than 150 scientific publi-cations.
E-mail: khostikoevmz@mail.ru
Dmitry N. LEVITSKY graduated from Gubkin Moscow Institute of petrochemical and gas industry in 1975. Doctor of Technical Sciences, head of the Department of Theoretical Mechanics of Gubkin Russian State University of Oil and Gas (National Research University). Specialist in the field of theoretical mechanics. He is an author of more than 100 scientific publications.
E-mail: levitskiy.d@gubkin.ru
Igor N. KARELIN graduated from Gubkin Moscow Institute of Petrochemical and Gas Industry in 1975. He is Doctor of Technical Sciences, Professor of the Department of Stan- dartization, Certification and Quality Management of Oil and Gas Equipment Manufacturing of Gubkin Russian State University of Oil and Gas (National Research University). He is specialist in the field of methods for ensuring the reliability of oil and gas equipment. He is author of more than 150 scientific publications.
E-mail: karelin-in@mail.ru

Abstract: The results of studies on monitoring of instrument parameters in the process of metal working are considered. On the example of the process of rolling threads with heads of axial and tangential type, it is shown that the tool can self-adjust to geometric and structural parameters during machining, depending on the systematic and accidental errors that occur when machining each part

Index UDK: 621.992.7

Keywords: monitoring, self-adjusting tools, systematic and accidental machining errors, thread rolling

Bibliography:
1. Khostikoev M.Z. Managing the geometry of the tool during processing. Gornyy informa-tsionno-analiticheskiy byulleten’. [Mining Information and Analytical Bulletin], 2011, no. 4, p. 319–321 (in Russian).
2. Khostikoev M.Z. Basics of creating adaptive metalworking tools//Mekhanizatsiya i avtoma-tizatsiya proizvodstva. [Mechanization and automation of production], 1978, no. 11, p. 23–26 (in Rus-sian).
3. Khostikoev M.Z. Calculation of the diameter of the rollers of tangential heads//Stanki i instru-ment. [Machines and tools], 1978, no. 12, p. 24–25 (in Russian).
4. Khostikoev M.Z., Ageeva V.N. Expansion of technological capabilities and efficiency of multi-purpose machines through the use of tangential thread rolling heads in setting up//Gornyy informatsionno-analiticheskiy byulleten’. [Mining Information and Analytical Bulletin], 2016, no. 8, p. 195–199 (in Russian).

2018/3
Calculation methods to evaluate physical and thermodynamical properties of natural gas. Method of disintegrating incomplete component composition of natural gas into equivalent component composition
Technical sciences

Authors: Alexandr A. ALEKSANOCHKIN graduated from Bauman Moscow State Technical University in 1998. He is Deputy Head of Dispatch Service of Gazprom Transgaz Moscow. E-mail: alexanochkin@gtm.gazprom.ru
Sergey A. SARDANASHVILI graduated from Moscow Institute of Petrochemical and Gas Industry in 1976. He is Doctor of Technical Sciences, Associate Professor, Head of Department of Design and Operation of Gas and Oil Pipelines of Gubkin Russian State University of Oil and Gas (National Research University). Specialists in the field of computer dispatcher decision-support systems for oil and gas industry. Author of more than 50 scientific papers. E-mail: sardanashvili.s@gubkin.ru

Abstract: The task of adequate evaluation of physical and thermodynamical properties of natural gas in presence of native data on incomplete component composition (in the absence of data on component composition) is solved. Possible solutions are formulated. The investigation of experimental data on component composition of natural gas to identify specific balance of higher hydrocarbons is given. A new calculation method of disintegrating incomplete component composition of natural gas to equivalent component composition for the purpose of further use of calculation methods in existence of evaluation of physical and thermodynamical properties of natural gas on the basis of information about the component composition in computer models, computation of regimes and technological tasks of pipeline gas transport is suggested

Index UDK: 662.76

Keywords: natural gas, methods of determination of physical and thermodynamic properties, characteristic ratios of highest hydrocarbons, equivalent hydrocarbon, equivalent component composition

Bibliography:
1. ISO 20765-2:2015. Natural gas — Calculation of thermodynamic properties. Part 2: Single-phase properties (gas, liquid, and dense fluid) for extended ranges of application, 2015, 68 р.
2. GOST 30319.0-96. Natural gas. Methods of calculation of physical properties. General. Moscow, IPK Izdatel’stvo Standartov, 1997, 32 p.
3. GOST 30319.1-96. Natural gas. Natural gas. Methods of calculation of physical properties. Definition of physical properties of natural gas, its components and processing products. Moscow, IPK Izdatel’stvo Standartov, 1997, 16 p.
4. GOST 30319.2-96. Natural gas. Methods of calculation of physical properties. Definition of compressibility coefficient. Moscow, IPK Izdatel’stvo Standartov, 1997, 54 p.
5. GOST R 8.662-2009. Natural gas. Gas phase thermodynamic properties. Methods of calculation for transmission and distribution applications on base of the AGA8 fundamental equation of state. Moscow, Standartinform, 2010, 40 p.
6. GOST R 8.769-2011 (ИСО 12213-3:2006). Natural gas. Compression factor of gas phase. Method of calculation based on gas physical properties. Moscow, Standartinform, 2013, 32 p.
7. ONTP 51-1-85. National Engineering Design Standards. Trunk Pipelines. Moscow, VNIIGazprom, 1986.
8. STO Gazprom 2-3.5-051-2006. Technological design standards of main gas pipelines. Moscow, VNIIGaz, 2006, 196 p.
9. Volkov M.M., Mikheev A.L., Kornev K.A., The reference book of a worker in the gas indu- stry. 2 ed. Moscow, Nedra, 1989, 286 p.

2018/3
Сontrol of complex flow parameters of production wells by measuring system of new generation
Technical sciences

Authors: Оleg V. ERMOLKIN graduated from Gubkin Moscow Institute of Petrochemical and Gas Industry in 1978. He is Professor of the Department of Information Measuring Systems of Gubkin Russian State University of Oil and Gas (National Research University), Doctor of Technical Sciences. He is author of more than 90 publications in the field of wells multiphase flow measuring parameters. E-mail: ove@gubkin.ru
Dmitri N. VELIKANOV graduated from Gubkin State Academy of Oil and Gas in 1994. He is Associate Professor of the Department of Automation of Technological Processes of Gubkin Russian State University of Oil and Gas (National Research University), PhD. Author of more than 20 scientific works in the field of measurement of multiphase flow of oil and gas production wells.
E-mail: velikanov@gubkin.ru
Yanina D. POPOVA is assistant lecturer of the Department of Information Measuring Systems of Gubkin Russian State University of Oil and Gas (National Research University). She is author of 12 scientific works in the field of measurement of multiphase flow of oil and gas production wells. E-mail: yanina.zykova@yandex.ru
Igor U. KHRABROV graduated from Gubkin State Academy of Oil and Gas in 1991. He is Associate Professor, Head of the Department of Information and Measurement Systems of Gubkin Russian State University of Oil and Gas (National Research University), PhD. He is author of more than 30 scientific works in the field of measurement of multiphase flow of oil and gas production wells. E-mail: khrabrov.i@gubkin.ru

Abstract: The article is dedicated to the solution of the problem of operational control of complex multiphase flows of production wells, characterized by high gas factors and presence of impurities of sand and/or water. It is shown that for a reliable evaluation of the well operation mode it is necessary to carry out complex moni-toring of such basic parameters as the production rate and the dynamics of its change, the component composition, wellhead pressure and the temperature of the extracted production. This information is necessary to select a highly pro-ductive and trouble-free operating mode of the well. For practical implementation of complex monitoring, a low-energy information-measuring system of the new generation «Potok-6» was proposed. The article presents a functional scheme for processing information signals. The time diagrams of the sand registration chan-nel operation are presented and the advantages of new technical solutions are specified

Index UDK: 622.279; 681.5.08

Keywords: spectral flow measuring method, multiphase flows, multiphase flow meters, information measuring systems, control of impurities

Bibliography:
1. Brago E.N., Ermolkin O.V. Otsenka informatsionnykh svojstv sovremennykh sistem izmere-niya debita gazovykh i gazokondensatnykh skvazhin. Gazovaya promyshlennost’, 2013, no. 5, р. 82-85.
2. Ermolkin O.V., Khrabrov I.Yu. Sistema kontrolya raskhodnykh parametrov potoka produktsii neftyanykh skvazhin «Potok-3M». Аvtomatizatsiya, telemekhanizatsiya i svyaz’ v neftyanoj promyshlennosti, 2005, no. 4, p. 19-24.
3. Brago E.N., Ermolkin O.V., Gavshin M.А. Novye tekhnologii i informatsionno-izmeritel’nye sistemy kontrolya neftegazodobychi. Trudy RGU nefti i gaza imeni I.M. Gubkina, 2009, no. 1, p. 92-104.
4. Lanchakov G.А., Marinin V.I., Koshelev, А.V., Ermolkin O.V., Gavshin M.А., Velika- nov D.N. Operativnyj kontrol’ debita gazokondensatnykh skvazhin informatsionno-izmeritel’nymi sistemami «Potok-5». Gazovaya promyshlennost’, 2009, no. 9, p. 45-51.
5. Brago E.N., Ermolkin O.V., Kartashev V.YU. Sposob izmereniya raskhoda faz gazozhidko-stnogo potoka. Patent RF № 2105145, 1998.
6. Brago E.N., Ermolkin O.V., Lanchakov G.А., Velikanov D.N., Gavshin M.А. Sovershenstvo-vanie informatsionno-izmeritel’nykh tekhnologij v neftegazodobyche. Trudy RGU nefti i gaza imeni I.M. Gubkina, 2012, no. 3, p. 24-42.
7. Popova Ya.D, Ermolkin O.V. Opredelenie kolichestva primesej v potoke produktsii gazovykh i gazokondensatnykh skvazhin. Neft’ i gaz — 2017. Sbornik trudov 71-oj Mezhdunarodnoj molodezhnoj nauchnoj konferentsii, 2017, p. 283-292.
8. Ermolkin O.V., Popova Ya.D., Gorokhov А.V. Razrabotka i issledovanie ehlektronnykh pre-obrazovatelej kanalov registratsii primesej v potoke produktsii gazovykh i gazokondensatnykh skvazhin. Аvtomatizatsiya, telemekhanizatsiya i svyaz’ v neftyanoj promyshlennosti, 2018, no. 3, p. 18-23.
9. Ermolkin O.V., Velikanov D.N., Gavshin M.А., Popova Ya.D. Kompleksnyj kontrol’ para-metrov produktsii ehkspluatatsionnykh skvazhin. Territoriya «NEFTEGАZ», 2017, no. 4, p. 12-20.
10. Ermolkin O.V. Velikanov D.N., Popova Yа.D., Gavshin M.А., Khrabrov I.Yu., Lotosh А.N., Shitikov А.E., Martynov D.V., Gorokhov А.V. Ustrojstvo dlya kontrolya raskhoda komponentov produktsii skvazhin. Patent RF No. 2654099, 2018. Byul. no. 14.
12. Ermolkin O.V., Gavshin M.А., Popova Ya.D., Lotosh А.N. Razrabotka i issledovanie ehlektronnykh preobrazovatelej kanalov registratsii primesej v potoke produktsii gazovykh i gazokon-densatnykh skvazhin. Pribory, 2018, no. 7, p. 13-20.

2018/3
Influence of external electric field on permeability of charged porous layer
Technical sciences

Authors: Anatoly N. FILIPPOV graduated from the M.V. Lomonosov Moscow State University in 1982. He is Doctor of Physical and Mathematical Sciences, Professor at the Department of Higher Mathematics of Gubkin Russian State University of Oil and Gas (National Research University). He is author of over 340 scientific papers in the field of physical-chemical mechanics, colloid chemistry and mathematics. E-mail: filippov.a@gubkin.ru
Tamara S. FILIPPOVA graduated from the M.V. Lomonosov Moscow State University in 1982. She is Lecturer at the Department of Higher Mathematics of Gubkin Russian State University of Oil and Gas (National Research University). She is author of around 25 publications in the field of mechanics and mathematics. E-mail: filippova.tam@yandex.ru
Vasily V. KALININ graduated from the M.V. Lomonosov Moscow State University in 1974. He is Doctor of Physico-Mathematical Sciences, Head of the Department of Higher Mathematics of Gubkin Russian State University of Oil and Gas (National Research University). He is author of more than 70 publications in the fields of physicochemical hydrodynamics, colloid chemistry and mathematics. E-mail: vm@gubkin.ru

Abstract: On the basis of the cellular model of porous medium and thermodynamics of irreversible processes (Onsager approach), a new method for calculating the flow of solvent (water) and electric current flowing through a charged porous layer (membrane) under simultaneous action of an external pressure gradient and electric potential is proposed. It is shown that the total permeability of the porous structure both due to filtration and due to the electroosmotic transfer of the solvent increases with the electrolyte concentration

Index UDK: 517.958:536.71; 532:541.135.1; 539.219.3; 544.6

Keywords: charged porous layer, ion exchange membrane, exchange capacity, cell model, Onsager approach, kinetic coefficients, stokes, Brinkman, Poisson and Nernst-Planck equations

Bibliography:
1. Happel J., Brenner H. Low Reynolds Number Hydrodynamics. Moscow, Mir, 1976, 630 p.
2. Filippov A.N. Cell model of ion-exchange membrane. Hydrodynamic permeability. Colloid Journal, 2018, vol. 80, no. 6.
3. Filippov A.N. Cell model of ion-exchange membrane. Electroconductivity and electroosmotic permeability. Colloid Journal, 2018, vol. 80, no. 6.
4. Brinkman H.C. A calculation of the viscous force exerted by a flowing fluid on a dense swarm of particles. Appl. Sci., 1947, p. 27–34.
5. Sidorova M.P., Ermakova L.E., Savina I.A., Fridrikhsberg D.A. Electrochemistry of weakly charged membranes. Journal of Membrane Science, 1993, vol. 79, p. 159–179.
6. Sobolev V.D., Filippov A.N., Vorob’eva T.A., Sergeeva I.P. Determination of the Surface Potential for Hollow-Fiber Membranes by the Streaming—Potential Method. Colloid Journal, 2017, vol. 79, no. 5, p. 677–684.
7. Tong K., Zhang Y., Chu P.K. Evaluation of calcium chloride for synergistic demulsification of super heavy oil wastewater. Colloids Surf. A., 2013, vol. 419, p. 46–52.
8. Dorokhov V.M., Martynov G.A., Starov V.M., Churayev N.V. Theory of the reverse osmotic separation of electrolyte solutions. Influence of the charge of the surface of membrane pores. [Colloid Journal], 1984, vol. 46, no. 6, p. 1088–1093.
9. Filippov A.N., Shkirskaya S. Cell model of ion-exchange membrane and its experimental verification. Processing of Institute Conference “Ion Transport in Organic and Inorganic Membranes”, (Sochi-Krasnodar, May 21–26), 2018, p. 89–91.

2018/3
Synthesis and antioxidant activity of phenolic derivatives with heterocycles fragments
Chemical sciences

Authors: Stepan V. VOROBYEV graduated from Dmitry Mendeleev University of Chemical Technology of Russia in 2015. He is junior researcher of Chemistry and Technology of Hydrocarbons Research and Educational Center of Gubkin Russian State University of Oil and Gas (National Research University). He is author of 10 scientific publications. E-mail: vorstepan@yandex.ru
Olga V. PRIMEROVA graduated from Gubkin Russian State University of Oil and Gas in 2015. She is postgraduate student of the Department of Organic Chemistry and Petroleum Chemistry of Gubkin Russian State University of Oil and Gas (National Research University). She is author of 35 scientific publications. E-mail: Primerova92@yandex.ru
Ludmila V. IVANOVA graduated from Gubkin Moscow Institute of Petrochemical and Gas Industry in 1983. She is Professor of the Department of Organic Chemistry and Petroleum Chemistry of Gubkin Russian State University of Oil and Gas (National Research University). She is author of more than 100 scientific publications. E-mail: ivanova.l@gubkin.ru
Vladimir N. KOSHELEV graduated from Gubkin Moscow Institute of Petrochemical and Gas Industry in 1975. He is Vice Rector for Academic Affairs, Head of the Department of Organic Chemistry and Petroleum Chemistry of Gubkin Russian State University of Oil and Gas (National Research University). He is author of more than 320 scientific papers in the field of organic and petroleum chemistry. E-mail: koshelev.v@gubkin.ru
Vladimir D. RYABOV graduated from Gubkin Moscow Institute of Petrochemical and Gas Industry. He is Professor of the Department of Organic Chemistry and Petroleum Chemistry of Gubkin Russian State University of Oil and Gas (National Research University). He is author of more than 180 scientific papers in the field of organic and petroleum chemistry. E-mail: 27helga72@mail.ru

Abstract: The synthesis of 2-(2,3-dihydroxybenzyl)-1H-isoindol-1,3(2H)-dione was descri-bed. The structure of synthesized compound was confirmed by IR- and NMR-spectroscopy. The way of electrophilic attack of catechol ring depends on the solvent, as it was shown by quantum-chemical calculations (Gaussian09 program, semi-empirical method PM6). In case of substitution at the third position in catechol ring the energy of cationic intermediate is lower in chloroform than the one in methanol. As the reaction proceeds on the way of energy minimum, it afforded the 3-substituted product. Energy of dissociation of ArO-H bond was calculated to reveal possible antioxidant activity of target compounds using quantum chemical method (semi-empirical PM6). The ability of synthesized compounds to destruct cumene hydroperoxide was studied. It was estimated, that 2-(2,3-dihydroxybenzyl)-1H-isoindol-1,3(2H)-dione, 1-(4-hydroxy-5-isopropil-2-methylbenzyl)azepan-2-one and 1-(4-hydroxy-5-isopropil-2-methylbenzyl)pyr-rolidin-2-one possess the best antioxidant effect

Index UDK: 547.56; 547.584

Keywords: organic synthesis, heterocyclic phenols derivatives, quantum-chemical calculations, antioxidant activity

Bibliography:
1. Yehye W.A., Rahman N.A., Ariffin A., Abd H., Sharifah B., Alhadi A.A., Kadir F.A., Yaeghoobi M. Understanding the chemistry behind the antioxidant activities of butylated hydroxytoluene (BHT): A review. European Journal of Medicinal Chemistry, 2015, vol. 101, p. 295-312.
2. Almeida E.S. et al. Behaviour of the antioxidant tert-butylhydroquinone on the storage stability and corrosive character of biodiesel. FUEL, 2011, vol. 90 (11), p. 3480-3484.
3. Koshelev V.N., Kelarev V.I., Belov N.V., Malova O.V., Osipov S.L., Spirkin V.G.. Effect of azoles and sym-triazines with hindered phenol fragments on protective properties of turbine oils. Chemistry and technology of fuels and oils, 1995, vol. 31, p. 26-29.
4. Koshelev V.N., Golubeva I.A., Klinaeva E.V., Kelarev V.I. Stabilization of ecologically clean diesel fuel by means of combinations of additives. Chemistry and technology of fuels and oils, 1996, vol. 32, p. 189-194.
5. Kelarev V.I., Silin M.A., Golubeva I.A., Borisova O.A. Stabilization of distillate fuels in storage. Chemistry and technology of fuels and oils, 2000, vol. 36, p. 111-115.
6. Vorobyev S.V., Primerova O.V., Koshelev V.N., Ivanova L.V. Synthesis of alkylphenols lactamomethyl derivatives. Butlerov Communications, 2018, vol. 55, p. 124-132.
7. Negrebetsky V.V., Vorobyev S.V., Kramarova E.P., Shipov A.G., Lagunin A.A., Shmi- gol T.A., Baukov Y.I., Korlyukov A.A., Arkhipov D.E. Lactamomethyl derivatives of diphenols as potential immunosuppressants: synthesis, structure and properties. Russian Chemical Bulleten’, 2018, no. 8, p. 1518-1529.
8. Barry J., Mayeda E., Ross S. The amidoalkylation of aromatic hydrocarbons. Tetrahedron, 1976, vol. 33, p. 369-372.
9. Tiwari, Pandey. Journal of the Indian Chemical Society, 1975, vol. 52, p. 777-779.
10. Zaugg H E. a-Amidoalkylation at carbon: Recent advances. Part I. Synthesis, 1984, p. 85-110.
11. Gaussian 09, Revision D.01, Frisch M.J., Trucks G.W., Schlegel H.B., Scuseria G.E., Robb M.A., Cheeseman J.R., Scalmani G., Barone V., Mennucci B., Petersson G. A., Nakatsuji H., Ca-ricato M., Li X., Hratchian H.P., Izmaylov A.F., Bloino J., Zheng G., Sonnenberg J.L., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Vreven T., Montgomery J.A., Peralta J.E., Ogliaro F., Bearpark M., Heyd J.J., Brothers E., Kudin K.N., Staroverov V.N., Kobayashi R., Normand J., Raghavachari K., Rendell A., Burant J.C., Iyengar S.S., Tomasi J., Cossi M., Rega N., Millam J. M., Klene M., Knox J.E., Cross J.B., Bakken V., Adamo C., Jaramillo J., Gomperts R., Stratmann R.E., Yazyev O., Austin A.J., Cammi R., Pomelli C., Ochter- ski J.W., Martin R.L., Morokuma K., Zakrzewski V.G., Voth G.A., Salvador P., Dannenberg J.J., Dapprich S., Daniels A.D., Farkas Ö., Foresman J.B., Ortiz J.V., Cioslowski J., Fox D.J. Gaussian, Inc., Wallingford CT, 2009.
12. Mashentseva A.A., Seitembetov T.S. The Study of the Structure-Activity Relationship For a Cinnamic Acid Derivatives. Journal of Siberian Federal Univercity. Chemistry, 2010, vol. 3, p. 183-192.
13. Vasil’ev R.F., Fedorova G.F., Trofimov A.V., Kancheva V.D., Batovska D.I. Antioxidant activity of chalcones: The chemiluminescence determination of the reactivity and the quantum chemical calculation of the energies and structures of reagents and intermediates. Kinetics and Catalysis, 2010, vol. 51, no. 4, p. 507-515.
14. Rudnick L.R. Lubricant Additives: Chemistry and Applications. Spb., CRC press, 2009, 777 p.
15. Zaugg H., Martin W. α-Amidoalkylations at carbon. N.-Y., John Wiley & Sons, 1965, 167 p.