Extended Search

- in all fields
- in the title
- in key words
- in the abstract
- in the bibliography
Issue
Name
Authors
Category
2018/4
Errors of determination of volume of oil stored in vertical steel tanks
Geosciences

Authors: Elena S. SHATSKIСH graduated from Gubkin Russian State University of Oil and Gas in 2005. She is post graduate student of the Department of Pipeline and Storage Facilities Construction and Rehabilitation at Gubkin Russian State University of Oil and Gas (National Research University), chief technologist PAO “Transneft”. E-mail: shatskihes@ak.transneft.ru
Mikhail A. LEZHNEV Candidate of Sciences, Associate Professor of the Department of Pipeline and Storage Facilities Construction and Rehabilitation Gubkin Russian State University of Oil and Gas (National Research University). E-mail: lezhnev.m@gubkin.ru
Mikhail G. MURZIN student of the Department of Pipeline and Storage Facilities Construction and Rehabilitation Gubkin Russian State University of Oil and Gas (National Research University). E-mail: murzinmisha@mail.ru
Victor M. PISAREVSKIY graduated from Moscow Institute of Chemical Machine-Building in 1959. He is Doctor of Technical Sciences, Professor of the Department of Gas and Oil Pipelines Engineering and Operation of Gubkin Russian State University of Oil and Gas (National Research University). He is author of 95 scientific publications. E-mail: pegnp@gubkin.ru

Abstract: Problems of determining the actual volume of the oil stored in vertical steel cylindrical tanks are considered. The shortcomings of the existing methods have been analyzed and identified. The necessity for developing an individual normative document to determine the volume of oil has been identified and justified

Index UDK: 624.9

Keywords: steel cylindrical tank, quantity, oil, oil quantity determination

Bibliography:
1. MI 2951. Gosudarstvennaya sistema obespecheniya edinstva izmerenij. Massa nefti. Metodika vypolneniya izmerenij v vertikal’nyh rezervuarah v sisteme magistral’nogo nefteprovodnogo transporta [EHlektronnyj resurs], 2005, 32 p. URL: http://files.stroyinf.ru/Data2/1/4293818/4293818655. (Data obrashcheniya 12.12.2017).
2. GOST 8.570. Gosudarstvennaya sistema obespecheniya edinstva izmerenij (GSI). Rezervuary stal’nye vertikal’nye cilindricheskie. Metodika poverki: [EHlektronnyj resurs], 2000, 96 p. URL: http://docs.cntd.ru/document/1200008446. (Data obrashcheniya 27.11.2017).
3. GOST 7502. Ruletki izmeritel’nye metallicheskie. Tekhnicheskie usloviya [EHlektronnyj resurs], 1998, 11 p. URL: http://docs.cntd.ru/document/1200004328. (Data obrashcheniya 24.11.2017).
4. RMG 86 GSI. Massa nefti. Metodika vypolneniya izmerenij v vertikal’nyh rezervuarah v sisteme magistral’nogo nefteprovodnogo transporta. Osnovnye polozheniya: [EHlektronnyj resurs], 2009, 22 p. URL: http://docs.cntd.ru/document/1200073890. (Data obrashcheniya 20.11.2017).

2018/4
Formation of principles of optimum development and functioning of gas transmission systems
Technical sciences

Authors: Bogdan V. BUDZULYAK graduated from Ivano-Frankovsk University of Oil and Gas in 1970 and from Russian Presidential Academy of National Economy in 1995. Doctor of Technical Sciences, President of the Self-Regulatory Organization “Association of costructors of gas and oil complexes”, Professor of the Department of Construction and Repair of Gas and Oil Pipelines and Storage Facilities of Gubkin Russian State University of Oil and Gas (National Research University), member (academician) of the Academy of Mining Sciences. He is author of more than 200 scientific publications. E-mail: ebaruk@asgink.ru
Dmitry N. LEVITSKIY graduated from Gubkin Moscow Institute of Petrochemical and Gas Industry in “Mechanical Engineering, Metal-Cutting Machines” (1975). He is Doctor of Engineering, professor, Head of the Department of Theoretical Mechanics at Gubkin Russian State University of Oil and Gas (National Research University). He is author of 5 inventions, over 110 scientific works on problems of theoretical and applied mechanics. E-mail: levitskiy.d@gubkin.ru
Alexey S. LOPATIN graduated from Gubkin Moscow Institute of Petrochemical and Gas Industry (1979). He is Doctor of Engineering, professor, Head of the Department of Thermodynamics and Heat Engines at Gubkin Russian State University of Oil and Gas (National Research University). He is author of 5 patents and more than 350 scientific, educational and methodical works.
E-mail: Lopatin.a@gubkin.ru
Alexander S. KUZNECHIKOV graduated from te Gubkin Russian State University of Oil and Gas in 2001, he is Senior Lecturer at Gubkin Russian State University of Oil and Gas (National Research University). He is author of 23 publications in the field of shock and wave processes in pipeline systems, education, standardization and systems of quality management. E-mail: kas@gubkin.ru

Abstract: The most important problems of the gas transmission system of Russia are ensuring the required volumes of transportation of gas and uninterrupted operation of supply of natural gas to consumers, increase in reliability of operation and minimization of power costs of transport of gas. These are solved in the process of design, construction, operation, reconstruction and modernization of the system and its main objects. The solution of the main tasks faced by the national gas transmission system is based on the study and analysis of thermogasdynamic processes occurring in the main objects and the power producing equipment used. It requires the knowledge of the structure, the principles of construction, the operation and control of the gas transmission system, the actual and planned operating modes of the gas transmission system and its main objects, the devices and schemes of the operation of the main objects, the design and characteristics of the used power producing equipment, the mathematical description of the working processes in the main objects and power producing equipment of the gas mains, methods of determination of thermodynamic and thermophysical properties of the working bodies of the power producing equipment and the systems of the main transport of gas

Index UDK: 622.691.4

Keywords: gas transmission system; gas transport; power expenses; system; natural gas; principles of development

Bibliography:
1. Vertepov A.G., Lopatin A.S., Pokutnyj A.V. Primenenie indikatorov ehnergoehffektivnosti dlya gazotransportnoj sistemy Rossii. Gazovaya promyshlennost’, 2018, no. 1 (763), p. 85.
2. Ispol’zovanie vozobnovlyaemyh istochnikov ehnergii dlya povysheniya ehnergoehffektivnos- ti ESG Rossii. V.V. Bessel’, A.S. Lopatin, A.A. Belyaev, V.G. Kucherov. ZHurnal Neftegaz.ru, 2013, no. 10, p. 12-20.
3. EHnergosberegayushchie tekhnologii pri magistral’nom transporte prirodnogo gaza. B.P. Por- shakov, A.S. Lopatin, A.F. Kalinin, S.M. Kupcov, K.H. SHotidi. M.: Izd. centr RGU nefti i gaza imeni
I.M. Gubkina, 2014, 417 p.
4. Celevaya kompleksnaya programma po sozdaniyu otraslevoj sistemy diagnosticheskogo ob- sluzhivaniya gazotransportnogo oborudovaniya kompressornyh stancij RAO Gazprom (do 2000g.). M.: IRC Gazprom, 1997.
5. Osobennosti resursosberegayushchej sistemy ehkspluatacii oborudovaniya kompressornyh stancij. A.S. Lopatin, A.F. Kalinin, D.N. Levitskij, D.A. Belyaev. Dokl. Mezhd. nauch.-tekhn. konf. “Inzhenernoe iskusstvo v razvitiicivilizacii” (Moskva, oktyabr’, 2003). M.: MGTU imeni N.EH. Bau- mana, 2004, p. 140-141.
6. Formirovanie edinoj otraslevoj sistemy diagnosticheskogo obsluzhivaniya (OSDO) oborudo- vaniya RAO “Gazprom”. V.V. Remizov, A.D. Sedyh, S.P. Zarickij, A.S. Lopatin, M.A. Bronovec. Nauchno-tekhn. sbornik IRC Gazprom, ser. “Diagnostika oborudovaniya i truboprovodov”, 1996, no. 4-6, p. 7-22.
7. Diagnosticheskoe obsluzhivanie magistral’nyh gazoprovodov. A.M. Angalev, B.N. Antipov, S.P. Zarickij, A.S. Lopatin. M.: MAKS Press, 2009, 112 p.
8. ZHitomirskij B.L., Lopatin A.S. Kadrovoe obespechenie sistemy upravleniya tekhnicheskim sostoyaniem i celostnost’yu magistral’nyh gazoprovodov. Territoriya Neftegaz, 2017, no. 3, p. 18-21.
9. Sistema nepreryvnogo tekhnicheskogo obsluzhivaniya i remonta gazotransportnogo oborudo- vaniya kompressornyh stancij SINTOR. A.S. Lopatin, D.N. Levitskij, S.P. Zarickij, K.V. Frejman,
10. B.V. Frejman i dr. M.: RGU nefti i gaza imeni I.M. Gubkina, 2005, 80 p.

2018/4
Definition of correction factors of recalculation of electrical submersible centrifugal-axial pump performance of viscous liquid pumping
Technical sciences

Authors: Aleksey V. DEGOVTSOV graduated from Moscow Institute of Petrochemical and Gas Industry named after Ivan Gubkin in 1982. Нe is Candidate of Engineering Sciences, Asso- ciate Professor of the Department of Machines and Equipment of Oil and Gas Industry of Gubkin Russian State University of Oil and Gas (National Research University). A specialist in the field of pumping equipment production of oil and gas. The author of over 40 scientific publications. E-mail: degovtsov.aleksey@yandex.ru
Nikolay N. SOKOLOV graduated from Moscow Institute of Petrochemical and Gas Industry named after Ivan Gubkin in 1990. Нe is Senior Lecturer of the Department of Machines and Equipment of Oil and Gas Industry of Gubkin Russian State University of Oil and Gas (National Research University). A specialist in the field of pumping equipment production of oil and gas. The author of 15 scientific publications. E-mail: sokolovnn2010@rambler.ru
Aleksandr V. IVANOVSKIY graduated from Gubkin Russian State University of Oil and Gas (National Research University) in 2016. He is a student of Master’s degree program of the Department of Machines and Equipment of Oil and Gas Industry of Gubkin Russian State University of Oil and Gas (National Research University). The author of 3 scientific publications. E-mail: alivan95@yandex.ru
Grigoriy A. LUPSKIY graduated from Gubkin Russian State University of Oil and Gas (National Research University) in 2015. He is a student of Master’s degree program of the Department of Machines and Equipment of Oil and Gas Industry of Gubkin Russian State University of Oil and Gas (National Research University). E-mail: war366@yandex.ru
Imam N. MAMALIEV graduated from Gubkin Russian State University of Oil and Gas (National Research University) in 2016. He is a student of Master’s degree program of the Department of Machines and Equipment of Oil and Gas Industry of Gubkin Russian State University of Oil and Gas (National Research University). E-mail: 13_imam@mail.ru
Aleksandr Yu. AKSENOV graduated from Gubkin Russian State University of Oil and Gas (National Research University) in 2017. He is a student of Master’s degree program of the Department of Machines and Equipment of Oil and Gas Industry of Gubkin Russian State University of Oil and Gas (National Research University). E-mail: aksenov.212@mail.ru

Abstract: In this article influence of viscous liquid on performance of the electrical submersible pump (ESP) is considered. As at operation of the ESP operating it’s known only the pump performance during the work on water, it’s need to make recalculation of pump performance taking into account conditions at which the pump will work. That’s especially important for a new type of pump working on the centrifugal-axial-flow principle. The interest in applying such stages prompted to check viscosity influence of produced fluid to the performance of centrifugal-axial pump stages

Index UDK: 622.276.53

Keywords: electrical submersible pump, centrifugal-axial pump, pump performance, viscosity influence, correction factors of recalculation

Bibliography:
1. Lyapkov P.D. O vliyanii vyazkoy zhidkosti na kharakteristiku pogruzhnykh tsentrobezhnykh nasosov [On the influence of a viscous liquid on the characteristics of submersible centrifugal pumps]. Trudy VNII [Editions of Research Institute of the Soviet Union], 1964, vypusk XLI [Release No. XLI], р. 71-107.
2. Ibatulov K.A. Pereschet kharakteristik tsentrobezhnykh nasosov s vody na neft’ [Recalculation of characteristics of centrifugal pumps from water to oil]. Baku: Aznefteizdat [Azneft Publ.], 1952, 79 p.
3. Shishchenko R.I., Baklanov B.D. Nasosy v neftyanoy promyshlennosti [Pumps in the oil industry]. Baku: Aznefteizdat [Azneft Publ.], 1936.
4. Sukhanov D.Ya. Issledovanie raboty lopastnykh nasosov na vyazkikh zhidkostyakh [A study of the operation of vane pumps on viscous liquids]. Avtoreferat, 1950.
5. Degovtsov A.V., Sokolov N.N., Ivanovskiy A.V. K voprosu o vybore materiala stupeney elektrotsentrobezhnogo nasosa dlya oslozhnennykh usloviy ekspluatatsii [On Selection Of Electric Centrifugal Pump Stages Material For Complicated Conditions Of Operation]. Territoriya Neftegaz [Oil and Gas Territory], 2016, no. 11, p. 88-91.
6. Ivanovskiy A.V., Lupskiy G.A., Mamaliev I.N. Issledovanie rabochikh organov tsentrobezhnykh nasosov dlya dobychi nefti, izgotovlennykh po raznym tekhnologiyam [Research of the working bodies of centrifugal pumps for oil production, made by different technologies]. Problems of Geology and Subsurface Development: Proceedings of the 21th International Scientific Symposium of students, Postgraduates and young Scientists devoted to the 130th Anniversary of birth of M. Kuchin. Part II. Tomsk Polytechnic University. Tomsk: Tomsk Polytechnic University Publishing House, 2017, p. 90-91.
7. Ivanovskiy V.N., Pekin S.S., Yangulov P.L. Vliyanie vyazkoy zhidkosti na rabochuyu kharakteristiku pogruzhnykh elektrotsentrobezhnykh nasosov [Effect of viscous fluid on working characteristic of submersible centrifugal pumps]. Territoriya Neftegaz [Oil and Gas Territory], no. 9, 2012, p. 49-55.
8. Yangulov P.L. Usovershenstvovanie metodiki opredeleniya kharakteristiki tsentrobezhnykh nasosov dlya dobychi nefti pri rabote na vyazkoy zhidkosti. Diss. kand. tekhn. nauk [Improvement of the technique for determining the characteristics of centrifugal pumps for oil production when pumping viscous fluid. Cand. Diss.]. M.: 2013, 148 р.
9. Ivanovskiy V.N., Sazonov Yu.A., Sokolov N.N. Perspektivnye konstruktsii stupeney tsentrobezhnykh nasosov dlya dobychi nefti [Perspective designs of stages of centrifugal pumps for oil production]. Territoriya Neftegaz [Oil and Gas Territory], 2006, no. 6, p. 92-97.
10. Sazonov Yu.A., Baldenko F.D., Zakharov M.Yu., Zayakin V.I., Mokhov M.A. Stupen’ pogruzhnogo mnogostupenchatogo tsentrobezhnogo nasosa [The stage of submersible multistage centrifugal pump]. Patent RF No. 63468, utility model application No2007100010/22, published on 09.01.2007, bul on No. 15, 27.05.2007.
11. Ivanovskiy V.N., Sazonov Yu.A., Balaka N.N. Novye vozmozhnosti tsentrobezhnykh nasosov dlya dobychi nefti [New capabilities of centrifugal pumps for oil production]. Territoriya Neftegaz [Oil and Gas Territory], 2007, no. 6, p. 82-85.
12. Ivanovskiy V.N., Sazonov Yu.A., Sabirov A.A., Sokolov N.N., Donskoy Yu.A. O nekotorykh perspektivnykh putyakh razvitiya UETsN [On some prospective ways of ESP development]. Territoriya Neftegaz [Oil and Gas Territory], 2008, no. 5, p. 24-33.
13. Ivanovskiy V.N., Sazonov Yu.A., Sabirov A.A., Sokolov N.N., Donskoy Yu.A., Shatrov A.C., Kokarev V.N., Monastyrskiy N.I. Stupeni tsentrobezhnykh nasosov dlya dobychi nefti s otkrytymi rabochimi kolesami iz alyuminievykh splavov s zashchitnym keramiko-polimernym pokrytiem [The stages of centrifugal pumps for oil extraction with open impellers made of aluminum alloys with a protective ceramic-polymer coating]. Territoriya Neftegaz [Oil and Gas Territory], 2008, no. 12, p. 68-73.
14. Ivanovskiy V.N., Sabirov A.A. Skvazhnye nasosnye ustanovki dlya dobychi nefti — chto novogo? [Oil extraction wellhead pump  What’s new?]. Territoriya Neftegaz [Oil and Gas Territory], 2010, no. 10, p. 55-58.
15. Ivanovskiy V.N., Sabirov A.A., Karelina S.A. Energetika dobychi nefti v oslozhnennykh usloviyakh (chast’ 1) [Energy production of oil in complicated conditions (part 1)]. Territoriya Neftegaz [Oil and Gas Territory], 2013, no. 10, p. 102-106.
16. Ivanovskiy V.N., Darishchev V.I., Sabirov A.A. Skvazhnye nasosnye ustanovki dlya dobychi nefti [Oil extraction wellhead pump]. Moscow, Neft i gaz Publ., 2002, 824 p.
17. Lyapkov P.D., Pavlenko V.P. Uchebnoe posobie po distsipline"Tekhnologiya i tekhnika dobychi nefti" [Textbook on discipline “Technology and technology of oil production”]. М.: Moscow Institute of Oil and Gas, 1988, 91 p.

2018/4
Analysis of standards on drill pipes (key parameters, technological and strength aspects)
Technical sciences

Authors: Tatiana A. GUSEVA graduated from Gubkin Russian State University of Oil and Gas in 2009. She is Candidate of Technical Sciences, assistant professor of the Department of Standardization, Certification and Quality Management of Oil and Gas Equipment Pro-duction of Gubkin Russian State University of Oil and Gas (National Research University). She is specialist in the field of standardization of oil and gas equipment. She is author of more than 20 scientific publications. E-mail: tguseva14@yandex.ru
Igor N. KARELIN graduated from Gubkin Moscow Institute of Petrochemical and Gas Industry in 1975. He is Doctor of Technical Sciences, Professor of the Department of Stan- dartization, Certification and Quality Management of Oil and Gas Equipment Manufacturing of Gubkin Russian State University of Oil and Gas (National Research University). He is specia- list in the field of methods for ensuring the reliability of oil and gas equipment. He is author of more than 150 scientific publications.
E-mail: karelin-in@mail.ru
Oleg A. NOVIKOV graduated from Gubkin Moscow Institute of Petrochemical and Gas Industry in 1975. He is Doctor of Technical Sciences, professor of the Department of Stan-dardization, Certification and Quality Management of Oil and Gas Equipment Production of Gubkin Russian State University of Oil and Gas (National Research University). He is spe-cialist in the field of engineering technology, mathematical modeling of processes in mecha-nical engineering. He is author of more than 100 scientific publications. E-mail: noviktexnolog@yandex.ru

Abstract: The article presents the results of a comparative analysis of the requirements for drill pipes of international, national and industry standards in Russia and the United States. The provisions of GOST 32696 and GOST R 50278 are considered in comparison with the requirements of ISO 11961 and API 5DP. In addition, data on the manufacturing of drill pipes by leading Russian enterprises in accordance with the standards analyzed are presented

Index UDK: 622.24.053

Keywords: steel pipes, drill pipes, comparative analysis, standards, standardization

Bibliography: >
1. http://www.frtp.ru (Accessed 06 November 2018).
2. Kershenbaum V.Ya. Iz importozavisimosti — v konkurentosposobnost’. Realii i mify. [From import dependence  to competitiveness. Realities and Myths]. Moscow, 2017, 400 p.
3. Ushakov A.S., Kondratov L.A. O proisvodstve stal’nyh trub. [On the production of steel pipes]. Stal’, 2018, no. 7, p. 33-43 (In Russian).
4. Kershenbaum V.Ya., Guseva T.A., Panteleev A.S. [The problem of import substitution from the standpoint of competitiveness of equipment of the oil and gas complex]. Oborudovanie i tekhnologii dlya neftegazovogo kompleksa — Equipment and technologies for oil and gas indusrty, 2018, no. 2, p. 8-16 (In Russian).
5. Kershenbaum V.Ya., Guseva T.A. [Corporate systems of standardization and certification in improving the supply of equipment for the oil and gas complex]. Oborudovanie i tekhnologii dlya neftegazovogo kompleksa — Equipment and technologies for oil and gas indusrty, 2016, no. 3, p. 4-8 (In Russian).

2018/4
To the question of profile shaping under the manufacturing of cylindrical gears by electrodischarge machining
Technical sciences

Authors: Victor G. PIROZHKOV born in 1949, graduated from the Krasnoyarsk Polytechnic Institute in 1971 with a degree in mechanical engineering technology, machine tools and metalworking. He is Candidate of Technical Sciences, Professor at the Department of Technical Mechanics of Gubkin Russian State University of Oil and Gas (National Research University). He is expert in the field of calculation of strength and reliability of elements of engineering structures. He is author of more than 60 scientific publications. E-mail: pirogkov.v@gubkin.ru
Alexander N. SOBOLEV born in 1979, graduated from Moscow State Technological University “STANKIN” in 2002 in the direction of the magistracy “Technology, Equipment and Automation of engineering industries”. Candidate of Technical Sciences. Assistant professor of the Sub-department of Machines of MSTU “STANKIN”. The specialist in the theory of mechanisms and machines, CAD. The author and co-author of more than 60 scientific and educational works. E-mail: stankin-okm@yandex.ru
Aleksey Ya. NEKRASOV born in 1971, graduated from Moscow State Technological University “STANKIN” in 1994 by specialty “Designing machine tools and tools”. The candidate of Technical Sciences, assistant professor of Sub-department of Machines of MSTU “STANKIN”. The specialist in engineering. The author and co-author of more than 60 scientific and educational works.
E-mail: stankin-okm@yandex.ru
Michail O. ARBUZOV born in 1942, graduated from Moscow machine tool institute in 1964 by specialty “Designing machine tools”. The candidate of Technical Sciences, assistant professor of Sub-department of Machines of MSTU “STANKIN”. The specialist in the field of designing and calculating machine parts. The author and co-author of about 35 scientific and educational works.
E-mail: stankin-okm@yandex.ru

Abstract: The present time electrodischarge machining is widely used in native industry under the manufacturing of different goods of machine-building, including oil-gas branch. In the article possibilities of the using of electrodischarge machi- ning for the manufacturing of cylindrical gear wheels are described. For practical application a technique for the calculating of coordinates of reference points of movement trajectory of wire electrode-tool is proposed. The description of the software for the automation of technological preparation of the production is given

Index UDK: 621.9.048.4:621.833.1

Keywords: electrodischarge machining, gear wheel, mathematical model of gear profile

Bibliography:
1. Kravchenko D.V. K voprosu formoobrazovaniya poverhnostei vershin zubiev cilindricheskih evolventnih zubchatih izdelii s vnutrennim zubchatim vencom pri elektroerrozionnom virezanii na stankah s CHPU. Vestnik UlGTU, 2007, no. 4, p. 42-45 (in Russian).
2. Bezyazichnii V.F., Shehovceva E.V. Tehnologiya izgotovleniya zakritogo bloka zubchatih koles GTD. Izvestiya TulGU. Tehnicheskie nauki, 2013, no. 8, p. 19-27 (in Russian).
3. Borisov V.D. Geometricheskii rachet i profilirovanie evolventnogo zacepleniya v avtomatizirovannoi sisteme. M: Mosstankin, 1990, 34 p. (in Russian).
4. Gushin V.G., Baltadgi S.A., Sobolev A.N., Brovkina Yu.I. Proektirovanie mehanizmov i mashin. Starii Oskol: TNT, 2017, 488 p. (in Russian).
5. Nekrasov A.Ya., Arbuzov M.O., Pirogkov V.G. Primenenie universalnoi sistemi avtomatizirovannogo analiza shemi raspredeleniya nagruzki megdu elementami v mnogokontaktnih kinematicheskih parah (dlya vibora chisla zubiev menshego shkiva v zubchato-remennoi peredache). Neft, gaz i biznes, 2010, no. 7-8, p. 69-74 (in Russian).
6. Nekrasov A.Ya., Arbuzov M.O., Pirogkov V.G. O formalizovannoi metodike opredeleniya dopolnitelnih nagruzok, vizivaemih otdelnimi oshibkami shagov zveniev, v mehanicheskih ustroistvah s mnogoparnim kontaktom elementov. Neft, gaz i biznes, 2011, no. 3, p. 62-67 (in Russian).
7. Sobolev A.N., Nekrasov A.Ya., Arbuzov M.O. Usovershenstvovannaya metodika proektirovaniya zubchatih i chervyachnih mehanizmov v CAD/CAE sistemah. Vestnik MGTU Stankin, 2014, no. 2 (29), p. 81-86 (in Russian).
8. Sobolev A.N., Nekrasov A.Ya., Arbuzov M.O. Modelirovanie mehanicheskih peredach s nekruglimi zubchatimi kolesami. Vestnik MGTU Stankin, 2017, no. 1 (40), p. 48-51 (in Russian).
9. Sobolev A.N., Nekrasov A.Ya., Arbuzov M.O., Rivkin A.V. Sovershenstvovanie metodiki avtomatizirovannogo proektirovaniya gipocikloidalnih cevochnih peredacch. Tehnologiya mashinostroeniya, 2017, no. 10, p. 44-49 (in Russian).
10. Sobolev A.N., Nekrasov A.Ya., Rivkin A.V., Arbuzov M.O. Sovershenstvovanie metodiki interaktivnogo proektirovaniya planetarno-cevochnih peredacch. Tehnologiya mashinistroeniya, 2017, no. 11, p. 32-36 (in Russian).

2018/4
Modeling relaxation characteristics motor oils
Technical sciences

Authors: Oleg B. BODNAR graduated from Lomonosov MSU in 1991. Doctor of Technical Sciences, Full Professor of the Department of Physics of Gubkin Russian State University of Oil and Gas (National Research University). Specialist in the field of multi-stream diffusion, methods for determining its thermodynamic parameters and dieelometric properties. He is author of more than 50 scientific publications, educational and methodical works. E-mail: bodnar.oleg@bk.ru
Ilya V. ANISCHENKO graduated from the magistracy of Gubkin Russian State University of Oil and Gas (National Research University) in 2015. Senior lecturer of the Department of Information of Gubkin Russian State University of Oil and Gas (National Research University). Specialist in the field of computer technology, automatic control systems, remote broadcasting and distance learning. E-mail: anischenko.rus@gmail.com

Abstract: The experimental and theoretical substantiation of the mathematical model of dispersion dependences of dielectric parameters of motor oils is presented. A methodology for estimating changes in the alkali number in the process of operation has been developed

Index UDK: 681.5.08, 681.518.2, 681.518.5

Keywords: diesel engine oil, instrument measuring dieelometric properties, oils, petroleum products, loss tangent, permittivity

Bibliography:
1. Yavorsky B.M., Detlaff A.A. Spravochnik po fizike: vtoroe izdanie [Handbook of Physics: second edition]. Moscow, 1985, 528 р.
2. Poplavko Y.M. Fizika dielektrikov: uchebnoye posobiye dlya vuzov [Physics of dielectrics: a textbook for high schools]. Kiev, 1980, 399 р.
3. Bodnar O.B., Didin G.A., Arakelov P.Y. Measuring instrument of dielectric properties of oil products. Trudy XI Vserossiyskoi nauchno-tekhnicheskoi Konferentsii “Aktualnye problemy razvitiya neftegazovogo kompleksa Rossii” [XI All-Russian scientific and technical conference Actual problems of development of the oil and gas complex of Russia”]. Moscow, 2016, 15 p. (in Russian).
4. Bodnar O.B., Anischenko I.V. Dielcometric method of express analysis of motor oils. Trudy Mezhdunarodnoi konferentsii “Fazovie prevrashcheniya v uglevodorodnykh flyuidakh: teoriya i eksperiment” [International Conference Phase Transformations in Hydrocarbon Fluids: Theory and Experiment”]. Moscow, 2016, p. 74-75 (in Russian).

2018/4
Model of evaluation of fire safety at fuel and energy complex facilities using temporal characteristics from graphs of strategic planning using automated control system
Technical sciences

Authors: Ilya V. SAMARIN graduated from Gubkin Russian State University of Oil and Gas in 2006. He is Candidate of Technical Sciences, assistant professor of the Department of Automation of Technological Processes of Gubkin Russian State University of Oil and Gas (National Research University). He is specialist in the field of automation and management. He is author of more than 60 scientific publications. E-mail: ivs@gubkin.pro.
Andrey Yu. STROGONOV graduated from Gubkin Russian State University of Oil and Gas in 2006. He is postgraduate of the Department of Automation of Technological Processes of Gubkin Russian State University of Oil and Gas (National Research University). His research interests include automation of assessment of efficiency of fire safety management and improvement of automation of intellectual support of management of fire and explosion protection. He is author of 2 scientific publications.
E-mail: andreystrogonov@gubkin.ru.

Abstract: This paper considers the model of fire safety (FS) evaluation at facilities of the fuel and energy complex using their temporal characteristics. The tools of strategic planning are proposed to assess the efficiency of the FS management. This model allows to calculate the aggregate quality indicator for the selected purpose of the study. The main objective is to ensure FS at facilities of the fuel and energy complex. The quality indicator is presented as a target function. With the help of hierarchies for detail different expressions of the performance indicator for FS activities of different scale were received. Physical values of the current runtime of the FS activities was applied for calculations. The proposed model could allow to get accurate real-time information about the state of FS activities for decision-maker. These data can be obtained during operation of automated process control system. The model evaluation from this study is one of the tools of support of the the automated system of fire and explosion protection of the facilities of the fuel and energy complex

Index UDK: 658.5

Keywords: automation, mathematical model, modeling, aggregate indicator, performance indicator, target function, dynamic mode, hierarchy, strategic planning, management support, decision support systems, automated control systems, automated systems of fire and explosion protection, fire safety, object of fire safety, fuel and energy complex

Bibliography:
1. Dawoud S. M. Fire protection in the petroleum industry. SPE Annual Technical Con-ference and Exhibition (11-14 November, 2007, Anaheim, California, USA). DOI: 10.2118/110521-ms.
2. Antonsen S., Skarholt K., Ringstad A.J. The role of standardization in safety management— A case study of a major oil & gas company. Safety science, 2012, vol. 50, no. 10, p. 2001-2009. DOI: 10.1016/j.ssci.2011.11.001.
3. Samarin I.V., Strogonov A.,Yu., Sharova I.Ya., Fomin A.N. Evolution of approaches to automation and management of technological processes and productions in the industry and their role in ensuring effective planning and successful development of the modern enterprise. Estestvennyye i tehnicheskiye nauki [Natural and Technical Sciences], 2018, no. 8 (122), p. 187-203 (in Russian).
4. Abrosimov А.А., Topolskiy N.G., Fedorov А.V. Avtomatizirovanniyye systemy pozharovzrivobezopasnosti neftepererabatyvayushchikh proizvodstv [Computer-aided fire and explosion safety systems of petroleum refineries]. Moscow, State Fire Academy of the Ministry of Internal Affairs of Russia Publ., 1999, 239 p. (in Russian).
5. Butuzov S.Yu., Kryuchkov A.V., Samarin I.V. Method of quantitative calculation of the total factor impact of personnel stability special software of the automated systems of fire and explosion. Pozharovzryvobezopasnost [Fire and Explosion Safety], 2018, vol. 27, no. 7-8, p. 60-66 (in Russian).
6. Kruchkov A.V. Universal set of interface semantic unit in the special software. Tekhnologii tekhnosfernoj bezopasnosti [Technology of technosphere safety], 2016, no. 1 (65), p. 237-241 (in Russian).
7. Samarin I.V. Formalization of the problem of the justification of the medium-term action plan to build the automated control system of strategic planning at the enterprise [Innovatsii i investitsii. Innovation and Investment], 2014, no. 4, p. 177-183 (in Russian).
8. Samarin I.V. ACS strategic planning at the enterprise: refinement of methodological and instrumental basics of planning schemes. Sovremennaya nauka: aktualnyye problemy teorii i praktiki. Seriya: Yestestvennyye i tekhnicheskiye nauki [Modern Science: Actual Problems of Theory and Practice. Series: Natural and Technical Science], 2017, no. 2, p. 31-44 (in Russian).
9. Alekhin E.M., Brushlinsky N.N., Sokolov S.V., Wagner P. Russian simulation for strategic planning. Fire International, 1996, no. 154, p. 32-33.
10. Saaty T.L. Prinyatie reshenij. Metod analiza ierarhij [Decision making. Hierarchy analysis method]. Moscow, Radio and communication, 1993, 278 p. (in Russian).
11. Samarin I.V., Fomin A.N. Strategic planning at the enterprise: application of a method of the analysis of hierarchies to analyze target system installations. Innovatsii i investitsii [Innovation and Investment], 2014, no. 6, p. 132-141 (in Russian).
12. Sukharev M.G., Arsenev-Obraztsov S.S., Zhukova T.M. Osnovy matematicheskogo i kompyuternogo modelirovaniya v zadachakh neftegazovogo kompleksa [Fundamentals of mathematical and computer modeling in the problems of oil and gas complex]. Moscow, MAKS Press Publ., 2010, 120 p. (in Russian).
13. Gelfand I.M. Lekcii po linejnoj algebra [Lectures on linear algebra]. Moscow, Dobrosvet, 2006, 320 p. (in Russian).
14. Zorich V.A. Matematicheskij analiz. Chast I. [Mathematical analysis. Part 1]. Moscow, MCNMO, 2017, 576 p. (in Russian).
15. Moiseyev N.N. Matematicheskie zadachi sistemnogo analiza: Uchebnoe posobie [Mathematical tasks of the system analysis]. Moscow, Librokom, 2013, 532 p.

2018/4
Problems and models of multi-criteria risk assessment and efficiency of development of methane-coal deposits
Technical sciences

Authors: Yury P. STEPIN graduated from Gubkin Moscow Institute of Petrochemical and Gas Industry in 1969, specializing in “Industrial Electronics” in 1975 he completed his postgraduate course. He is Doctor of Technical Sciences, Professor of the Department of Automated Control Systems of Gubkin Russian State University of Oil and Gas (National Research University). He is author of 146 scientific and methodical papers, 118 scientific-papers, 23 teaching aids, 3 books and 2 patents. He has prepared 6 candidates of sciences. E-mail: stepin.y@gubkin.ru

Abstract: The article is devoted to multi-criteria assessment of the possibility of developing and evaluating and selecting options for projects of developing methane-coal deposits under conditions of uncertainty and risk. Risks are considered in a narrow and broad sense. It is shown that the solution of the problem of risk assessment in the narrow sense is reduced to multi-criteria: 1) assessment of the subjective probability, which determines the possibility of the development; 2) comparison and selection of criteria for assessing the prospect level of a field; 3) assessing the level of availability (quality) of a methane-coal deposit based on a probabilistic model and a model built on the basis of a Analytic Hierarchy Method that takes into account uncertainties and risks of operating deposit facilities through the relevant necessary performance indicators; 4) comparison and selection of the best field development option based on the Analytic Hierarchy Method

Index UDK: 681.5: 519.86

Keywords: multi-criteria evaluation, risk, convolution of criteria, Analytic Hierarchy Method, subjective probability, compromise scheme, risk in narrow sense, risk in broad sense

Bibliography:
1. Storonskiy N.M. Sovremennoe sostoyanie osvoeniy resursov metana uglnyh plastov Rossii. ОАО “Gazprom promgaz”. http://oilgasjournal.ru/vol_10/storonsky.pdf
2. Vishniykov J.D., Radaev N.N. Obschaiy teoriy riskov. M.: Akademiy, 2008, 368 p.
3. GOST R MEK 61511. Bezopasnost funktcionirovaniy. Sistemy bezopasnosti dliy promyshlennyh processov. M.: Stavdartinform, 2012.
4. GOST R MEK 61508. Upravlenie nadejnostiy. Analz riska tehnicheskih system. M.: Standartinform, 2008.
5. Andreev A.F., Zubareva V.D., Kurpitko, Sarkisov A.S. Otcenka riskov neftegazovyh proektov. М.: Neft’ i gaz, 2002, 212 p.
6. Marchenko Е.А. Planirovanie riskov pri provedenii geologo-pazvedochnyh rabot. М.: Neftianoe hoziastvo, no. 2, 2010, p. 14-17.
7. Маderа А.G. Riski i shasiy: ntopredelennost, prognozirovanie i оchenki. М.: KRASAND, 2014, 448 р.
8. Stepin Yu.P., Trakhtengerts E.A. Komp’yuternaya podderzhka upravleniya neftegazovymi tekhnologicheskimi protsessami i proizvodstvami. Metody i algoritmy formirovaniya upravlencheskikh resheniy. Kniga 1. “Vektor TiS”, 2007, 384 p. Kniga 2. “MAKS PressVektor TiS”, 2008, 528 p.
9. Stepin Yu.P. Komp’yuternaya podderzhka formirovaniy mnogokriterialnogo ranjirovania I optimzacii upravlenchskih resheniy v neftegazovoy otrasli. Uchebnoe posobie. М.: ООО “Izdatelskiy dom Nedra”, 2016, 421 p.
10. Desiatkin A.S, Strelchenko V.V. Viyavlenie i ocenka ugolnih plastov dlia dobichi metana po dannim geologogeofizicheskih i petrofizcheskih issledovaniy skvjin. Nauka i tehnika v gazovoy promihlennosti. М.: ООО “Gazprom ekspo”, 2009, no. 3 (39), p. 31-42.
11. Desiatkin A.S, Strelchenko V.V. Ocenka i prognoz osnovnih geologo-promislovih harakteristik ugolnih plastov dlia dobichi metana. Gazovaia promishlennost. М.: ООО “Gazoil press”, 2010, no. 7, p. 18-21.
12. Stepin Yu.P. Metod gruppovogo analiza ierarhiy dliy vibora variantov razrabotki mectorojdeniy nefti i gaza. Trudy Rossiyskogo gosudarstvennogo universiteta nefti i gaza imeni I.М. Gubkina, 2017, no. 1 (286), p. 102-120.

2018/4
On rational choice of boundary conditions in problems of hydraulic circuits analysis
Technical sciences

Authors: Mikhail G. SUKHAREV graduated from Lomonosov Moscow State University, Faculty of Mechanics and Mathematics, in 1959. He is Honored Scientist of the Russian Federation, Doctor of Technical Sciences, Professor of the Department of Applied Mathematics and Computer Modeling of Gubkin University (National Research University). He is specialist in the field of mathematical modeling, technical cybernetics, analyst of oil and gas complex. He is author of about 300 monographs, articles in scientific and technical journals. E-mail: mgsukharev@mail.ru

Abstract: A brief reference is given on the mathematically correct problem statement and the solution stability in mathematical physics and computational mathematics. An example of an unstable computational procedure is presented for solving an engineering problem — the hydraulic calculation of a pipeline chain. To study the stability of the computational procedure, a sensitivity method is proposed, which makes it possible to determine the variations of output variables by variations of the input variables. Using the sensitivity method, the degree of stability of the calculation procedures is estimated depending on the totality of the boundary conditions necessary for the unique solvability of the problem of analyzing a hydraulic circuit

Index UDK: 519.95+518.5

Keywords: stability of computational procedures, correctness of problem statement, hydraulic circuits, sensitivity method

Bibliography:
1. Nekorrektnye zadachi estestvoznaniya. Pod red. A.N. Tihonova, A.V. Goncharskogo. M.: Izd-vo MGU, 1987, 304 p. (in Russian).
2. Tihonov A.N., Kostomarov D.P. Vvodnye lekcii po prikladnoj matematike. M.: Nauka, 1984, 192 р. (in Russian).
3. Voskobojnikov YU.E., Micel’ A.A. Nekorrektnye zadachi matematicheskoj fiziki. Lekcionnyj kurs: Uchebnoe posobie. Tomskij gos. un-t sistem upravleniya i radioehlektroniki (TUSUR). Tomsk, 2018, 126 p. (in Russian).
4. Sharyj S.P. Kurs vychislitel’nyh metodov. Novosibirsk, 2012, 316 p. (in Russian).
5. Sheberstov E.V. O tochnosti rascheta magistral’nogo gazoprovoda. “Gazovaya promyshlennost’”, 1973, no. 11, p. 14-16 (in Russian).
6. Suharev M.G., Stavrovskij E.R. Optimizaciya sistem transporta gaza. M.: “Nedra”, 1975, 277 p. (in Russian).
7. Merenkov A.P., Hasilev V.YA. Teoriya gidravlicheskih cepej. Moskva, Nauka, 1985, 278 p. (in Russian).
8. Suharev M.G., Samojlov R.V. Analiz i upravlenie stacionarnymi i nestacionarnymi rezhimami transporta gaza. M.: RGU nefti i gaza (NIU) imeni I.M. Gubkina. 2016. — 399 s. (in Russian).
9. Epifanov S.P., Novickij N.N. Metody postroeniya matric chuvstvitel’nosti gidravlicheskih cepej. Trudy XIII Bajkal’skoj mezhdunarodnoj shkoly-seminara “Metody optimizacii i ih prilozheniya”. Irkutsk: ISEHM SO RAN, 2005, tom 5, p. 125-130 (in Russian).
10. Epifanov S.P., Novickij N.N., Borovin D.I. Razvitie modelej i metodov analiza chuvstvitel’nosti gidravlicheskih cepej. V kn.: Truboprovodnye sistemy ehnergetiki: Metodicheskie i prikladnye problemy matematicheskogo modelirovaniya. Novosibirsk: Nauka, 2015, p. 288-294 (in Russian).
11. Borovin D.I., Epifanov S.P., Novickij N.N. Razvitie modelej i metodov analiza chuvstvitel’nosti gidravlicheskih cepej. Trudy XIV Vserossijskogo nauchnogo seminara, p. 93-102 (in Russian).
12. Korel’shtejn L.B. Sushchestvovanie, edinstvennost’ i monotonnost’ resheniya zadachi potokoraspredeleniya v gidravlicheskih cepyah s zavisyashchimi ot davleniya zamykayushchimi sootnosheniyami, 2017. URL: https://arxiv.org/abs/1708.07399 (in Russian).
13. Krupenyov D.S. Primenenie modelej chuvstvitel’nosti ustanovivshegosya rezhima ehlektroehnergeticheskih sistem dlya uchyota otkazov ehlementov. Issledovanie i obespechenie nadezhnosti sistem ehnergetiki: n.-tekhn. sbornik “Metodicheskie voprosy issledovaniya nadezhnosti bol’shih sistem ehnergetiki”. Irkutsk: ISEHM SO RAN, 2017, vyp. 68, p. 348-356 (in Russian).

2018/4
On role of topoisomerism of heterocycles in [alkyl(aryl)sulfonyl]-azoles
Chemical sciences

Authors: Vladimir N. KOSHELEV graduated from Gubkin Moscow Institute of Petrochemical and Gas Industry in 1975. He is Vice Rector for Academic Affairs, Head of the Department of Organic Chemistry and Petroleum Chemistry of Gubkin Russian State University of Oil and Gas (National Research University). He is author of more than 320 scientific papers in the field of organic and petroleum chemistry. E-mail: koshelev.v@gubkin.ru
Vladimir D. RYABOV graduated from Gubkin Moscow Institute of Petrochemical and Gas Industry. He is Professor of the Department of Organic Chemistry and Petroleum Chemistry of Gubkin Russian State University of Oil and Gas (National Research University). He is author of more than 180 scientific papers in the field of organic and petroleum chemistry. E-mail: 27helga72@mail.ru
Zoya P. BELOUSOVA graduated from Kuibyshev State University in 1975, she is Candidate of Chemical Sciences, assistant professor of the Department of Geology of Organic, Bioorganic and Medicinal Chemistry of the Samara National Research University named after S.P. Korolyov. She is specialist in the field of organic chemistry and chemistry of natural compounds. She is author of more than 80 scientific publications. E-mail: zbelousova@mail.ru

Abstract: Sulfonyl-substituted derivatives of imidazole, 1,2,4-triazole, benzimidazole, benzotriazole have been synthesized and characterized by IR and NMR 1H-spectroscopy. It is shown that the interaction of azoles with methane and benzenesulfonic acid chlorides in the presence of an organic base gives rise to the 1H-isomers of imidazole and benzimidazole, the 4H isomer of  1,2,4-triazole and the 2H-isomer of benzotriazole. The presence in the NMR 1H-spectrum of PhSO2-4-1,2,4-Tri singlet in the region of 8.31 ppm. confirmed, that the compound is a 4H-isomer. In the NMR 1Н MeSO2-2-BzTri spectrum, a doublet of doublets is present in the regions of 7.43 and 7.91 ppm. 1H-Isomers of  1,2,4-triazole and benzotriazole and their symmetrical analogues differ in dipole moment and lipophilicity. The information obtained will help explain the mechanism of their biological action

Index UDK: 547.56; 547.584

Keywords: heterocycles, 1-(phenylsulfonyl)-1Н-imidazole, 1-(methylsulfonyl)-1Н-benzimidazole, 4-(phenylsulfonyl)-1Н-1,2,4-1,2,4-triazole, 2-(methylsulfonyl)-1Н-benzotriazole, lipophilicity, dipole moment

Bibliography:
1. Zinchenko V.A. Himicheskaja zaschita rastenii: sredstva, tehnologioga i ekologicheskaja bezopasnost [Chemical protection of plants: means, technology and environmental safety]. М.: KolosS, 2012, 127 p. (in Russian).
2. Krasovitsky B.M., Bolotin B.M. Organischeskie lubimofori [Organic phosphors]. M.: Che- mistry, 1984, 334 p. (in Russian).
3. Kozinsky V.A., Rubinov I.I. Issledovaniya v riady 2aril-benzotriazolov. Voprosy khimii i khi-micheskoy tekhnologii. Khar’kov [Studies in the series 2-aryl-benzotriazoles], 1973, vyp. 31, p. 7-14.
4. Yujie Ren, Fanhong Wu, Chunfeng Shu, Ma Liu Synthesis and Potent Biological Activity of  1-Sulfonyl Substituted Imidazole and benzo[d]imidazole Compounds. Advanced Materials Research, 2011, vol. 236-238, p. 2570-2573.
5. Motoshi Yamauchi, Tomoya Miura, Masahiro Murakami Preparation of 2-sulfonyl-1,2,3-triazolez by bace-promoted 1,2-rearrangement of a sulfonyl group. Heterocycles. 2010, vol. 80, no. 1, p. 177-181.
6. Staab H.A. Synthesen mit heterocyclischen Amiden (azoliden). Angew.Chem. 1962, no. 74, p. 407-423.
7. Gilchrist T.L. Heterocyclic chemistry. M.: Mir, 1996, 464 p.
8. Alan R. Katritzky, Xiangfu Lan, Olga V. Denisko Properties and Synthetic Utility of N-Substituted Benzotriazoles. Chem. Rev., 1998, no. 98, p. 409-548.
9. Spartan’10. Evaluation version. Wavefunction, Inc., Irvine (CA), 2010.
10. http://www.vcclab.org/lab/alogps/
11. Belousova Z.P., Selezneva E.S. Antibacterial activity and phisico-chemical propertoes of sulfoasids benzoazolides. Vestnic of Samara State University, 2007, t. 47, no. 7, p. 6-11 (in Russian
12. Selezneva E.S., Belousova Z.P., Ten’gaev E.I. i dr. Synthesis and biological activity of triazolides. Pharmaceutical Chemistry Journal, 2003, Т. 37, No 8, pp. 14-17. (in Russian).
13. Potapova I.A., Purygin P.P., Lipatov I.S. i dr. Synthesis and biological activity of aliphatic and aromatic azolides. Pharmaceutical Chemistry Journal, 2001, vol. 35, no. 11, p. 5-7 (in Russian).
14. Traven V.F., Schekotikhin A.E. Praktikum po organicheskoy khimii. М.: Binom, Laboratoriya znaniy, 2014, 592 p. (in Russian).
15. Staab H.A. Synthesen mit heterocyclischen Amiden (azoliden). Angew.Chem., 1962, no. 74, p. 407-423.