Extended Search

- in all fields
- in the title
- in key words
- in the abstract
- in the bibliography
Issue
Name
Authors
Category
2020/1
Prediction of thermodynamic properties and phase behavior of reservoir fluids for the design of oil and gas fields
Geosciences

Authors: Anatoly A. GERASIMOV graduated from the Grozny’s oil Institute named after academician M.D. Millionshikov in 1972, doctor of technical sciences, Professor of the Department of the “Heat and gas supply and ventilation” of Kaliningrad State Technical University. The author of more than 100 scientific works in the field of thermophysical properties of substances, including three monographs. E-mail: aager_kstu@mail.ru
Boris A. GRIGORIEV graduated from the Grozny’s oil Institute named after academician M.D. Millionshikov in 1963, the member of the Russian Academy of Sciences, doctor of technical sciences, Professor, head of the Department of the “Study of oil and gas reservoir systems” of Gubkin Russian State University of Oil and Gas (National Research Univer- sity). The author of more than 300 scientific works in the field of thermophysical properties of substances, the author of a textbook on heat and mass transfer for high schools and several monographs. E-mail: gba_41@mail.ru
Evgeny B. GRIGORIEV graduated from the Grozny’s oil Institute named after acade- mician M.D. Millionshikov in 1990. Assistant Professor, doctor of technical sciences. Leading Researcher of the Department of the “Study of oil and gas reservoir systems” of Gub- kin Russian State University of Oil and Gas (National Research University). Specialist in the field of thermophysical properties of working fluids and coolants. The author of more than 100 scientific works in the field of thermophysical properties of substances, including three monographs. E-mail: egb_8691@mail.ru
Igor S. ALEXANDROV graduated from the Kaliningrad State Technical University in 2004, candidate of technical sciences, Assistant Professor, head of the Department of the “Heat and gas supply and ventilation” of Kaliningrad State Technical University. The author of more than 80 scientific works in the field of thermophysical properties of substances. E-mail: alexandrov_kgrd@mail.ru

Abstract: This article proposes methods for calculating the thermodynamic properties and phase equilibria of reservoir fluids based on both empirical multi-constant equations of state and theoretically based equations obtained in the framework of the statistical theory of associated fluid (SAFT). The article also proposes an alternative technique based on the author’s generalized PC-SAFT equation of state. The article presents the results of comparative calculations of the thermodynamic properties of model hydrocarbon mixtures, as well as real reservoir systems based on the proposed methods. The most accurate calculation of thermodynamic properties in the single-phase region was shown by the multiconstant model. In particular, the accuracy of density calculation is 3-4 times higher than according to cubic equations of state. When testing this model regarding the calculation of phase equilibria, limitations were established that recommend its use for light gas condensates, in which the molar mass of the residue does not exceed 140 g/mol and the relative density of the residue does not exceed 0,730. For reservoir fluids that do not satisfy the condition described above, it is proposed to calculate phase equilibria using a model based on the author’s PC-SAFT equation of state that can be used to calculate phase equilibria and near the freezing point of the mixture, where cubic and multi-constant equations can lead to nonphysical phase diagram

Index UDK: 622.276

Keywords: density, heat capacity, saturation pressure, equation of state, reservoir fluid, oil, gas condensate

Bibliography:
1. Span R. Multiparameter Equation of State: An Accurate Source of Thermodynamic Property Data. Berlin: Springer, 2000, 367 p.
2. Kunz O., Klimeck R., Wagner W., Jaeschke M. The Gerg-2004 Wide-Range Equation of State for Natural Gases and Other Mixtures. Dusseldorf, 2007, 535 p.
3. Alexandrov I., Gerasimov A., Grigor’ev B. Generalized Fundamental Equation of State for Normal Alkanes (C5 — C50). Int. J. Thermophys, 2013, vol. 34, p. 1865-1905.
4. Grigoriev B., Alexandrov I., Gerasimov A. Generalized equation of state for the cyclic hydrocarbons over a temperature range from the triple point to 700 K with pressures up to 100 MPa. Fluid Phase Equilibria, 2016, vol. 418, p. 15-36.
5. Ke-Le Yan, Liu Huang, Sun Chang-Yu et. al. Measurement and calculation of gas compressibility factor condensate gas and natural gas under pressure up to 116 MPa. J. Chem. Thermodynamics, 2013, vol. 63, p. 38-43.
6. Huang Liu, Sun Chang-Yu, Yan Ke-Le, et. al. Phase behavior and compressibility factor of two China gas condensate samples at pressures up to 95 MPa//Fluid Phase Equilibria, 2013, vol. 337, p. 363-369.
7. Shariati A., Peters C.J., Moshfeghian M. Bubble-point pressures of some selected methane + synthetic C6+ mixtures. J. Chem. Eng. Data, 1998, vol. 43, p. 280-282.
8. Aleksandrov I.S., Grigor’ev B.A. Modelirovanie termodinamicheskih svojstv i fazovogo pove-deniya uglevodorodov i slozhnyh uglevodorodnyh smesej na osnove novogo PC-SAFT uravneniya sos-toyaniya. Nauchno-tekhnicheskij sbornik. Vesti gazovoj nauki. Sovremennye podhody i perspektivnye tekhnologii v proektah osvoeniya neftegazovyh mestorozhdenij rossijskogo shel’fa. M.: “Gazprom VNIIGAZ”, 2018, no. 4 (36), p. 237-248.
9. Otchet o NIR “Matematicheskoe modelirovanie fazovogo povedeniya plastovyh uglevodo-rodnyh smesej v kriticheskoj oblasti. opredelenie plotnostej sosushchestvuyushchih faz”. M.: RGU nefti i gaza (NIU) imeni I.M. Gubkina, 2018, 50 p.

2020/1
Mean Residual Life (MRL) of Gnedenko-Weibull Distribution. Estimates of Residual Life Time of Submersible Pump Equipment
Geosciences

Authors: Alexandr V. SKORIKOV graduated from Rostov State University in 1971. He is Candidate of Physical and Mathematical Sciences, Аssistant professor at the Department of Higher Mathematics of Gubkin Russian State University of Oil and Gas (National Research University). His scientific interests are fractional derivatives and integrals, operators of potential type and functional spaces, theory of reliability. He has published over 40 works including 5 teaching aids. E-mail: skorikov.a@gubkin.ru
Alexey V. DENGAEV graduated with Master’s degree from Gubkin Russian State University of Oil and Gas specializing in Well operation in abnormal conditions in 2001. He is Candidate of Technical Sciences, Associate Professor of the Department of Development and Ope-ration of Oil Fields of Gubkin Russian State University of Oil and Gas (National Research University). He specializes in oil field exploitation. He is the author of more than 90 publications. E-mail: dengaev.a@gubkin.ru
Vladimir N. RUSEV graduated from M.V. Lomonosov Moscow State University in the field of probability theory and mathematical statistics in 1997. He is Candidate of Technical Sciences, senior lecturer of the Department of Higher Mathematics of Gubkin Russian State University of Oil and Gas (National Research University). The focus of his academic interests is information theory, applied mathematical statistics and theory of reliability. He is author of more than 25 scientific publications including 5 teaching aids.
E-mail: rusev.v@gubkin.ru

Abstract: The working life model (behavior model) of the object — the Gnedenko-Weibull distribution law is postulated. As a measure of reliability the article uses the mean residual time (MRL). For the Gnedenko-Weibull model, new representa-tions of the mean residual are obtained. The considered example of processing real operational data of pumps failures allows predicting the residual operating time of submersible equipment at the operational stage and can be used to assess the resource characteristics of the equipment

Index UDK: 622.276.53:519.873

Keywords: reliability indicators, distribution of Gnedenko-Weibull, mean residual life

Bibliography:
1. Kalu-Ulu T.C., Andrawus J.A. Modelling System Failures of Electric Submersible Pumps in Sand//SPE—151011—MS, 2011, р. 1-6.
2. Pastre L.F., Fastovets A. The Evolution of ESP Technology in the North Sea: A Reliability Study//SPE—187735—MS, 2017, р. 1-35.
3. Al-Jazzaf A.M., Pandit A., Al-Maqsseed N. Interpretation of ESP Reliability using Weibull Analysis and Dynamic Run//SPE—194393—MS, 2019, р. 1-20.
4. Lastra R., Aramco S. The Quest for the Ultrareliable ESP//SPE—184169—MS, 2016, р. 1-17.
5. Slepchenko S. Matematica prognoza. Neftegazovaya vertical, 2006, no. 12 (6), р. 48-51.
6. Slepchenko S.С. Otcenka nadezhnosti ESP i ikh otdelnykh uzlov po rezultatam promyslovoy ekspluatatsii. Diss. Kand. Tekhn. Nauk. М., 2011, 146 p.
7. Chernikov V.S. K voprosu о nadezhnosti ustanovok electrotsentrobezhnogo nasosa. Territoriya neftegaz, 2012, no. 3, p. 68-73.
8. Capderou C., DiLorenzo N. A Fresh Look at Completion Reliability Supports Sand Control. SPE-159541, 2012, p. 1-16.
9. Cox D. Renewal Theory. London: Methuen&Co, 1962.
10. Chin-Die Lai, Min Xie. Stochastic Ageing and Dependence Reliability. New York: Sprin- ger-Verlag, 2006, 418 p.
11. Rusev V., Skorikov A. The mean residual life (MRL) of the Weibull-Gnedenko distribution. Seventh International Scientific Conference “Modern Methods, Problems and Applications of Operator Theory and Harmonic Analysis VII” Articles and reports — Rostov-on-Don, 2017, p. 141-142. URL: www.otha.sfedu.ru/conf2017.
12. Gradshteyn I.S., Ryzhik I.M. Tables of Integrals, Series, and Products. 7th edn, New York: Academic Press, 2007, 1200 p.
13. Nassar M.M., Eissa F.H. On the Exponentiated Weibull Distrbution. Communications in Statistics — Theory and Methods, 2003, vol. 32, no. 7, p. 1317-1336.
14. Sokolov S.V., Antonov А.V., Chepurko V.A. Otsenka ostatochnogo resursa nevostanavlivayemykh elementov elektrooborudovaniya SUZ reaktora RBMK-1000 1-gо bloka Smolenskoy AES. Izvestiya vysshikh uchebnykh zavedeniy. Yadernaya energetika, 2007, no. 3-1, p. 38-43.

2020/1
Investigation of influence of soil properties on performance of thermomechanical drilling tools for construction and operation of oil and gas pipelines
Geosciences

Authors: Boris L. ZHITOMIRSKIY graduated from Kamenetz-Podolsk Higher Military Enginee- ring Command School named after Marshal of Engineering Troops Kharchenko and Kuibyshev Military Engineering Order of Lenin Red Banner Academy. He is Candidate of Technical Sciences, General Director of AO “Gazprom Orgenergogaz”. He is Professor at the Department of Termodynamics and Heat Engines of Gubkin Russian State University of Oil and Gas (National Research University). He is author of more than 50 scientific papers in the field of power engineering, diagnostics, energy saving and gas transport.
E-mail: zhyitomirsky@oeg.gazprom.ru

Abstract: Ensuring reliable and safe operation of gas pipelines at Gazprom’s facilities is a priority. The results of studies of the impact of soil strength characteristics on the performance of thermomechanical drilling tools for use in the construction and operation of oil and gas pipelines in various natural and climatic conditions are considered. Based on the research results, practical recommendations for improving the technology of soil development with a drilling thermomechanical tool are given

Index UDK: 620.19

Keywords: drilling, moisture content, gas pipeline, deformation, stress (stretching), soil shrinkage

Bibliography:
1. Zhytomyrskiy B.L. Study of thermodynamics of heat and mass transfer of the medium in the soil in the thermomechanical method of drilling holes on main gas pipelines. Equipment and technologies for the oil and gas industry. Moscow: Russian state University of oil and gas (NIU) imeni I.M. Gubkina, 2019, no. 2 (110), p. 38-43.
2. Zhytomyrskiy B.L., Krokhmal S.V. Mathematical model of working processes of thermos- mechanical drilling tools. Scientific and technical collection VIU. Moscow, 2005, no. 32, part II, p. 80-84.

2020/1
Gubkin university: scientific and technical developments in the field of technical diagnostics of fuel and energy complex equipment and pipelines
Geosciences

Authors: Alexey P. ZAV’YALOV graduated from Gubkin Russian state University of oil and gas in 2002. Candidate of technical Sciences, Аssociate Professor at the Department of oil and gas processing equipment Gubkin Russian state University of oil and gas (National Research University). Specialist in the field of reliability and technical diagnostics of pipeline systems. Author of about 70 scientific publications. E-mail: zavyalovap@yandex.ru

Abstract: The article discusses the history and current state of research in the field of technical diagnostics of equipment and pipelines of fuel and energy facilities, performed at the Gubkin Russian state University of oil and gas (NIU) from the 1960 to the present. The main scientific and practical results of the performed research are described, and the perspective directions of research performed at the university at the present time are considered. A multi-level system of personnel training in the field of technical diagnostics of gas transport systems is considered separately

Index UDK: 620.19

Keywords: Keywords: reliability, efficiency, equipment, pipeline, repair, technical diagnostics, diagnostic service system, personnel support

Bibliography:
1. Oficial’nyj sajt AO “Transneft’-Diaskan” [Elektronnyj resurs]. Rezhim dostupa: https://dias-can.transneft.ru/about/: (data obrashche-niya: 11.03.2020 g.).
2. Zav’yalov A.P. Analiz sovremennyh tendencij razvitiya sistem remontno-tekhnicheskogo i diagnosticheskogo obsluzhivaniya neftegazovyh proizvodstv. Oborudovanie i tekhnologii dlya neftegazovogo kompleksa, 2018, no. 10, p. 67-72.
3. Lopatin A.S. Nauchnye osnovy sozdaniya sistemy diagnosticheskogo obsluzhivaniya gazotransportnogo oborudovaniya kompressornyh stancij: diss. dokt. tekhn. nauk. M: RGU nefti i gaza (NIU) imeni I.M. Gubkina, 1998, 308 p.
4. Celevaya kompleksnaya programma po sozdaniyu otraslevoj sistemy diagnosticheskogo obsluzhivaniya gazotransportnogo oborudovaniya kompressornyh stancij RAO Gazprom (do 2000g.) (v trekh chastyah). M.: IRC Gazprom, 1997.
5. Aksyutin O.E., Lopatin A.S., Vasil’ev G.G. Razvitie gazotransportnoj sistemy i podgotovka inzhenernyh kadrov. Gazovaya promyshlennost’, 2010, no. 13, p. 13-16.
6. Angalev A.M., Antipov B.N., Zarickij S.P., Lopatin A.S. Diagnosticheskoe obsluzhivanie magistral’nyh gazoprovodov. M.: MAKS Press, 2009, 112 p.
7. Zarickij S.P., Lopatin A.S. Diagnostika gazoperekachivayushchih agregatov. CHast’ 1. M.: Neft’ i gaz, 2003, 178 p.
8. Metody i sredstva diagnostiki linejnoj chasti magistral’nyh gazoprovodov: ucheb. posobie. Pod red. A.S. Lopatina. M.: Izd. Centr RGU nefti i gaza imeni I.M. Gubkina, 2012, 185 p.
9. Angalev A.M., Lopatin A.S., Egorov S.I., Lyapichev D.M. Metody i sredstva nerazrushayushchego kontrolya oborudovaniya i truboprovodov kompressornyh stancij. M.: RGU nefti i gaza imeni I.M. Gubkina, 2015, 92 p.
10. Lopatin A.S., Egorov S.I., Zav’yalov A.P., Gusejnov K.B. Ocenka parametrov nadezhnosti magistral’nyh gazoprovodov, ispytyvayushchih vozdejstvie neproektnyh nagruzok. M.: RGU nefti i gaza imeni I.M. Gubkina, 2015, 95 p.
11. Porshakov B.P., Lopatin A.S., Kalinin A.F. i dr. Energosberegayushchie tekhnologii pri magistral’nom transporte prirodnogo gaza. M.: Izd. centr RGU nefti i gaza imeni I.M. Gubkina, 2014, 417 p.
12. Lyapichev D.M., ZHitomirskij B.L. Sovremennye podhody k organizacii monitoringa napryazhenno-deformirovannogo sostoyaniya tekhnologicheskih truboprovodov kompressornyh stancij. Gazovaya promyshlennost’, 2016, no. 11 (745), p. 46-53.
13. Borodin V.I., Shepelev R.E., Lyapichev D.M., Lopatin A.S., Nikulina D.P. Primenenie risk-orientirovannogo podhoda k ocenke neobhodimosti i celesoobraznosti ustanovki sistem monitoringa tekhnicheskogo sostoyaniya gazoprovodov. Gazovaya promyshlennost’, 2018, no. 1 (763), p. 60-63.
14. Zav’yalov A.P. Sovershenstvovanie metodov ocenki tekhnicheskogo sostoyaniya tekhnologicheskih truboprovodov po rezul’tatam diagnostirovaniya: diss. kand. tekhn. nauk. M: RGU nefti i gaza (NIU) imeni I.M. Gubkina, 2006, 101 p.
15. ZHitomirskij B.L., Lyapichev D.M. Perspektivnye napravleniya razvitiya sistemy diagnosticheskogo obsluzhivaniya gazotransportnogo oborudovaniya kompressornyh stancij. Oborudovanie i tekhnologii dlya neftegazovogo kompleksa, 2020, no. 1 (115), p. 56-58.
16. Lyapichev D.M., Stepanchuk I.S., Martynov A.I., Zav’yalov A.P. Sovershenstvovanie sistemy diagnosticheskogo obsluzhivaniya ob’ektov gazovoj promyshlennosti Rossii. Oborudovanie i tekhnologii dlya neftegazovogo kompleksa, 2019, no. 2 (110), p. 14-18.
17. Zav’yalov A.P. Razrabotka nauchno-metodicheskih osnov obespecheniya nadezhnosti ekspluatacii neftegazovyh ob’ektov v usloviyah arkticheskogo shel’fa. Energosberegayushchie techno-logii i tekhnicheskaya diagnostika: sbornik. M.: RGU nefti i gaza (NIU) imeni I.M. Gubkina, p. 90-99.
18. Gol’dzon I.A., Zav’yalov A.P. Nadezhnost’ i ekologicheskaya bezopasnost’ neftegazovyh ob’ektov v slozhnyh inzhenerno-geologicheskih usloviyah. Zashchita okruzhayushchej sredy v neftegazovom komplekse, 2019, no. 1 (286), p. 7-9.

2020/1
Study of the effect of the actual bend radius of a conduit-conductor in the justification of feasibility of reconstruction of trunk oil and gas pipelines by the method of “pipe in pipe”
Geosciences

Authors: Alexey S. LOPATIN graduated from Gubkin Moscow Institute of Petrochemical and Gas Industry in 1979. He is Doctor of Technical Sciences, Professor, Head at the Department of Termodynamics and Heat Engines of Gubkin Russian State University of Oil and Gas (National Research University). Аuthor of more than 350 papers in the field of diagnostics, energy saving in the transport of gas and energy efficiency. E-mail: Lopatin.a@gubkin.ru
Ruslan V. AGINEY graduated from Ukhta Industrial Institute in 1997. He is a Professor, Doctor of Technical Sciences and Rector of Federal State Budgetary Educational Institution of Higher Education “Ukhta State Technical University”. R. Aginei is a specialist in the field of corrosion protection research, repair, strength and resource of oil and gas pipelines, as well as in the design of underground gas storages. Author of more than 200 scientific papers, monographs, textbooks, co-author of more than 50 patents for inventions in the Russian Fe-deration. E-mail: rector@ugtu.net
Viktor A. SEREDENOKgraduated from the Ukhta Industrial Institute in 1993 with a degree in Machinery and Equipment for Oil and Gas Fields. Specialist in the field of operation of gas main pipeline transport systems, repair and maintenance of equipment and pipelines. The Head at Department of JSC “Gazprom”. Author of 20 scientific papers E-mail: V.Seredenok@adm.gazprom.ru

Abstract: The article presents the results of the study of the influence of the actual bending radius of the pipeline conductor when justifying the technical possibility of performing reconstruction of main oil and gas pipelines on complicated sections of the route using the “pipe in a pipe” method. The results of calculating the radius of curvature of the pipeline-conductor section based on the results of measuring the spatial position of the route crossing the water barrier are presented. The minimum step between the measurement points of the spatial position of the Belousovo-Leningrad section of the pipeline with a diameter of 720 mm is set to estimate the radius of curvature when concluding that the “pipe-in-pipe” method can be reconstructed. Expressions are proposed for determining the effort of dragging the working pipeline into the conductor pipeline and the stresses that occur when dragging the working lash of the pipeline on straight and curved sections. It was found that the combined forces of dragging the internal pipeline for the main and backup threads create stresses that do not exceed the yield strength of steel, which indicates the technical possibility of dragging the projected gas pipeline at underwater crossings

Index UDK: 624.1:624.9:53.043

Keywords: pipeline, reconstruction, “pipe in pipe” method, trenchless method; diagnostic examination, dragging, bending radius, spatial position

Bibliography:
1. Hausner M., Dixon M. Optimized Design of Pipe-in-Pipe Systems. SPE Production & Facilities, 2002, vol. 19 (1).
2. Kagoura T., Ishii K., Abe S., Inoue T., Hayashi T., Sakamoto T., Mochizuki T., Yamada T. Development of a Flexible Pipe for Pipe-in-Pipe Technology. Ocean Engineering, 2003, 12 p.
3. Mao S., Kamal M., Qiao W., Dong G., Duffy B. Reliability Analysis and Design for Pipe-in-Pipe Pipelines With Centralizers. ASME 2015 34th International Cenference on Ocean, Offshore and Arctic Engineering, 2015, 8 p.
4. Müller H., Jarosch G. An innovative rehabilitation method the pipe-in-pipe system. J. Korean Soc. for Nondestructive Testing, 2010, vol. 76, p. 10-13.
5. Rovenko D.S. Bestranshejnye metody rekonstrukcii stal’nyh gazoprovodov. Nauchnyj zhurnal. Inzhenernye sistemy i sooruzheniya, 2015, no. 2 (19), p. 30-32.
6. Sapsaj A.K. i dr. Vybor metoda stroitel’stva podvodnyh perekhodov magistral’nyh truboprovodov. Neftyanoe hozyajstvo, 2017, no. 11, p. 143-148.
7. Sarbaev R.R. i dr. Effektivnost’ zashchitnyh konstrukcij tipa “truba v trube”. Problemy sbora, podgotovki i transporta nefti i nefteproduktov, 2012, no. 2 (88), p. 31-37.
8. SP 36.13330.2012. Magistral’nye truboprovody. Vved. 01.07.2013. M.: Izd-vo standartov, 2013, 122 p.
9. Islamov R.R. Sovershenstvovanie sistemy monitoringa tekhnicheskogo sostoyaniya protyazhennyh uchastkov magistral’nyh neftegazoprovodov primeneniem volokonno-opticheskih sensorov deformacii: Diss. kand. tekhn. nauk. Uhta, 2018, 168 p.
10. SP 86.13330.2014. Magistral’nye truboprovody. Vved. 01.06.2014. M.: Izd-vo standartov, 2014, 182 p.

2020/1
Evaluation of performance properties of multipurpose lubricants
Geosciences

Authors: Andrey G. BUKLAKOV graduated from Gubkin Russian state University of Oil and Gas in 2011, specializing in technological machines and equipment. He is Candidate of Technical Sciences, Associate Professor at the of Department of Tribology and Technology of Repair of Oil and Gas Equipment of Gubkin Russian State University of Oil and Gas (National Research University). He is a specialist in the field of protective coatings and mechano-thermal formation. He is author and co-author of 25 articles.
E-mail: Dron-32@mail.ru
Nikita S. NESTERENKO graduated from Gubkin Russian State University of Oil and Gas in 2014 with a degree in technological machines and equipment. He is leading engineer at the Department of Tribology and Technology of Repair of Oil and Gas Equipment of Gubkin Russian State University of Oil and Gas (National Research University). He is author and co-author of 10 articles.
E-mail: nesterenko.n@gubkin.ru
Oksana Y. ELAGINA graduated from Gubkin Moscow Institute of Petrochemical and Gas Industry in 1989. She is Doctor of Technical Sciences, Professor, Head at the Department of Tribology and Technology of Repair of Oil and Gas Equipment of Gubkin Russian State University of Oil and Gas (National Research University). She is specialist in the fields of welding technology and equipment, technology for creating wear-resistant coatings, materials science, tribology. She is author of over 100 scientific papers.
E-mail: elagina@mail.ru

Abstract: Operational properties of multipurpose lubricants (MFS) which are widely repre-sented on the territory of the Russian Federation are studied. The penetrating ability, lubricating property and anti-corrosion ability of MFS are researched. A method for assessing the effectiveness of the composition of MFS in the processes of rust conversion is developed and tested. A wide range of MFS properties is shown depending on the problem to be solved

Index UDK: 622.276.031:532.11 (571.56)

Keywords: multipurpose lubricants, penetrating ability, threaded coupling, lubrica-ting properties, breakaway torque, conversion of rust, performance evaluation

Bibliography:
1. Tomashov N.D. Theory of corrosion and protection of metals. Moscow: Publishing house of the USSR Academy of Sciences, 1959, 591 р.
2. GOST 9.054-75. Unified system of protection against corrosion and aging. Conservation oils, lubricants, and inhibited film-forming petroleum compounds. Methods of accelerated tests of protective ability. Moscow, Standartinform, 2006.
3. GOST 380-2005 Carbon Steel of ordinary quality. Stamps. Moscow, Standartinform, 2009.
4. Anticorrosive coatings. Russian gas encyclopedia, BRE, 2004, 20 p.
5. GOST 9.407-84. Unified system of protection against corrosion and aging. Paint and varnish coatings. Method for evaluating appearance. Moscow, Standartinform, 2006.

2020/1
Development of models and algorithms of multi-criteria optimization of calendar planning of work of branched system of trunk oil pipelines
Technical sciences

Authors: Roman M. GORINOV graduated from Gubkin Russian State University of Oil and Gas (National Research University) in computer science and computer facilities in 2017. He is Post-graduate student of Gubkin Russian State University of Oil and Gas (National Research University). E-mail: romagorinov@mail.ru
Vitaly A. SHVECHKOV graduated from Gubkin Russian state University of Oil and Gas in computer science and computer facilities in 2002. He is Candidate of Technical Sciences, Associate Professor at the Department of Design and Operation of Oil and Gas Pipelines of Gubkin Russian State University of Oil and Gas (National Research University). He is author of 45 scientific and methodical works: 3 educational publications, 36 scientific works, 6 copyright certificates of state registration of computer programs.
E-mail: shvechkov.v@gubkin.ru
Yury P. STEPIN graduated from Gubkin Moscow Institute of Petrochemical and Gas Industry in 1969, specializing in “Industrial Electronics” in 1975 he completed his postgraduate course. He is Doctor of Technical Sciences, Professor at the Department of Automated Control Systems of Gubkin Russian State University of Oil and Gas (National Research University). He is author of 146 scientific and methodical papers, 118 scientific-papers, 23 teaching aids, 3 books and 2 patents. He has prepared 5 candidates of sciences. E-mail: stepin.y@gubkin.ru

Abstract: Various options were investigated and a combined scheme of compromise of criteria was proposed for the task of multi-criteria optimization of the operation of technological sections of an extensive system of trunk oil pipelines. An algorithm for searching quasi-optimal solutions was developed. This is based on the greedy search method with heuristics. The developed algorithm was tested on a branched trunk pipeline system, the results of testing were analyzed and conclusions were drawn on the applicability of the algorithm in the framework of monthly planning

Index UDK: 681.5:519.86

Keywords: branched oil pipelines system, multicriteria optimization, optimal planning, trunk pipeline operation planning

Bibliography:
1. Gorinov R.M., Shvechkov V.A., Stepin Yu.P. Matematicheskaya model’ mnogokriterial’noy optimizatsii kalendarnogo planirovaniya raboty razvetvlennoy sistemy magistral’nykh nefteprovodov. Trudy Rossiyskogo gosudarstvennogo universiteta nefti i gaza im. I.M. Gubkina, 2019, no. 4, p. 87-99.
2. Stepin Yu.P. Komp’yuternaya podderzhka formirovaniya mnogokriterial’nogo ranzhirovaniya i optimizatsii upravlencheskikh resheniy v neftegazovoy otrasli. M.: Nedra, 2016, 421 р.
3. Nakhlestkin A.A., Arkhireev A.G., Buslaev S.V. Optimizatsiya tekhnologicheskikh rezhimov perekachki nefti i nefteproduktov//Vestnik nauchnykh konferentsiy, 2017, no. 9, p. 95-97.
4. Veliev M.M. Nekotorye zadachi optimizatsii raspredeleniya gruzopotokov po seti magistral’nykh nefteprovodov: Dis. kand. tekhn. nauk. Ufa, 2001, 166 p.
5. Lazarev A.A., Gafarov E.R. Teoriya raspisaniy. Zadachi i algoritmy: Uchebnoe posobie. M.: MGU, 2011, 224 p.
6. Bellman R.E. Dinamicheskoe programmirovanie. M.: Izdatel’stvo inostrannoy literatury, 1960, 400 p.
7. Shcherbina O.A., Metaevristicheskie algoritmy dlya zadach kombinatornoy optimizatsii (obzor). Tavricheskiy vestnik informatiki i matematiki, 2014, no. 1, p. 56-72.
8. Nesterov Yu.E. Metody vypukloy optimizatsii. M.: MTsNMO, 2010, 281 p.

2020/1
Effect of preparation methods on catalytic properties of microspherical aluminosilicate cracking catalysts
Technical sciences

Authors: Natalya P. MAKAROVA graduated from Gubkin Russian State University of Oil and Gas in 1984. She is Candidate of Chemical Sciences, associate Professor at the Department of Oil and Gas Processing Equipment of Gubkin Russian State University of Oil and Gas (National Research University). She is specialist in the field of processes and devices for oil and gas processing. She is author of more than 40 scientific publications. E-mail: natalyamakarova@mail.ru
Vyacheslav B. MEL’NIKOV graduated from Gubkin Moscow Institute of Oil-Chemical and Gas Industry in 1970. Doctor of Chemical Sciences, Рrofessor at the Engineering Mechanics Department of Gubkin Russian State University of Oil and Gas (National Research University). Specialist in the field of field gathering and processing of gas and gas condensate, processes and apparatus of oil and gas processing. He is the author of more than 190 scientific publications. E-mail: v.mel@mail.ru

Abstract: Currently, catalytic cracking is the largest among the catalytic processes of oil refining to produce fractions of high-octane gasoline and diesel fuel. In the process of catalytic cracking of different types of technological implementation and instrumentation aluminosilicate zeolite-containing catalysts are used. One of the main ways to improve the efficiency of catalytic cracking units is the use of more active and selective catalysts. The article considers the influence of methods of preparation of microspherical aluminosilicate zeolite-containing cracking catalysts on their catalytic properties. It is shown that the catalytic properties of zeolite-containing cracking catalysts are significantly influenced by the method of introducing zeolite REY into the aluminosilicate base and the zeolite content. The obtained results are important in the development of technologies for the preparation of catalytic cracking catalysts

Index UDK: 665.64:544.478:54.44

Keywords: cracking catalysts, catalytic cracking

Bibliography:
1. Khavkin V.A., Kapustin V.M., Gerzeliev I.M. The ways of catalytic cracking process develop-ment. The world of petroleum products. Bulletin of oil companies, 2016, no. 10, p. 4-9.
2. Doronin V.P., Sorokina T.P., Lipin P.V., Potapenko O.V., Gordenko V.I., Korotkova N.V. Development and introduction of zeolite containing catalysts for cracking with controlled contents of rare earth elements. Catalysis in Industry, 2015, t. 7, no. 1, p. 12-16.
3. Ishmijarov M.H., Smirnov V.K., Melnikov V.B., Luk’janchikov I.I., Vershinin V.I., Makaro- va N.P., Patrikeev V.A., Babaev M.I., Makarov A.E. Ball cracking catalyst with increased bulk weight and improved regeneration. Refining and petrochemicals, 2005, no. 7, p. 13-15.
4. Melnikov V.B., Levinbuk M.I., Pavlov M.L., Patrikeev V.A. The improvement of catalytic cracking process throught the utilization of new catalytic materials. ACS 5-th Int. Symp on the Advances in Fluid Catalytic Cracking. 22-26 august 1999, USA, New Orleans.
5. Gil’mutdinov A.T., Hisamova L.Z. Overview of modern catalysts used in catalytic cracking processes. Science and education, 2019, no. 5 (50), p. 10-15.
6. Levinbuk M.I., Melnikov V.B., Numan S., Pavlov M.L., Patrikeev V.A. The improvement of catalytic cracking process through the utilization of new catalytic materials. Studies in Surface Science and Catalysis, 2001, t. 134, p. 107-110.
7. Ross Dzh., Rua R., Got’e T., Anderson L.R. Fine-tune the CCF process according to the changing fuel market. Oil and gas technologies, 2006, no. 1, p. 96–100.
8. Bellami L. Infrared spectra of complex molecules. Moscow, Foreign literature, 1963, 590 p.
9. Modern methods of oil research. Edited by A.I. Bogomolov. Leningrad, Nedra, 1984, 430 р.

2020/1
Influence of technological factors on slow pyrolysis of vegetable feed
Technical sciences

Authors: Ekaterina Yu. SERDYUKOVA graduated from Gubkin Russian State University of Oil and Gas (National Research University) in 2017. She is assistant lecturer at the Department of Oil Processing of Gubkin Russian State University of Oil and Gas (National Research Univer-sity). She is specialist in the field of technologies for processing of oil, gas, and biological raw materials. She is author of 25 scientific publications. E-mail: serdyukova.e@gubkin.ru
Elena A. CHERNYSHEVA graduated from Gubkin Moscow Institute of Petrochemical and Gas Industry in 1983. She is Candidate of Chemical Sciences, Professor at the Depart-ment of Oil Processing of Gubkin Russian State University of Oil and Gas (National Research University). She is specialist in the field of technologies for processing of oil and gas. She is author of more than 55 scientific publications. E-mail: elenchernysheva@mail.ru
Yuliya V. KOZHEVNIKOVA graduated from Gubkin State Academy of Oil and Gas in 1996. She is Candidate of Technical Sciences, Associate Professor of the Department of Oil Processing of Gubkin Russian State University of Oil and Gas (National Research University). She is specialist in the field of technologies for processing of oil, gas, and biological raw materials. She is author of 35 scientific publications. E-mail: kozhevnikova.y@gubkin.ru

Abstract: The article presents the results of studying the effect of changes in the technological parameters of the process of slow pyrolysis of plant biomass, such as the rate and final temperature of heating of raw materials, as well as the quantitative ratio of the obtained fractions. During the study of the obtained results, the dependence of the yield of products on the selected variant of the pro- cess was revealed, which made it possible to choose the optimal speed and the final heating temperature of the feed in order to obtain the maximum amount liquid product, with the possibility of its further use as a liquid environmentally friendly fuel component. The rate of heating of the feed was 5 °C/min, the final temperature of biomass heating was 500-550 °C, the yield of the liquid product at these parameters was 60-70 % by weight

Index UDK: 66.092. 665.6/7

Keywords: renewables sources, alternative fuel, slow pyrolysis, vegetable feed, biomass

Bibliography:
1. O stimulirovanii ispol’zovaniya vozobnovlyaemyh istochnikov energii na roznichnyh ryn- kah elektroenergii. Postanovlenie ot 23 yanvarya 2015 goda no. 47. URL: http://government.ru/docs/ 16633/
2. Kaluzhskij M.L., Saraev A.R. Ekonomika Omskoj oblasti: Uchebnoe posobie. Omsk: Izd. OmGTU, 2006, p. 263.
3. Ob’em i dinamika rossijskogo rynka sel’skohozyajstvennogo torfa URL: http://www.index-box.ru/news/rossijskij-rynok-selskohozyajstvennogo-torfa-pokazal-zamedlenie-rosta-potrebleniya-na-1-v-2017-g/
4. Kozhevnikova Yu.V., Chernysheva E.A., Serdyukova E.Yu. Osnovnye aspekty issledovanij po vovlecheniyu al’ternativnyh resursov v proizvodstvo toplivnyh biokomponentov, Neftepererabotka i neftekhimiya. Nauchno-tekhnicheskie dostizheniya i peredovoj opyt, 2018, no. 3, p. 39-43.
5. Lyamin V.A. Gazifikaciya drevesiny. M.: Lesnaya promyshlennost’, 1967, 152 p.

2020/1
Development of viscoelastic composition based on surfactants for hydraulic fracturing
Chemical sciences

Authors: Denis N. MALKIN graduated from Gubkin Russian State University of Oil and Gas in 2007. He is assistant lecturer at the Department of Chemical Technology for Oil and Gas Industry of Gubkin Russian State University of Oil and Gas (National Research University). He is specialist in the field of chemicals and technologies for oil and gas production. He is author of more than 20 scientific publications. E-mail: malkindn@gmail.com
Ljubov’ A. MAGADOVA graduated from Gubkin Moscow Institute of Petrochemical and Gas Industry 1975. She is Doctor of Technical Sciences, Professor at the Department of Chemical Technology for Oil and Gas Industry of Gubkin Russian State University of Oil and Gas (National Research University). She is Head of Laboratory of Scientific and Educational Center for Field Chemistry. She is specialist in the field of oilfield chemistry. She is author of more than 230 scientific publications. E-mail: lubmag@gmail.com
Mihail A. SILIN graduated from Gubkin Moscow Institute of Petrochemical and Gas Industry in 1978. He is Doctor of Chemical Sciences, Head at the Department of Chemical Technology for Oil and Gas Industry of Gubkin Russian State University of Oil and Gas (National Research University). He is specialist in the field of chemicals and technologies for oil and gas production. He is author of more than 250 scientific publications. E-mail: silin.m@gubkin.ru
Polina K. KRISANOVA graduated from Gubkin Russian State University of Oil and Gas (National Research University) in 2017. She is postgraduate student at the Department of Chemical Technology for Oil and Gas Industry of Gubkin Russian State University of Oil and Gas (National Research University). E-mail: krisanova_polina@mail.ru
Varvara A. KRASHEVNIKOVA is student at the Department of Chemical Technology for Oil and Gas Industry of Gubkin Russian State University of Oil and Gas (National Research University). E-mail: krashevnikova_va@mail.ru

Abstract: Aqueous solutions of polymers are most common hydraulic fracturing fluid, however, when applied they deteriorate reservoir properties due to the formation damage with the remains of an undamaged polymer gel. This work describes studies aimed at creating a modified polymer-free fluid for hydraulic fracturing based on a viscoelastic surfactant of national production NEFTENOL VUPAV. To give the viscoelastic composition the necessary technological properties of the fracturing fluid (high viscosity, elasticity, proppant-support properties, etc.), a new activator reagent was proposed, which is an aqueous solution of salts of metals of different chemical valences. It has been established that the introduction of the developed activator into the composition of a polymer-free fracturing fluid makes it possible to create systems with high elastic and viscous properties with lower concentrations of the surfactant. A comparative analysis of the characteristics of the widely used polymer fracturing fluids and the developed composition based on NEFTENOL VUPAV with the addition of an activator has been carried out. It was found that the NEFTENOL VUPAV-activator system can be used as a potential proppant fracturing fluid

Index UDK: 622.276.64/66

Keywords: hydraulic fracturing, gel, viscoelastic surfactant, viscosity, proppant

Bibliography:
1. Magadova L.A., Silin M.A., Gluschenko V.N. Neftepromyslovaja himija. Tehnologicheskie aspekty i materialy dlja gidrorazryva plasta [Oilfield chemistry. Technological aspects and materials for hydraulic fracturing]. Moscow, RGU nefti i gaza imeni I.M. Gubkina Publ., 2012, 423 p.
2. Shipilov A.I., Babkina N.V., Men’shikov I.A. Issledovanie svojstv tehnologicheskoj zhidkosti dlja gidrorazryva plasta na osnove vjazkouprugih PAV [Study of the properties of a process fluid for fracturing based on a viscoelastic surfactant]. Neftyanoe khozyaistvo [Oil Industry], 2018, no. 3, p. 30-33.
3. Rawat A., Tripathi A., Gupta C. (2014, March 25). Case Evaluating Acid Stimulated Multilayered Well Performance in Offshore Carbonate Reservoir: Bombay High. Offshore Technology Conference. DOI: 10.4043/25018-MS.
4. Kurjashov D.A. Samoorganizacija v smeshannyh micelljarnyh rastvorah cvitter-ionnogo i anionnogo poverhnostno-aktivnyh veshhestv [Self-organization in mixed micellar solutions of zwitterionic and anionic surfactants]. Vestnik Kazanskogo tehnologicheskogo universiteta [Bulletin of Kazan Technological University], 2013, vol. 16, no. 1, p. 32-36.
5. Silin M.A., Magadova M.A., Malkin D.N., Krisanova P.K., Borodin S.A., Fan Vu An’. Bespolimernaja tehnologicheskaja zhidkost’ dlja gidrorazryva plasta na osnove vjazkouprugih poverhnostno-aktivnyh veshhestv [Polymer-free fluid for hydraulic fracturing based on viscoelastic surfactants]. TERRITORIJA NEFTEGAZ [OIL AND GAS TERRITORY], 2017, no. 5, p. 14-19.
6. Samuel М., Polson D., Graham D., Kordzie W., Waite T., Waters G., Vnod P.S, Fu D. and Downey R. (2000, January 1). Viscoelastic Surfactant Fracturing Fluids: Applications in Low Permeability Reservoirs. Society of Petroleum Engineers. DOI: 10.2118/ 60322-MS.