Extended Search

- in all fields
- in the title
- in key words
- in the abstract
- in the bibliography
Issue
Name
Authors
Category
2019/1
Calculation of Power Action of Wave on Support Devices of Marine Structures
Technical sciences

Authors: Alexander I. SUKHINOV is Doctor of Physical and Mathematical Sciences, Professor. Head of Department, Director of the Research Institute of Mathematical Modeling and Prediction of Complex Systems, of Don State Technical University (DSTU). Нe is author more than 230 scientific publications. E-mail: sukhinov@gmail.com
Natalya Alekseevna FOMENKO is Candidate of Physical and Mathematical Sciences. Associate Professor at the Department of Higher Mathematics of Gubkin Russian State University of Oil and Gas (National Research University). She is author of 27 scientific publications. E-mail: fomenko.nata.alex@gmail.com
Alexander E. CHISTYAKOV is Doctor of Physical and Mathematical Sciences, рrofessor of the Department of Software Computing and Automated Systems, of Don State Technical University (DSTU). Нe is author more than 170 scientific publications.
E-mail: sheese_05@gmail.ru

Abstract: The work is devoted to the development of a mathematical model of wave processes with respect for the hydrodynamic effect on supporting devices of various marine structures in the presence of surface waves in particular on support devices designed for operation at a depth of up to 40 meters. A full-scale experiment was conducted to measure various parameters of wave propagation in shallow water. On the basis of the experimental data, the values of the spectrum of the function of elevating the water level were obtained. A two-dimensional model of wave hydrodynamic processes describing the behavior of an aquatic environment near marine structures was developed. On the basis of the constructed algorithms, a set of programs was designed to simulate the propagation of wave hydrodynamic processes. The constructed program complex allows to specify the shape and intensity of the oscillation source, the geometry of the above-water object. On the basis of the developed software complex, the force influence of waves on structures with a support on the bottom of the reservoir was calculated

Index UDK: 519.6:532.5

Keywords: waves, shallow water, surface structures, support devices, power action

Bibliography:
1. Sukhinov A.I., Chistyakov A.E., Alekseenko E.V. Numerical Realization of the Three- Dimensional Model of Hydrodynamics for Shallow Water Basins on a High-Performance System. Mathematisheskoe modelirovanie, t. 23, 2011, no. 3, p. 562-574.
2. Sukhinov A.I., Chistyakov A.E. Parallelnaya realizatsiya trekhmernoi modeli gidrodinamiki melkovodnykh vodoemov na supervychislitelnoi sisteme. Vychislitelnye metody i programmirovanie: novye vychislitelnye tekhnologii, t. 13, 2012, p. 290-297.
3. Rouch P. Vychislitelnaya gidrodinamika. M.: Mir, 1980, 618 р.
4. Fomenko N.A. Matematicheskoye modelirovaniye gidrodinamicheskikh vozdeystviy na kon- struktsii pri nalichii poverkhnostnykh voln v melkovodnykh vodoyemakh. Diss. kand. fiz.-math. nauk. Taganrog, 2012, 156 р.
5. Chistyakov A.E., Khachunts D.S., Timofeeva E.F., Fomenko N.A., Kuznetsova I.N. Program realization of discrete mathematical model of coastal wave processes calculation based on explicit schemes regularized by B.N. Chetverushkin is performed on computing system with massive parallelism, 2015, no. 12 (part 3), p. 540-544.
6. Sukhinov A.I., Chistyakov A.E., Fomenko N.A. Method of construction difference scheme for problems of diffusion-convection-reaction, takes into the degree filling of the control volume. Izvestiya SFedU. Engineering sciences. 2013, no. 4, p. 87-98.
7. Belotserkovskii O.M., Gushchin V.A., Shchennikov V.V. Use of the splitting method to solve problems of the dynamics of a viscous incompressible fluid. Computational Mathematics and Mathematical Physics, 15:1, 1975, p. 190-200.
8. Samarskii A.A. The Theory of Difference Schemes. M.: Nauka, 1989, 656 р.
9. Samarskii A.A., Nikolaev E.S. Numerical Methods for Grid Equations. M.: Nauka, 1978, 592 р.
10. Sukhinov A.I., Chistyakov A.E. Adaptive analog-SSOR iterative method for solving grid equations with nonselfadjoint operators. Matematisheskoe modelirovanie, t. 24, 2012, no. 1, p. 3-20.
11. Nikitina A.V., Chistjakov A.E., Fomenko N.A. Primenenie adaptivnogo modifizirovannogo poperemenno-treygol’nogo iterazionnogo metoda dlya shislennoy realizazii dvymernoi matematich- eskoy modeli dvicseniya vodnoi sredy. [Application of the adaptive analog-SSOR iterative method for numerical realization of two-dimensional mathematical model of movement of the aqueous medium]. Inženernyj vestnik Dona, 2012, t. 20, no. 2, p. 335-339

2019/1
Development of Inhibiting Oil Compositions Based on Solid Hydrocarbons
Chemical sciences

Authors: Igor R. Tatur (b. 1956) graduated from Gubkin Moscow Institute of Oil Chemistry and Gas Industry in 1979. He is Candidate of Technical sciences, Assistant professor of the Dept. of Chemistry and Technology of Lubricants and Chemmotology of Gubkin Russian State University of Oil and Gas (National Research University). He is author of 98 articles, 25 patents, 2 tutorials and 1 monograph. E-mail: igtatur@yandex.ru
Аleksey V. LEONTYEV (b. 1988) graduated from Gubkin Russian State University of Oil and Gas (National Research University) in 2013. He is PhD student of the Dept. of Chemistry and Technology of Lubricants and Chemmotology of Gubkin Russian State University of Oil and Gas (National Research University). He is Research Fellow in OOO “United Research and Development Center”. He is author of 15 publications. E-mail: leontievaleksey@gmail.com
Yulia S. BELOMESTNOVA is student of the Dept. of Chemistry and Technology of Lubricants and Chemmotology of Gubkin Russian State University of Oil and Gas (National Research University). She is author of 6 scientific works. E-mail: belomestnova.y@mail.ru

Abstract: A film-forming inhibited oil composition (PINS) based on solid hydrocarbons with high protective properties has been developed. To determine the protective properties of PINS films, direct corrosion test methods and indirect methods were used: capacitive-ohmic, potentiodynamic, and determination of the corrosion rate by the method of polarization resistance. It is shown that with the introduction of lignite wax (montan wax) and phenol-formaldehyde resin in the concentration of 20 % by weight on the active substance as a component of the PINS, the physicomechanical properties of the film, the stability of the dispersion and the protective properties of the coating increase. It has been established that PINS compositions containing solid hydrocarbons possess high protective properties in mineralized media, which will allow to use them not only as a traditional means of protecting motor vehicles, but also as a means of anticorrosive protection of oilfield equipment

Index UDK: 620.193

Keywords: inhibited oil compositions, solid hydrocarbons, oxidized petrolatums, corrosion inhibitors, mathematical experiment planning, corrosion tests, protective effect

Bibliography:
1. Bogdanova T.I., Shekhter Yu.N. Ingibirovannye neftyanye sostavy dlya zashchity ot korrozii. M.: Himiya, 1984. 247 p.
2. Gureev A.A., Shekhter Yu.N., Timohin I.A. Sredstva zashchity avtomobilej ot korrozii. M.: Transport, 1983, p. 43-51.
3. Tatur I.R., Leont’ev A.V., Belomestnova YU.S. Uluchshenie ehkspluatacionnyh svojstv zashchitnyh zhidkostej dlya bakov — akkumulyatorov goryachego vodosnabzheniya ehnergeticheskih pred-priyatij. Trudy RGU nefti i gaza imeni I.M. Gubkina, 2017, no. 3 (288), p. 89-98.
4. Standartizovannye metody korrozionnyh ispytanij: uchebnoe posobie/R.A. Kajdrikov, S.S. Vi-nogradova, L.R. Namzieva, I.O. Egorova. Kazan’: KGTU, 2011, 150 p.
5. Rykov V.V., Itkin V.YU. Matematicheskaya statistika i planirovanie ehksperimenta. Seriya Prikladnaya matematika v inzhenernom dele. M.: RGU nefti i gaza imeni I.M. Gubkina, 2009, 303 p.

2018/4
Mechanism of formation of primary porosity in Vendian-Cambrian biocenoses
Geosciences

Authors: Victoria A. LOSHKAREVA graduated from Gubkin Russian State University of Oil and Gas (National Research University) in 2016, she is Assistant Lecturer of the Department of Lithology of Gubkin Russian State University of Oil and Gas (National Research University). E-mail: viyurr@gmail.com
Olga V. POSTNIKOVA is Doctor of Geological and Mineralogical Sciences. She graduated in 1979 from Gubkin Moscow Institute of Petrochemical and Gas Industry. Her academic interest is the lithology of reservoirs. She is author of more than 80 scientific publications, including 35 articles in journals from the list of the Higher Attestation Commission of the Russian Federation.
E-mail: olga.postnikova@yandex.ru
Irina A. KITAEVA is Assistant Lecturer of the Department of Lithology of Gubkin Russian State University of Oil and Gas (National Research University). She is author of 33 scientific publications. E-mail: irina_kitaeva@bk.ru

Abstract: The paper isolated and described various types of cyano-bacterial biocenoses lying in base of Vend-Cambrian reservoir rocks. The mechanism of formation of primary porosity of carbonate reservoir rocks of productive horizons of oil and gas fields of Nepsko-Botuoba anteclise was identified

Index UDK: 552.54

Keywords: Eastern Siberia, Nepsko-Botuoba anteclise, vendian-cambrian, cyano-bacterial biocenoses, kaltsibionty, stromatolites, primary porosity, reservoir rock

Bibliography:
1. Bacterial paleontology. M.: PIN RAS, 2002, 188 p.
2. Maslov V.P. Stromatolites (Their genesis, methods of study, connection with facies, and geological significance on the example of the Ordovician of the Siberian platform). Tr. GIN AN SSSR. M.: Nauka, 1960, vyp. 41, 188 p.
3. Terleev A.A., Luchinina V.A. New facts on the establishment of the nature of the genus Epiphyton Bornemann, 1886. News of paleontology and stratigraphy. Ad. to the journal. “Geology and geophysics”, 2000, vyp. 2-3, p. 173-177.
4. Maslov V.P. Atlas of rock-forming organisms. M.: Nauka, 1973.

2018/4
Updating geological and production parameters of complex jura reservoirs based on interwell correlation and tracer analysis (for eastern slope of Surgut arch deposits)
Geosciences

Authors: Alexander V. LOBUSEV graduated from Gubkin Moscow Institute of petrochemical and Gas Industry in 1980, from the Geological Faculty. Professor, Doctor of Geological and Mineralogical Sciences of Gubkin Russian State University of Oil and Gas (National Research University). He is the author of more than 130 scientific publications. E-mail: lobusev@gmail.com
Olga V. TYUKAVKINA she graduated from Tomsk State University in 1997, with a degree in Geological Survey, Prospecting and Exploration. Associate Professor, Candidate of Geological and Mineralogical Sciences of Gubkin Russian State University of Oil and Gas (National Research University). She is the author of more than 70 scientific publications. E-mail: kpgng@gubkin.ru
Nikolay V. MILETENKO, deputy Director of the Department of State Policy and Regulation in the Field of Geology and Subsoil Use of the Ministry of Natural Resources of the Russian Federation. Doctor of Geological and Mineralogical Sciences, Professor.
E-mail: minprirody@mnr.gov.ru
Alexander P. POZDNYAKOV graduated from Gubkin Moscow Institute of petrochemical and Gas Industry in 1978, from the specialty Applied Mathematics, he have finished a postgraduate study in 1981, in 2004, doctoral studies there. Professor, Doctor of Technical Science of Gubkin Russian State University of Oil and Gas (National Research University). He is the author of more than 100 scientific works and inventions, more than 10 teaching and methodical works, one monograph. E-mail: kpgng@gubkin.ru
Ирина Сергеевна ПЕРМЯКОВА, резервуарный инженер, ООО “СЖЖ Восток”. Автор 2 научных публикаций.
E-mail: kpgng@gubkin.ru

Abstract: Interwell correlation of the complex object YuS2 was carried out on the basis of an integrated approach and an integrated procedure for interpreting the results of indicator studies of various types of cross sections (type 1, 2, 3), using the example of the fields on the eastern slope of the Surgut arch. Simultaneous use of several types of tracers made it possible to detail the data on the hydrodynamic connection between the injection and production wells, determine the existence of inter-layer flows and establish the nature of the distribution of filtration flows and the filtration rate of the tracer fluid. The presented studies increase the information content of field data, provide an opportunity to justify and make design decisions for the development of reserves within a complex reservoir

Index UDK: 550.8.012

Keywords: tracer studies, indicator, hydrodynamic coupling, filtration properties, well, ammonium rodanide, trisodium phosphate, concentration

Bibliography:
1.Barkov S.L., Kachalov O.B., Muzy’ka A.V. Problemy i opyt razrabotki nizkoproduktivnyx zalezhej OAO “Surgutneftegaz”. Voprosy geologii, bureniya i razrabotki neftyanyx i gazovyx mestorozhdenij Surgutskogo regiona. Sbornik trudov SurgutNIPIneft’. M.: VNIIOENG, 1997, 303 р.
2.Kovalev A.G., Kuzneczov A.M., Kuzneczov V.V., Kolesnik V.B., Medvedev N.Ya. Issledovaniya svojstv kollektorov nefti v yurskix otlozheniyax Surgutskogo svoda. Voprosy geologii, bureniya i razrabotki neftyanyx i gazovyx mestorozhdenij Surgutskogo regiona. Sbornik trudov SurgutNIPIneft`. M.: VNIIOE`NG, 1997, 303 p.
3.Lobusev A.V., Lobusev M.A., Maxamatxanov R.A., Bakieva A.B. Zakonomernosti, vyayav-lennye v xode trassernyx issledovanij po utochneniyu geologicheskogo stroeniya slozhnopostroennyx zalezhej nefti. Territoriya neftegaz, 2013, no. 10, p. 32-37.
4.Popov A.Yu., Vakulenko L.G. Svyaz’ mineralogo-petrograficheskix xarakteristik alevrito-peschanyx otlozhenij gorizonta Yu2 Shirotnogo Priob’ya s ix fil’tracionno-emkostnymi svojstvami. Interekspo Geo-Sibir’, 2014, t. 2, no. 1, p. 120-124.
5.Tyukavkina O.V., Eshimov G.K. Izuchenie morfologicheskogo stroeniya i litologo-petrogra-ficheskix xarakteristik slozhnopostroennyx kollektorov Surgutskogo svoda. Materialy 1 Mezhdunarodnoj nauchno-prakticheskoj konferencii “Dostizheniya i perspektivyx estestvennyx i texnicheskix nauk”. Stavropol’: Centr nauchnogo znaniya “Logos”, 2012, p. 246, p. 221-227.
6.Tyukavkina O.V. Sovremennye metody vyavleniya zon slozhnopostroennyx kollektorov s trudnoizvlekaemymi zapasami dlya prinyatiya effektivnyx proektnyx reshenij. Nauchno-texnicheskij zhurnal Izvestiya vysshix uchebnyx zavedenij. Gornyj zhurnal, 2013, no. 8, p. 50-58.

2018/4
Undiscovered oil and gas accumulations of Bukharo-Khiva region forecast based on statistical analysis of resources
Geosciences

Authors: Tatiana V. SIVAYKOVA graduated from Lomonosov Moscow State University in 2009 and Gubkin State University of Oil and Gas in 2011. She is post-graduate student of the Department of Geology of Hydrocarbon Systems at Gubkin State University of Oil and Gas (National Research University). Her research interests are associated with statistical analysis of oil and gas resources. She is author of 3 scientific publications. E-mail: tsivaykova@gmail.com
Sergey F. KHAFIZOV graduated from Gubkin Russian State University of Oil and Gas in 1987. He is Doctor of Geological and Mineralogical Sciences, professor, member of the Russian Academy of Natural Sciences and AAPG, Head of the Department of Geo- logy of Hydrocarbon Systems at Gubkin Russian State University of Oil and Gas (National Research University). He is specialist in the field of oil and gas fields exploration. He is author of 4 monographs and more than 60 scientific publications in Russian and foreign periodicals. E-mail: khafizov@gubkin.ru

Abstract: The article briefly reviews the features of Bukharo-Khiva region resources analysis, the methodology used and the results achieved. The geological concept of this region based on the available geological, geophysical as well as statistical data was reviewed. For that purpose 2 base methodologies were applied: discovered and undiscovered oil and gas accumulations distribution according to the reserves volumes [6] and functional relation of the discovered accumulations distribution according to their reserves volumes [4]. The first methodology allowed calculation of the expected accumulations amount and their resources volumes in Bukharo-Khiva region, while the second one provided us with their more precise approximate volumes in 4 different oil and gas accumulation areas with reference to different plays. On the basis of the available data the expected fluid types and probable accumulations localization forecast was conducted as well.

Index UDK: 550.812.1

Keywords: accumulation, Bukharo-Khiva region, distribution, gas, hydrocarbons, oil, resources

Bibliography:
1. Gutman I.S., Saakyan M.I. Metody podscheta zapasov i otsenki resursov nefti i gaza: Uchebnik dlya vuzov. M.: OOO “Izdatel’skiy dom Nedra”, 2017, 366 p.
2. Kontorovich A.E., Demin V.I. Metod otsenki kolichestva i raspredeleniya po zapasam mestorozhdeniy nefti i gaza v krupnykh neftegazonosnykh basseynakh. Geologiya nefti i gaza, 1977, no. 12, p. 18-26.
3. Kontorovich A.E., Demin V.I. Prognoz kolichestva i raspredeleniya po zapasam mestorozhdeniy nefti i gaza. Geologiya i geofizika, 1979, no. 3, p. 26-46.
4. Piter R. Rouz. Analiz riskov i upravlenie neftegazopoiskovymi proektami. M.-Izhevsk: NITs “RKhD”, Izhevskiy institut komp’yuternykh issledovaniy, 2011, 304 p.
5. Shpil’man V.I. Kolichestvennyy prognoz neftegazonosnosti. Ekaterinburg: Izdatel’skiy Dom “IzdatNaukaServis”, 2010, 236 p.
6. Shpil’man V.I., Tszin’ Chzhi Tszyun’. Zakon raspredeleniya vyyavlennykh i nevyyavlennykh zalezhey nefti i gaza po velichine zapasov. Geologiya nefti i gaza, 1993, no. 11.

2018/4
Methods for calculating deformation-induced porosity changes
Geosciences

Authors: Valentin V. STRELCHENKO graduated from Gubkin Moscow Institute of Petrochemical and Gas Industry in 1962. He is Doctor of Technical Sciences, Professor of the Department of Well Logging of Gubkin Russian State University of Oil and Gas (National Research Univer- sity). His scientific interests are well investigation while drilling and tomographic petrophysics. He is author of more than 200 scientific publications. E-mail: strelvv@gmail.com
Dmitriy A. MELNICHUK graduated from Bauman Moscow State Technical University in 2012. He is postgraduate student of the Department of Well Logging of Gubkin Russian State University of Oil and Gas (National Research University). His scientific interests are geomechanical simulation and computational mechanics. He is author of more than 10 scientific publications.
E-mail: dmmelnichuk@gmail.com

Abstract: The paper reviews the methods for calculating deformation-induced porosity changes. Basic equations allowing to take into account porosity increments in the process of operation of oil and gas industry objects are given. It is shown that neglect of nonlinear rheological effects leads to a significant distortion of the obtained results. The priority direction of the further development of models with the purpose of increasing the accuracy of calculations is indicated

Index UDK: 539.3:539.376:532.546

Keywords: porosity, stress-strain state, poroelasticity, geomechanics

Bibliography:
1. Avchjan G.M., A.I. Matveenko, Stefankevich Z.B. Petrofizika osadochnyh porod v glubinnyh uslovijah. M.: Nedra, 1979, 224 p.
2. Basniev K.S., Dmitriev N.M., Rozenberg G.D. Neftegazovaja gidromehanika: Ucheb. posobie dlja vuzov. M.: Izhevsk: Institut komp’juternyh issledovanij, 2005, 544 p.
3. Dobrynin V.M. Fizicheskie svojstva neftegazovyh kollektorov v glubokih skvazhinah. M.: Nedra, 1965, 163 p.
4. Zhukov V.S. Ocenka izmenenij fizicheskih svojstv kollektorov, vyzvannyh razrabotkoj mestorozhdenij nefti i gaza. Gornyj informacionno-analiticheskij bjulleten’ (nauchno-tehnicheskij zhurnal), 2010, no. 6, p. 341-349.
5. Zhukov V.S., Iselidze O.V., Dahnov A.V., Ryzhov A.E. Vzaimosvjaz’ fil’tracionno-emko-stnyh svojstv i petrofizicheskih parametrov jurskih otlozhenij Shtokmanovskogo mestorozhdenija. Vesti gazovoj nauki: nauch.-tehnicheskij sb., 2010, no. 2 (5), p. 108-117.
6. Kashnikov O.Ju. Issledovanie i uchet deformacionnyh processov pri razrabotke zalezhej nefti v terrigennyh kollektorah: Dis. kand. tehn. nauk: 25.00.17. Tjumen’, 2008, 153 p.
7. Kashnikov Ju.A., Ashihmin S.G. Mehanika gornyh porod pri razrabotke mestorozhdenij uglevodorodnogo syr’ja. M.: Nedra, 2007, 486 p.
8. Kuz’min Ju.O., Zhukov V.S. Sovremennaja geodinamika i variacii fizicheskih svojstv gornyh porody, 2-e izd., ster. M.: Izdatel’stvo “Gornaja kniga”, 2012, 264 p.
9. Mel’nichuk D.A. Modelirovanie deformacionnyh izmenenij v okrestnosti neftjanoj skvazhiny. NTV “Karotazhnik”. Tver’: Izd. AIS, 2015, vyp. 9 (255), p. 79-89.
10. Mihajlov N.N., Popov S.N. Vlijanie nelinejnyh jeffektov na parametry szhimaemosti porod-kollektorov. Geologija, geofizika i razrabotka neftjanyh i gazovyh mestorozhdenij, VNIIOJeNG, 2016, no. 3, p. 50–57.
11. Nikolaevskij V. N., Basniev K. S., Gorbunov A. T., Zotov G. A. Mehanika nasyshhennyh poristyh sred. M.: Nedra, 1970, 339 p.
12. Popov S.N., Mazanov S.V., Zharikov M.G. Razrabotka geomehanicheskoj modeli dlja prognoza izmenenija fil’tracionno-emkostnyh svojstv kollektorov treshhinno-porovogo tipa v processe snizhenija plastovogo davlenija (na primere achimovskih otlozhenij mestorozhdenij nefti i gaza kraj- nego severa). Geologija, geofizika i razrabotka neftjanyh i gazovyh mestorozhdenij, 2015, no. 6, p. 48-56.
13. Strel’chenko V.V. Geofizicheskie issledovanija skvazhin: Uchebnik dlja vuzov. M.: OOO “Nedra-Biznescentr”, 2008, 551 p.
14. Shhipanov A.A. Matematicheskoe modelirovanie dvuhfaznoj fil’tracii v deformiruemoj treshhinovato-poristoj srede: Dis. kand. fiz.-mat. nauk: 05.13.18. Perm’, 2002, 214 p.
15. Albrecht D., Reitenbach V. Investigations on fluid transport properties in the North-German Rotliegend tight gas sandstones and applications. Journal of Environmental Earth Sciences, 2015, issue 10/2015.
16. Cao Y., Deng J., Yu B., Tan Q., Ma C. Analysis of sandstone creep and wellbore instability prevention. Journal of Natural Gas Science and Engineering, 2014, vol. 19, p. 237-243.
17. Chen Z., Huan G., Ma Y. Computational methods for multiphase flows in porous media. Philadelphia: Society for industrial and applied mathematics, 2006.
18. Cheng A. H.-D. Poroelasticity. Springer, 2016.
19. Fjær E., Holt R.M., Raaenetal A.M., Raaen A.M., Risnes R. Petroleum related rock mecha- nics, 2 edition, Elsevier, 2008.
20. Hassanzadegan A., Blocher G., Zimmermann G., Milsch H. Thermoporoelastic properties of Flechtinger sandstone. International Journal of Rock Mechanics & Mining Sciences, 2012, 49, p. 94-104.
21. Jaeger J.C., Cook N.G.W., Zimmerman R. Fundamentals of rock mechanics. Blackwell Publishing, 2009.
22. Lewis R.W., Schrefler B.A. The finite element method in the static and dynamic deformation and consolidation of porous media, 2 edition, Chichester: Wiley, 1998.
23. Schutjens P., Heidug W. On the pore volume compressibility and its application as a petrophysical parameter. 9-th Biennial International Conference & Exposition on Petroleum Geophysics, 2012, p. 1-17.
24. Tsai L.S., Hsieh Y.M., Weng M.C., Huang T.H., Jeng, F.S. Time-dependent deformation behaviors of weak sandstones. International Journal of Rock Mechanics & Mining Sciences, 2008, vol. 45, p. 144–154.
25. Verruijt A. Theory and problems of poroelasticity. Delft University of Technology, 2013.
26. Wang H.F. Theory of linear poroelasticity with applications to geomechanics and hydrogeo- logy. Princeton: Princeton University Press, 2000.
27. Yale D.P., Nabor G.W. et al. (1993). Application of variable formation compressibility for improved reservoir analysis: SPE 26647, Society of Petroleum Engineers, p. 435.
28. Yang S., Jiang Y. Triaxial mechanical creep behavior of sandstone. Mining Science and Technology, 2010, 20, p. 339-349.
29. Zheng H., Feng X.-T., Hao X. A creep model for weakly consolidated porous sandstone including volumetric creep. International Journal of Rock Mechanics & Mining Sciences, 2010, vol. 78, p. 99-107.
30. Zimmerman R.W. Compressibility of sandstones. Developments in Petroleum Science, Elsevier: Amsterdam, 1991, vol. 29.
31. Zoback M.D. Reservoir Geomechanics. Cambridge, UK: Cambridge University Press, 2007.

2018/4
Resource provision of LNG projects in the Russian Federation and measures to stimulate exploration activities in the Arctic zone
Geosciences

Authors: Nikolay V. MILETENKO, deputy Director of the Department of State Policy and Regulation in the Field of Geology and Subsoil Use of the Ministry of Natural Resources of the Russian Federation. Doctor of Geological and Mineralogical Sciences, Professor. E-mail: minprirody@mnr.gov.ru

Abstract: The article illustrates the importance of liquefied natural gas (LNG) projects for the economy of Russia. The resource base of ongoing and planned LNG projects in Russia’s Arctic zone and their development plans are considered. The current legislation with planned amendments elaborated to stimulate geological exploration activities to convert significant volumes of the prognosis gas resources to reserves has been analyzed. The proposals promoting geologi- cal exploration in the Arctic zone of the Russian Federation, the plans for acelerated development of the resource base for LNG production and use are discussed

Index UDK: 553.981

Keywords: liquefied natural gas (LNG), resources, Arctic zone, legislation, geological exploration, incentive measures

Bibliography:

2018/4
Effect of bed thickness on size of specific fragment of reservoir and horizontal wellbore structure
Geosciences

Authors: Zagid S. ALIEV graduated from Azibekov Azerbaijani industrial Institute in 1957. He is Professor of the Department of Gas and Condensate Field Development and Ope- ration of Gubkin Russian State University of Oil and Gas (National Research University). He has been head and the executive director of projects of development of oil and gas fields of Russia, Iran, Iraq, Vietnam, Kazakhstan, Algeria, Germany, etc., and also author of normative documents of OAO Gazprom such as instructions, manuals and standards of enterprises. He is author of 365 publications, including 35 monographs and 30 thematic brochures.
E-mail: rgkm@gubkin.ru
Elena M. KOTLYAROVA graduated from Gubkin Russian State University of Oil and Gas in 1988. She is Candidate of Technical Sciences, associate professor of the Dept. of Gas and Condensate Field Development and Operation of Gubkin Russian State University of Oil and Gas (National Research University). She is expert in the field of development and operation of gas and gas-condensate fields and UGS. She is author of 50 publications. E-mail: kotlyarova_gubkin@mail.ru

Abstract: We studied the effect of bed thickness, as one of the main parameters that determine the size of a specific fragment per one horizontal well. The length of the horizontal borehole affects the coefficients of filtration resistance to a greater extent than the bed thickness, but an unjustified increase in the length of the horizontal section is not economically feasible. The inflow rate of gas decreases at each linear meter of the reservoir with increasing bottomhole pressure along the length of the horizontal wellbore. For real fields, examples are given on the rational choice of the size of a reservoir fragment penetrated by a horizontal well, with respect for the reservoir parameters and the degree of reservoir penetration, leading to an increase in well productivity

Index UDK: 622.276

Keywords: horizontal borehole design; specific drainage area; specific gas reserves, horizontal wells productivity, bed thickness; filtration resistance coefficients; degree of penetration

Bibliography:
1. Aliev Z.S., Sheremet V.V. Opredelenie proizvoditel’nosti gorizontal’nyh skvazhin, vskryvshih gazovye i gazoneftyanye plasty. M.: Nedra, 1995.
2. Aliev Z.S., Rebrikov A.A. Priblizhennyj metod poiska optimal’nyh razmerov fragmenta pryamougol’noj formy i ego vskrytiya dlya obespecheniya maksimal’nogo debita gorizontal’noj skvazhiny. Burenie i neft’, 2007, no. 2.
3. Aliev Z.S., Kotlyarova E.M. Opredelenie proizvoditel’nosti gorizontal’noj skvazhiny, vskryvshej plast s peremennoj tolshchinoj. Trudy VI Mezhdunarodnogo tekhnologicheskogo simpo-ziuma. Institut neftegazovogo biznesa, 2007.
4. Aliev Z.S. i dr. Teoreticheskie i tekhnologicheskie osnovy primeneniya gorizontal’nyh skvazhin dlya osvoeniya gazovyh i gazokondensatnyh mestorozhdenij. M.: Nedra, 2014.
5. Aliev Z.S. i dr. Osobennosti razrabotki nizkoprodyktivnyh gazokondensatnyh mestorozhdenij s bol’shim soderzhaniem kondensata s ispol’zovaniem gorizontal’nyh skvazhin. M.: Nedra, 2016.
6. Aliev Z.S. Vliyanie razlichnyh faktorov na debit gorizontal’nyh skvazhin. NTZH “Tekhnologiya TEHK”, iyun’, 2007.
7. Aliev Z.S. Poisk naychno-obosnovannoi konstrukii gorizontal’noi skvazhiny dlya osvoeniya gazovyh i gazokondensatnyh mestorozhdenij. NTZH “Tekhnologiya TEHK”, aprel’, 2007.

2018/4
Numerical experiment to evaluate microheterogeneity of aquifer reservoir affect while creating UGS
Geosciences

Authors: Maria P. KHAYDINA graduated from Gubkin Russian State University of Oil and Gas in 1988, Candidate of Technical Sciences, assistant professor of the Gas Development Department of Gubkin Russian State University of Oil and Gas (National Research University). Specialist in the field of filtration processes simulation. She is author of about 30 scientific publications.
E-mail: mmp2003@inbox.ru
Alexander A. NEKRASOV graduated from Gubkin Russian State University of Oil and Gas in 1997, Candidate of Technical Sciences, Dr. Ing, senior lecturer of the Gas Development Department of Gubkin Russian State University of Oil and Gas (National Research University). Specialist in the field of oil and gas fields simulation. He is author of more than 25 scientific publications.
E-mail: nekrass@yahoo.com
Aliona V. KOLESNISHENKO graduated from Gubkin Russian State University of Oil and Gas (National Research University) in 2014.
E-mail: slaboshevskaya@gmail.com

Abstract: The phase permeability hysteresis and layer absolute permeability heterogeneity of aquifer reservoir affects are studied when gas injection and production cycles simulate an underground gas storage operation. Basic data of the numerical model correspond to the parameters of real UGS objects existing in Russia. The results of calculations for different versions of basic data showed that the observed heterogeneities lead to the deformation of the geometrical form gas saturated field and phase permeability hysteresis affects the gas saturation distribution over the gas field volume

Index UDK: 622.276.031:532.11 (571.56)

Keywords: underground gas storage, relative phase permeability, absolute permeability, gas saturation, heterogeneity, hydrodynamic simulation

Bibliography:
1. Chizmadshev Yu.A., Markin V.C., Tarasevitch M.R., Chirkov Yu.G. Macricinetika protsessov v poristikh sredakh. M.: Science, 1971, 362 p.
2. Mikhailovsky A.A. About the relative phase hysteresis at different directions of gas-water and water-gas displacement in hydrophilic porous media. Science and Technic in gas industry, 2004, no. 3–4, p. 6–9.
3. Левыкин Е.В. Tekhnologicheskoe proektirovanie khranenia gaza v vodonosnykh plastakh. M.: Nedra, 1973, 208 p.

2018/4
Technique of engineering evaluation of heat flow through shell surface of cryogenic liquefied natural gas tank
Geosciences

Authors: Svetlana G. IVANTSOVA graduated from Gubkin Russian State University of Oil and Gas in 1982, she is Doctor of Technical Sciences, Professor of the Department of Construction and Repair of Gas and Oil Pipelines and Storage Facilities of Gubkin Russian State University of Oil and Gas (National Research University). She is specialist in the field with construction of gas and oil pipelines and storage facilities. She is author of more than 100 scientific publications. E-mail: sivants11@gmail.com
Artem I. RAKHMANIN graduated with honors from Gubkin Russian State University of Oil and Gas in 2010. He is Candidate of Technical Sciences, chief expert of Project Support Department, OOO “PO “Transgas”. He is specialist in the field of safety and operational reliability of cryogenic storage tanks for liquefied natural gas. He is author of 15 scientific publications.
E-mail: artyom.rahmanin@gmail.com

Abstract: Optimization of investment costs for planned projects of the construction of complexes for liquefaction, storage and shipment of natural gas requires methods for calculating the heat regime of cryogenic tanks for liquefied natural gas. These allow to make optimal design decisions on the choice of heat insulation system that directly determines the vaporization rate of the product, and thus the volume of capital investments at the construction stage and the cost of operation of the evaporating gas extraction system and its re-liquefaction. A method of engineering calculation of the heat flow through the multilayer wall of the full containment cryogenic tanks, which consists of an external reinforced concrete wall, carbon steel liner on the internal surface of the reinforced concrete wall, a layer of flexible compensation mats of fiberglass, a layer of loose-fill heat insulation of expanded perlite sand and an internal tank of cold-resistant steel. It is proved, that in heat processes calculations of full containment cryogenic tanks with acceptable for engineering problems accuracy it is possible to approximate the cylindrical surface of the multilayer wall of the tank with a plain surface without taking into account the thermal resistance of the carbon steel liner and the internal shell. It is also possible not to take into account the turbulent convection of the LNG boundary layer along the walls of the inner shell

Index UDK: 622.691.23

Keywords: cryogenic storage tanks, LNG storage, heat insulation, heat calculation

Bibliography:
1. Borisov B.B., Vladimirov A.E., Zvereva T.V., Cherepennikov A.N. Metodika rasheta statsionarnogo temperaturnogo rejima bolsheob’emnih nizkotemperaturnih rezervuarov dl’a hranenia SPG. [The methods of calculating stationary temperature regime of large-volume low-temperature storage tanks for LNG]. Trudy MINHiGP imeni I.M. Gubkina [Proceedings of Moscow Institute оf the Petrochemical and Gas Industry named after I.A. Gubkin], 1980, no. 153, p. 123-131 (In Rusian).
2. Odisharija G.Je., Safonov B.C., Tarabrin V.A. Thermal processes in low-temperature isothermal storages of the liquefied gases. Gazovaja promyshlennost [Gas Industry], 1982, no. 11, p. 43–46. (In Russian).
3. Shklover A.M. Teploperedasha pri periodisheskih teplovih vozdeistviah [Heat transfer under periodic thermal loads]. Moskva-Leningrad, 1961, 160 p.
4. Povalaev M.I. Pokritia i krovli promishlennih zdaniy [Coverings and roofs of industrial buildings]. Moskva, 1969. 177 p.
5. Safonov V.S. Physical features and ways to prevent LNG stratification in the isothermal tanks. Moscow: VNIIJegazprom, 1989. Iss. 7, 50 p. (In Russian).
6. Miheev M.A., Miheeva I.M. Osnovi teploperedashi. [Fundamentals of heat transfer]. Moskva, 1973, 344 p.