Extended Search

- in all fields
- in the title
- in key words
- in the abstract
- in the bibliography
Issue
Name
Authors
Category
2013/1
Вy-products in the production of multifunctional dewaxing wax emulsions
Oil and gas processing, chemistry of oil and gas

Authors: Dmitry Y. MAHIN was born in 1986. He graduated from Gubkin Russian State University of Oil and Gas in 2009. He is PhD student of the Department of “Technology of Oil Refining” of Gubkin Russian State University of Oil and Gas. He is author of 7 scientific papers in the field of special compositions on the basis of by-products dewaxing (petroleum wax). E-mail: rgu_makhin@mail.ru
Vladimir A. DAVIDOVICH was born in 1982. He graduated from Gubkin Russian State University of Oil and Gas in 2004. He works at LLC “LLK-International”, LUKOIL Lubricants. He is author of two scientific papers in the field of special compositions on the basis of dewaxing by-products (petroleum wax). E-mail: Davidovich@lukoil.com

Abstract: The possibility of using by-products of dewaxing: wax concentrates and petrolatums of different composition in the production of wax emulsions is shown. The basic principles for the preparation of stable wax emulsions are considered, the role of stabilizing agents and conditions of technological regimes are identified. The structure of wax emulsions as oil disperse systems consisting of complex structural units is studied. The possibility to improve the hydrophobic properties of concrete by introducing wax emulsions is demonstrated.

Index UDK: 665.772 + 669.826

Keywords: by-products of dewaxing, petroleum waxes, wax emulsions, water-repellent additives

Bibliography:
1. Leal-Calderon F., Schmitt V., Bibette J. Emulsion Science Basic Principles, 2nd ed. New York: Springer, 2007. – 227 р.
2. Schmidts T., Dobler D. Influence of hydrophilic surfactants on the properties of multiple W/O/W emulsions//Journal of Colloid and Interface Science, 2009. – Vol. 338.  P. 184–192.
3. Garti N., Benichou A. Recent developments in double emulsions for food applicatons, 4th ed.  New York, 2004. – 412 р.
4. Somasundaran P., Farinato R. Surfactants in Personal Care Products and Decorative Cosmetics, 3d ed.//CRC Press, 2006. – 175 р.
5. Kholmberg K., Yensson B. Poverkhnostno-aktivnye veshchestva i polimery v vodnykh rastvorakh/Perevod s angliyskogo G.P. Yampol’skoy.  Binom, 2007.  530 s.
6. Shenfel’d N. Poverkhnostno-aktivnye veshchestva na osnove oksida etilena. 2nd ed. Perevod s angliyskogo L.V. Kovalenko.  M.: Khimiya, 1982.  750 s.
7. Sherman F. Emul’sii. Perevod s angliyskogo god red. A.A. Abramzona.  L.: Khimiya, 1972.  448 s.
8. Adamcon A. Fizisheskaya khimiya poverkhnostey.  M.: Mir, 1979.  568 s.
9. Summ B.D. Novye korrelyatsii poverkhnostnogo natyazheniya s ob’emnymi svoystvami zhidkostey//Vestnik Moskovskogo Universiteta.  M.: Khimiya, 1999.  Ser. 2.  T. 40.  No. 6.  S. 400405.
10. Chibowski E., Wiacek A.E. Investigation of the electokinetic properties of paraffin suspension. 1. In inorganic electrolyte solutions.  Langmuir, 2005. – Vol. 21.  P. 4347–4355.

2013/1
Entropy Interaction in the Process of Asphalten Cluster Formation
Oil and gas processing, chemistry of oil and gas

Authors: Vadim V. SANZHAROV was born in 1987. He graduated from Gubkin Russian State University of Oil and Gas. He is a post graduate student of the Department of Automated Control Systems of Gubkin Russian State University of Oil and Gas. E-mail: vadim.sanzharov@gmail.com

Abstract: Asphalt-resin-paraffin accumulations are one of the most important problems of oil industry. Therefore prevention of asphalten deposition and effective control of accumulations require the analysis of their phase behavior. Current studies show that entropy interactions are of great importance in the process of asphalten aggregation. The depletion potential is one of the attracting forces of entropy nature. The work considers the concept of asphalten aggregation mechanism. The potential of depletion between asphalten nano-aggregates is evaluated.

Index UDK: 665.65

Keywords: asphaltene clusters, the phase behavior of asphaltenes, the depletion

Bibliography:
1. Akbarzadeh K., Hammami A., Kharrat A., Zhang D., Allenson S., Creek J., Kabir S., Jamaluddin A., Marshall A.G., Rodgers R.P., Mullins O.C. and Solbakken T. Asphaltenes. Problematic but Rich in Potential//Oilfield Review. — 2007. — 19, No. 2. — P. 22-43.
2. Barré L., Jestin J., Morisset A., Palermo T., Simon S. Relation between nanoscale structure of asphaltene aggregates and their macroscopic solution properties//Oil Gas Sci. Technol. — 2009. — 64. — P. 617-628.
3.
Evdokimov I.N., Eliseev N.Y., Akhmetov B.R. Asphaltene dispersions in dilute oil solutions// Fuel. — 2006. — 85 (10-11). — P. 1465-1472.
4.
Eyssautier J., Levitz P., Espinat D., Jestin J., Gummel J., Grillo I., Barré L. Insight into asphaltene nanoaggregate structure inferred by small angle neutron and X-ray scattering//J. Phys. Chem. — 2011. — 115. — P. 6827-6837.
5.
Freed D.E., Lisitza N.V.; Sen P.N., Song Y.-Q. Self-assembly of asphaltenes: enthalpy, entro- py of depletion and dynamics at the crossover// Magnetic Resonance Imaging. — 2007. — Vol. 25, issue 4. — P. 544.
6. http://kntgroup.ru/helpful_information/adsorptive.html (дата обращения 20.08.2012).
7. Israelachvili J.N. Intermolecular And Surface Forces. — 3rd edition. — Academic Press, 2010. — 674 p.
8. Lang P.R. Depletion interaction mediated by polydisperse rods//J. Chem. Phys. — 2007. — Vol. 127, Issue 12. — P. 124906-1 124906-6.
9.
Lekkerkerker H.K.W., Tuinier R. Colloids and depletion interaction.- Springer Science+Business Media B.V., 2011. — 233 p.
10. Meyer R.F., Attanasi E.D., and Freeman P.A. Heavy oil and natural bitumen resources in geological basins of the world // U.S. Geological Survey Open-File Report 2007-1084, 2007. — URL: http://pubs.usgs.gov/of/2007/1084/ (дата обращения 05.09.2012).
11. Mullins O.C., Sabbah H., Eyssautier J., Pomerantz A.E., Barré L., Andrews A.B., Ruiz-Morales Y., Mostowfi F., McFarlane R., Goual L., Lepkowicz R., Cooper T., Orbulescu J., Leblanc R.M., Edwards J. and Zare R.N. Advances in Asphaltene Science and the Yen—Mullins Model//Energy & Fuels. — 2012. — 26 (7). — P. 3986-4003.
12.
Royall C.P., Louis A.A. and Tanaka H. Measuring colloidal interactions with confocal microscopy//J. Chem. Phys. — 2007. — 127. — P. 044507-1 — 044507-8.
13. Yaman K., Jeppesen C. and Marques C.M. Depletion forces between two spheres in a rod solution//Europhys. Lett. — 1998. — 42 (2). — P. 221-226.
14. Yen T.F., Erdman J.G., Pollack S.S. Investigation of the Structure of Petroleum Asphaltenes by X-Ray Diffraction//Anal. Chem. — 1961. — 33(11). — P. 1587-1594.
15. Yudin I.K., Anisimov M.A. Dynamic light scattering monitoring of asphaltene aggregation in crude oils and hydrocarbon solutions//Asphaltenes, Heavy Oils and Petroleomics (Eds. Mullins O.C., Sheu E.Y., Hammami A., Marshall A.G.). — Springer: New York. — 2007. — Р. 431-459.
16. Мургич Х. Молекулярное моделирование фракций асфальтенов и смол в нефтях. Фи- зико-химические свойства нефтяных дисперсных систем и нефтегазовые технологии/Под ред. Р.З. Сафиевой, Р.З. Сюняева. — М.: Институт компьютерных исследований, НИЦ “Регулярная и хаотическая динамика”. — 2007. — С. 73-88.

2013/1
Determining the Diameter of Dispersed Phase in Oil Residues to Assess Materials of Coking Process
Oil and gas processing, chemistry of oil and gas

Authors: Valentina K. STRELKOVA graduated from Gubkin Russian State University of Oil and Gas in 2010. She is Ph.D. student of the Department of Oil Refining Technologies of Gubkin Russian State University of Oil and Gas. E-mail: strelkova-valentina@yandex.ru
Vladimir A. TYUMENEV completed bachelor program at Gubkin Russian State University of Oil and Gas in 2011. He is currently studying for his Master’s Degree at the Department of Oil Refining Technologies of Gubkin Russian State University of Oil and Gas. E-mail: tumenevVA@gmail.com
Olga F. GLAGOLEVA
graduated from Gubkin Moscow Petroleum Institute in 1960. She is Professor of the Department of Oil Refining Technologies of Gubkin Russian State University of Oil and Gas, author of over 160 scientific papers in the field of oil refining. E-mail: ofprof@mail.ru

Abstract: The results of the study of dispersion of various petroleum residues as raw material of the coking process, one of the important processes, increasing refining efficiency are presented. The specific surface area and average particle sizes of the dispersed phase in the tar samples of West Siberian oil are determined. Samples of possible components of coking feedstock (namely heavy gas oil of catalytic cracking; residual extract and deasphalizate of lube unit, and pyrolysis resin). The effect of the above products added to the tar on the change of the specific surface and particle size of the dispersed phase was studied. It is shown that the addition of even a small amount (10%) of DAO, pyrolysis resin and heavy oil of catalytic cracking to the coking feedstock (tar) almost doubles the surface area of the dispersed particles and is a way to reduce the size of the dispersed phase, i.e. of dispersing the oil disperse system and to increase its kinetic stability.

Index UDK: 665.63

Keywords: disperse systems, heavy oil residues, method of delayed coking, photoelectric colorimetry, surface area, particle size of dispersed phase

Bibliography:
1. Sjunjaev Z.I., Safieva R.Z., Sjunjaev R.Z. Neftjanye dispersnye sistemy. – M.: Himija, 1990. – 226 s.
2.Fizikohimija nefti. Fiziko-himicheskie osnovy tehnologii pererabotki nefti/Р.Z. Safieva. – M.: Himija, 1998. – 448 s.
3.Kapustin V.M. Tehnologija pererabotki nefti. V 2-h chastjah. Chast' pervaja. Pervichnaja pererabotka nefti/Рod red. O.F. Glagolevoj. – M.: Himija, KolosS, 2012. – 405 s.
4.Pererabotka smesevogo syr'ja na ustanovke zamedlennogo koksovanija tipa 21-10/ZM Angarskogo NPZ/I.E. Kuzora, V.M. Moiseev, A.I. Jushinov. – Neftepererabotka i neftehimija, 2002. – No. 1. – S. 24–28.
5.Snizhenie soderzhanija sernistyh soedinenij v gazah gorenija neftjanyh uglerodistyh materialov/V.V. Zapylkina, M.R. Fatkullin, A.N. Morozov, B.S. Zhirnov, I.R. Hajrudinov//Mir nefteproduktov, 2012. – No. 3. – S. 27–30.
6.Kireev V.A. Kratkij kurs fizicheskoj himii. Moscow, 1969.  638 s.
7.Giljazetdinov L.P., Al'-Dzhomaa M. Opredelenie parametrov temnyh chastic dispersnoj fazy v neftjanyh sistemah. – Himija i Tehnologija Topliv i Masel, 1994. – No. 3. – S. 27–29.
8.Kapustin V.M., Rudin M.G., Kudinov A.M. Osnovy proektirovanija neftepererabatyvajuwih i neftehimicheskih predprijatij. – M., 2012. – 440 s.
9.Metodicheskie aspekty issledovanija processa poluchenija neftjanoj spekajuwej dobavki/ A.N. Morozov, I.R. Hajrudinov, B.S. Zhirnov, M.R. Fatkullin//Neftepererabotka i neftehimija, 2006. – No. 12. – S. 15–19.
10. Smidovich E.V. Tehnologija pererabotki nefti i gaza. Kreking neftjanogo syr'ja i pererabotka uglevodorodnyh gazov. – 4 izd., stereotip. – M.: ID Al'jans, 2011. – 61 s.
11. Anchita Н., Spejt Dzh. Pererabotka tjazhelyh neftej i neftjanyh ostatkov. Gidrogenizacionnye processy. per. s angl. pod red. O.F. Glagolevoj. – SPb., COP Professija, 2012. – 384 s.

2013/1
Use of protective fluids to ensure reliable operation of hot water supply equipment for power plants
Oil and gas processing, chemistry of oil and gas

Authors: Igor R. TATUR was born in 1956, he graduated from Gubkin Moscow Institute of Petrochemical and Gas Industry in 1979. He is Ph.D., associate professor of the Department of Chemistry and Technology of Lubricants and Chemmotology. He is author of 80 scientific papers. E-mail: igtatur@yandex.ru
Dina V. SHARAFUTDINOVA graduated from Gubkin Russian State University of Oil and Gas in 2009. She is postgraduate student of the Department of Chemistry and Technology of Lubricants and Chemmotology. She is author of 12 published works. E-mail: shara-dina@yandex.ru
Vladimir G. SPIRKIN was born in 1937, he graduated from the Peter the Great Military Academy of Missile Forces in 1959. He is Doctor of Technical Sciences of the Department of Chemistry and Technology of Lubricants and Chemmotology. He is author of 450 scientific works. E-mail: vgspirkin@mail.ru
Dmitry N. SHERONOV was born in 1986. He graduated from the Gubkin Russian State University of Oil and Gas in 2008. He is postgraduate student of the Department of Chemistry and Technology of Lubricants and Chemmotology, author of two published works. E-mail: ropposite75@rambler.ru

Abstract: Protective liquids are applied at power plants to protect the hot water storage tanks against corrosion, as well as to prevent the saturation of deaerated water with oxygen from the environment and its evaporation. Viscosity properties and their dependence on temperature, concentration and molecular weight of the polymer, which is part of the protective liquid are studied. The possibility of using low molecular weight polymers instead of high polyisobutylene as a thickener component is considered. A technique to assess the status of the protective liquid during operation and determine the feasibility of increasing the lifetime of the battery is developed. Options for recycling the discharge protective liquids using adsorbents and selective solvents, as well as by their use as components of lubricants and conservation materials are considered.

Index UDK: 665.6/7

Keywords: protective liquid, storage tank, polyisobutylene, corrosion protection, conservation material, permeability

Bibliography:
1. Balaban-Irmenin Yu.V., Lipovskikh V.M., Rubashov A.M. Zashchita ot vnutrenney korrozii truboprovodov vodyanykh teplovykh setey. – M.: Izdatel’stvo «Novosti teplosnabzheniya», 2008. – 288 s.
2. Metodicheskie ukazaniya po optimal'noy zashchite bakov-akkumulyatorov ot korrozii i vody v nikh ot aeratsii: RD 153-34.1-40.504-00. – M.: RAO «EES Rossii», 2000. – 18 s.
3. Metody zashchity rezervuarnogo oborudovaniya sistem teplosnabzheniya ot korrozii/I.R. Tatur, D.V. Sharafutdinova, D.A. Yakovlev, A.A. Sheremetova, V.G. Spirkin//Zashchita okruzhayushchey sredy v neftegazovom komplekse. – 2012. – No. 9. – S. 5–7.
4.TU 26-02-592-83. Germetiziruyushchaya zhidkost' dlya bakov-akkumulyatorov goryachego vodosnabzheniya AG-4I.
5.Yakovlev D.A. Issledovanie korrozionnogo razrusheniya i razrabotka sposoba zashchity rezervuarnogo oborudovaniya v sistemakh vodosnabzheniya: Diss. kand. tex. nayk. – M., 1979. – 189 s.
6.Metodika otsenki sroka zashchity bakov-akkumulyatorov germetiziruyushchimi zhidkostyami posle 4-kh let ekspluatatsii. – M.: ORGRES. – 2008. – 12 s.
7.Regeneratsiya otrabotannykh zashchitnykh zhidkostey s primeneniem izbiratel'nykh rastvoriteley/ D.V. Sharafutdinova, I.R. Tatur, Yu.A. Musalov, T.I. Sochevko//Khimiya i tekhnologiya topliv i masel. – 2010. – No. 1. – S. 12–14.

2013/1
Pneumatic Barrier as Universal Method of Oil Spill in the Waters of Russian Oil Fileds
Industrial and environmental safety, occupational safety and health

Authors: Irina S. KULIKOVA was awarded the degree of Master of Engineering and Technology at Gubkin Russian State University of Oil and Gas in 2009. She is Associate Professor of the Department of Machines and Equipment for Oil and Gas Industry, co-author of 15 publications in the field of oil spill response and field equipment, including 3 articles, 2 books, 10 abstracts of scientific and technical conferences. E-mail: irinaskulikova@gmail.com

Abstract: The applicability of a pneumatic barrier for containment of oil spills in the waters of the oil fields of Russia were studied for the first time in the national practice. A pneumatic barrier is a unique technology, the application of which in Russia can significantly reduce the damage to the environment by reducing the time oil spill. The advantages of this method were evaluated by comparing the situation models of oil spill localization by a pneumatic barrier with the booms conventional in Russia. The original schemes of localizing spills by combined methods of pneumatic barrier and sorbents, as well as pneumatic barrier and controlled burning were considered.

Index UDK: 627.372

Keywords: oil spill localization, boom, pneumatic barrier, sorbents, controlled burning

Bibliography:
1. Kozlitin A.M., Popov A.I., Kozlitin P.A. Kolichestvennyy analiz riska vozmozhnykh razlivov nefti i nefteproduktov//Upravlenie promyshlennoy i ekologicheskoy bezopasnost'yu proizvodstvennykh ob'ektov na osnove riska: mezhdunarodnyy nauchnyy sbornik: – Saratov: SRO «Rossiyskaya ekologicheskaya akademiya», 2005. – S. 135–151.
2. Postanovlenie Pravitel'stva RF ot 21.08.613 № 613 «Osnovnye trebovaniya k razrabotke planov po preduprezhdeniyu i likvidatsii avariynykh razlivov nefti i nefteproduktov» (v red. Postanovleniya Pravitel'stva RF ot 15.04.2002 N 240). «Sobranie zakonodatel'stva RF», 22.04.2002, Nо. 16, st. 1569.
3. RD 153-39.4-074-01. Instruktsiya po likvidatsii avariy i povrezhdeniy na podvodnykh perekhodakh magistral'nykh nefteproduktoprovodov. Utv. OAO «AKTTNN «Transnefteprodukt». – M., 2001. [Elektronnyy resurs] URL: http://www.complexdoc.ru (data obrashcheniya: 03.03.2012).
4. RD 153-39.4-114-01. Pravila likvidatsii avariy i povrezhdeniy na magistral'nykh nefteprovodakh Utv. OAO «AK «Transneft'»». – M., 2002 g. [Elektronnyy resurs] URL: http://www.complex-doc.ru (data obrashcheniya: 03.03.2012).
5. Tekhnika i tekhnologii lokalizatsii i likvidatsii avariynykh razlivov nefti i nefteproduktov: Sprav./I.A. Meritsidi, V.N. Ivanovskiy, A.N. Prokhorov i dr. Pod red. I.A. Meritsidi. – SPb.: NPO «Professional», 2008.
6. Houser J.R. Heavy-duty oil containment system pneumatic barrier system. Part I./Report No. 714102/A/004: Houston: Wilson Industries Incorporated, 1971. – 579 s.
7. Narita S., Kanada S., Shimoda H. A new oil-recovery method for broken ice conditions. Proceedings of the Twenty-fourth Arctic and Marine Oilspill Program (AMOP) Technical Seminar. Edmonton, Alberta, Canada. June 12–14, 2001.
8. Metodicheskie rekomendacii po razrabotke tipovogo plana po preduprezhdeniju i likvidacii razlivov nefti i nefteproduktov dlja neftegazovyh kompanij: utv. Federal'nym agentstvom po jenergetike (Rosjenergo). – M., 2006. – 70 s.

2012/4
Technology of integrated physical and geological modeling on the basis of system inversion
Petroleum geology, geophysics

Authors: Sergei G. KUDELIN works at the Ukhta State Technical University, he is software specialist (Category 2).E-mail: skudelin@ugtu.net
Maxim I. BARABANOV is Director of the Computing Center of the Ukhta State University. E-mail: mbarabanov@ugtu.net
Alexander I. KOBRUNOV is Doctor of Physical and Mathematical Sciences. He works at the Ukhta State Technical University. He is the head of school of science. E-mail: aikobrunov@gmail.com

Abstract: This paper describes a technique for simulating complex environments based on the methods of integrated inversion. The basic principles of software system development to create and maintain balanced physical and geological environment models «GeoVIP», as well as its functionality are considered.

Index UDK: 550.34.013.4

Keywords: geophysical inversion, physical and geological model, program editor «GeoVIP»

Bibliography:
1. Kobrunov A.I. Matematicheskie osnovy teorii interpretacii geofizicheskih dannyh [Mathematical Foundations of the theory of geophysical data interpretation]. Ukhta, Ukhta State Technical University, 2007.
2. Kobrunov A.I., Zharkoj G.S. The statement and the principles for solving inverse problems of magnetotelluric sounding for environments with distributed parameters. Geophysics, No. 4, 9–16 (2010).
3. Kuznecov O.L., Nikitin A.A., Cheremisina E.N. Geoinformacionnye sistemy [Geoinformational systems]. Moscow, Information Centre VNIIgeosystem, 2005. 345 p.

2012/4
Technology for solving inverse gravity problem using evolutionary dynamic principle
Petroleum geology, geophysics

Authors: Sergei G. KUDELIN works at the Ukhta State Technical University, he is software specialist (Category 2). E-mail: skudelin@ugtu.net
Alexander I. KOBRUNOV is Doctor of Physical and Mathematical Sciences. He works at the Ukhta State Technical University. He is the head of school of science. E-mail: aikobrunov@gmail.com

Abstract: The paper describes the method of using evolutionary dynamic principles to include a priori data into the process of solving the inverse problem of gravimetry. The principles of structural boundaries displacement according to the laws of Geodynamics and iterative inversion scheme of structurally parameterized models.

Index UDK: 550.83.017

Keywords: system inversion, evolutionary dynamic principles, iterative inversion scheme

Bibliography:
1. Kobrunov A.I. Matematicheskie osnovy teorii interpretacii geofizicheskih dannyh [Mathematical Foundations of the theory of geophysical data interpretation]. Ukhta, Ukhta State Technical University, 2007.
2. Kobrunov A.I. Setting and methods for solving inverse problems of geophysics using the geodynamic principles [Postanovka i metody reshenija obratnyh zadach geofiziki s ispol’zovaniem geodinamicheskih principov]. Materialy 34-j sessii mezhdunarodnogo seminara im. D. G. Uspenskogo «Voprosy teorii i praktiki geologicheskoj interpretacii gravitacionnyh, magnitnyh i jelektricheskih polej» (Proceedings of the 34th session of D. G. Uspenskiy International Seminar «Theory and practice of the geological interpretation of gravity, magnetic and electric fields»). Moscow, 2007, pp. 131–137.
3. Kobrunov A.I., Kudelin S.G. Iterative scheme of geophysical fields inversion with the application of dynamic-evolutionary principles [Iteracionnaja shema inversii geofizicheskih polej s primeneniem jevoljucionno-dinamicheskih principov]//Materialy 39-j sessii Mezhdunarodnogo seminara im. D. G. Uspenskogo «Voprosy teorii i praktiki geologicheskoj interpretacii gravitacionnyh, magnitnyh i jelektricheskih polej» (Proceedings of the 34th session of D.G. Uspenskiy International Seminar «Theory and practice of the geological interpretation of gravity, magnetic and electric fields»). Voronezh, 2012, pp. 140–143.

2012/4
Ways to increase oil extraction by stimulating fields with elastic waves of different frequencies
Drilling and development of hydrocarbon fields

Authors: Yaropolk M. BAZHALUK was born in 1942; he graduated from the Lviv Polytechnic Institute in 1967. He is senior researcher at the Research Institute of Petroleum Energy and Environmental Studies at Ivano-Frankovsk National Technical University of Oil and Gas. He is author of 25 scientific papers in the field of enhanced recovery of hydrocarbons. E-mail: yaropolkbazhaluk@gmail.com
Oleg M. KARPASH was born in 1949; he graduated from the Ivano-Frankovsk Oil and Gas Institute in 1972. He is Vice Rector of Ivano-Frankovsk National Technical University of Oil and Gas, author of 334 scientific papers in various fields of science and technology. E-mail: karpash@nung.edu.ua
Jaroslav D. KLIMISHIN was born in 1935, he graduated from the Stanislav Pedagogical Institutes (1956) and the Moscow Institute of Steel and Alloys (1981). He is Senior Fellow in the development and operation of oil and gas fields in Ivano-Frankovsk National Technical University of Oil and Gas, author of 26 scientific papers in the field of enhanced recovery of hydrocarbons. E-mail: karpash@nung.edu.ua
Alexander I. GUTAK was born in 1986; he graduated from the Ivano-Frankovsk National Technical University of Oil and Gas in 2008. He is Assistant Lecturer at the Department of Development and Exploitation of Oil and Gas Fields in Ivano-Frankovsk National Technical University of Oil and Gas. He is author of 13 scientific papers in the field of enhanced recovery of hydrocarbons. E-mail: gutako@gmail.com
Nicolai V. HOUDIN was born in 1985, he graduated from the Ivano-Frankovsk National Technical University of Oil and Gas in 2008, and he is Assistant Lecturer of the Department of Development and Exploitation of Oil and Gas Fields in Ivano-Frankovsk National Technical University of Oil and Gas. He is author of 11 scientific papers in the field of enhanced recovery of hydrocarbons. E-mail: kh.red@mail.ru

Abstract: Studies on the effect of elastic waves in the dead zones in the oil reservoir to enhance oil recovery factor are still at an early stage. The aim of this work is the theoretical and experimental study of the effect of elastic waves of different frequencies to filter water – oil mixture in the bottom hole zone and inter-well reservoir zones, and as a result, an increase the productivity of oil wells and oil recovery factor in oil fields.

Index UDK: 622.276.6

Keywords: elastic vibrations, filtration, oil

Bibliography:
1. Gorbachev Ju.I. Akusticheskoe vozdejstvie i povyshenie rentabel’nosti razrabotki neftjanyh mestorozhdenij//NTV Karotazhnik. — 2000. — No. 60.
2. Kuznecov O.L., Efimova S.A. Primenenie ul’trazvuka v neftjanoj promyshlennosti. — M.: Nedra, 1983. — S. 37.
3. Kudinov V.I., Suchkov B.M. Metody povyshenija proizvoditel’nosti skvazhin. — Samara, 1996.
4. Brammer Ju.A., Pawuk I.N. Impul’snaja tehnika. — M.: Vysshaja shkola, 1965. — S. 8.
5. Bazhaluk Ja.M., Karpash O.M. ta іn. Doslіdzhennja akustichnih vlastivostej menіlіtovih vіdkladіv//Naftogazova energetika. — 2008 — No. 4. — S. 53–56.
6.
Krutin V.N. Mehanizm akusticheskoj intensifikacii pritokov nefti iz produktivnyh plastov// NTV Karotazhnik. — 1998. — No. 42.
7. Gorbachev Ju.I. Fiziko-himicheskie osnovy ul’trazvukovoj ochistki prizabojnoj zony neftjanyh skvazhin//NTV Karotazhnik. — 1999. — No. 57.
8. Sharp R. Metody nerazrushajuwih ispytanij. — M.: Mir, 1972. — S. 470.
9. Atabekov G.I. Osnovy teorii cepej. Uchebnik dlja vuzov. — M.: Jenergija, 1969. — S. 442.
10. Bronshtejn I.N., Semendjajev K.A. Spravochnik po matematike. — M.: GIFML, 1959. — S. 608.
11. Patent Ukrainy 63412, 25.07.2007.
12. Nikolaevskij V.N., Stepanova G.S. i dr. Ul’trazvuk opredeljaet otbor nefti pri vibrosejsmicheskom vozdejstvii na plast//Neftjanoe hozjajstvo. — 2006. — No. 1. — S. 48–50.
13.
Voronova E.V. Rezul’taty primenenija vibroudarnyh i vibrosejsmicheskih tehnologij povy-shenija nefteotdachi na mestorozhdenijah Uralo-Povolzh’ja// Neftegazovoe delo. — 2006. — No. 2.
14. Surguchev M.L., Kuznecov O.L., Simkin Je.M. Gidrodinamicheskoe, akusticheskoe, teplovoe ciklicheskoe vozdejstvie na neftjanye plasty. — M.: Nedra, 1975. — S. 77.
15. Patent Ukrainy 87872, 25.08.2009.
16. Bazhaluk Ja.M., Karpash O.M. ta іn. Ocіnka efektivnostі іmpul’sno-hvil’ovih dіj na procesi naftovitiskannja u plastі// Naftogazova energetika. — 2008. — No. 2. — S. 5–10.
17.
Sheriff R., Geldart L. Sejsmorazvedka. — M.: Mir, 1987. — S. 116.
18. Riznichenko Ju.V. Sejsmorazvedka sloistyh sred. — M.: Nedra, 1985. — S. 162.
19. Jeksner H., Frejtag R., Lang R. i dr. Gidroprivod. Osnovy i komponenty. — Jerbah: Bosh Reksrot AG. — 2003. — S. 92.
20. Bergman L. Ul’trazvuk i ego primenenie v nauke i tehnike. — M.: Izdanie inostrannoj literatury, 1956. — S. 15–17, 25.
21. Bojko V.S., Bojko R.V. Pіdzemna gіdrogazomehanіka: Pіdruchnik. — L’vіv: Aprіorі, 2005. — S. 282–314.

2012/4
Development of physical and chemical stimulation methods to increase oil recovery
Drilling and development of hydrocarbon fields

Authors: Michael A. SILIN is Doctor of Sciences, Professor, and Head of the Department of Technology of Chemicals for Oil and Gas Industry. He is the first Vice Rector for Strategic Development of Gubkin Russian State University of Oil and Gas. He is author of over 200 scientific and methodical publications, and more than 40 patents. E-mail: silin@gubkin.ru
Dmitry Y. ELISEEV was born in 1976; he graduated from the Almetyevsk Oil Institute in 1998. He is Head of the Research and Education Center «Chemistry for Oil and Gas production» of the Department of Technology of Chemicals for Oil and Gas Industry at Gubkin Russian State University of Oil and Gas. He is author of more than 40 published scientific papers and two patents. E-mail: eliseev.d@gubkin.ru
Alexander N. KULIKOV was born in 1958; he graduated from the Ufa Oil Institute in 1980. He is working at the «RN-UfaNIPIneft» as a leading researcher. He is author of over 50 scientific publications and 8 patents. E-mail: kulikov@ufanipi.ru

Abstract: A new method of physical and chemical stimulation of oil reservoirs to enhance oil recoery is developed. This method is based on the formation of gels in a remote area of the reservoir, which allows developing oil reserves concentrated in the inter-well space. The main approaches to the planning of enhanced oil recovery, depending on the stage of development of the field are shown on the basis of tests results and calculations.

Index UDK: 622.323

Keywords: enhanced oil recovery, physical and chemical methods of influence, SiX

Bibliography:
1. Khasanov M.M., Ismagilov T.A., Mangazeev V.P., Rastrogin A.E., Kol’chugin I.S., Tyan N.S. Neftyanoe khozyaystvo. — Oil industry, 2002, No. 7. — РР. 110–112.
2.
Silin M.A., Eliseev D.Ju., Kulikov A.N. Materialy Rossijskoj neftegazovoj tehnicheskoj konferencii SPE (Proc. SPE conference oil and gas), — Moscow, 2010. — РР. 98–100.
3.
Eliseev D.Ju, Kulikov A.N. Neft’. Gaz. Novacii. — Oil, Gas, innovations. — 2010. — No. 7. — РР. 55–61.

2012/4
Monotube high Q resonators for vibrating densitometers of oil
Design, manufacturing and operation of oil and gas sector equipment and facilities

Authors: Yadigar Ysub oglu HUSEYNOV was born in 1955, he graduated from the Baku State University in 1977 and in 1989 he defended his Ph.D. In 2003 he defended his doctoral dissertation at the Baku State University. He is Vice-Rector of the Sumgait State University, author of over 150 scientific papers and 25 inventions in the field of solid state physics. E-mail: tempus-sus@yandex.ru
Turgay Klim oglu HUSEYNOV was born in 1962, he graduated from the Leningrad Institute of Fine Mechanics and Optics in 1985 and, in 1992 he defended his thesis at the St. Petersburg Institute of Fine Mechanics and Optics. He is Associate Professor of the department of Electrical Engineering of the Sumgait State University. He is author of more than 50 scientific papers and five inventions in the field of vibration densitometry. E-mail: huseynovturgay@mail.ru
Nafisa Abdulfas kizi ABDULOVA graduated from the Azerbaijan Industrial Institute in 1992, she is junior researcher of the Research Laboratory «Contemporary Energy» of the Sumgait State University. She is author of more than 10 scientific papers in the field of vibration densitometry. E-mail: biblioteka@gubkin.ru

Abstract: This article analyzes the ways to improve the quality factor for the single-pipe resonators of vibrating densitometers of oil. An analytic expression relating the amount of reactive efforts to secure the cavity field with its parameters is derived. The condition of the options of homogeneous tubular resonator with high Q-factor is determined. The methods of calculating the non-uniform high quality factor of the resonator tube is considered. The results of the experimental study of the non-uniform resonator tube, manufactured using the proposed methodology, are given.

Index UDK: 681.128.8

Keywords: single-tube resonator, high quality factor, vibrating densitometer

Bibliography:
1. Zhukov Ju.P. Vibracionnye plotnomery. — M.: Jenergija, 1992. — 144 s.
2. Babakov I.M. Teorija kolebanij. — 5-e izd. — M.: Nauka, 1968. — 259 s.
3. Patent Velikobritanii № 115 8709, MKI G 01 N 9/00.
4. Patent Japonii № 49-7031, MKI G 01 N 9/00.
5. http://www.measurement-resources.com.au/pdf/density/General_Density_DS_ip7003.pdf (data obrawenija 09.05.12).
6. Gusejnov T.K. Minimizacija reaktivnyh sil v uzlah kreplenija rezonatorov vibracionno-chastotnyh plotnomerov zhidkosti//Izv. VUZov Priborostroenie. — 2001. — Т. 44. — No. 4. — S. 44–48.
7.
Gusejnov T.K. Issledovanie nizkochastotnogo trubchatogo rezonatora s sosredotochennoj neodnorodnost’ju dlja vibracionno-chastotnogo plotnomera zhidkih sred//Neftegazovoe delo. — 2007. — № 1, 09.06.07, URL: http://www.ogbus.ru/authors/Guseynov/Guseynov_1.pdf (data obrawenija 09.05.12).