Extended Search

- in all fields
- in the title
- in key words
- in the abstract
- in the bibliography
Filtration of viscous fluid through Brinkman media limited by impermeable walls
Automation, modeling and energy supply in oil and gas sector

Authors: Daria Yu. HANUKAEVA graduated from MIPT in 1999. She is Ph.D. in Physical and Mathematical Sciences, Associate Professor of the Department of Mathematics. She is author of more than 30 scientific papers in the field of mechanics and mathematics. E-mail: knanuk@yandex.ru
Anatoly N.FILIPPOV was born in 1960, graduated from the M.V. Lomonosov Moscow State University in 1982. He is Doctor of Physical and Mathematical Sciences, Professor of the Department of Mathematics. He is author of over 250 scientific papers in the field of physical-chemical mechanics, colloid chemistry and mathematics. E-mail filippov.a@gubkin.ru

Abstract: The flow of viscous incompressible fluid under constant pressure gradient in the long flat fissure and cylindrical channel filled with porous material is considered. The qualitative and quantitative analysis of analytical solutions of the cor-responding boundary value problems is carried out. The size of the near wall flow, where the law of Darcy is violated, is estimated. The conclusion about the appropriateness of the Brinkman approach in a number of practically important cases is made.

Index UDK: УДК 532.546.2

Keywords: filtration of viscous fluid, Brinkman media

1. Nield D.A., Bejan A. Convection in porous media. — 3rd ed. — New York: Springer, 2006. — 654 p.
2. Brinkman H.C. A calculation of the viscous force exerted by a flowing fluid in a dense swarm of particles. App. Sci. Res. (London), 1947, vol. A1, р. 27–34.
Ochoa-Tapia J.A., Whitaker S. Momentum transfer at the boundary between a porous medium and a homogeneous fluid I. Theoretical development. Int. J. Heat Mass Transfer, 1995, vol. 38, р. 2635–2646.
Starov V.M., Zhdanov V.G. Effective properties of suspensions/emulsions, porous and composite materials. Advances Colloid and Interface Sci, 2008, vol. 137, p. 2–19.
Barenblatt G.I., Entov V.M., Ryzhik V.M. Theory of fluid flows through natural rocks. Dordrecht: Kluwer Academic Publishers, 1990, 395p. (Russ. ed.: Barenblatt G.I., Entov V.M., Ryzhik V.M. Dvizhenie zhidkostej i gazov v prirodnyh plastah. Moscow, Nedra, 1984. 211 p.)
6. Auriault J.-L. On the domain of validity of Brinkman’s equation. Transp. Porous Med., 2009, vol. 79, p. 215–223.
Kumar S., Zimmerman R.W., Bodvarsson G.S. Permeability of fractures with cylindrical asperities. Fluid Dynam. Res., 1991, vol. 7, p. 131.
8. Brinkman H.C. Problems of fluid flows through swarms of particles and through macro-molecules in solution. Research (London), 1949, vol. 2, p. 190–194.
Vasin S.I. and Filippov A.N. Permeability of Complex Porous Media. Colloid Journal, 2009, vol. 71, p. 31–45.
Carman P.C. Flow of gases through porous media. New York: Academic Press, 1956, 182 p.
11. Filippov A.N., Khanukaeva D.Yu., Vasin S.I., Sobolev V.D., Starov V.M. Liquid Flow inside a Cylindrical Capillary with Walls Covered with a Porous Layer (Gel). Colloid Journal, 2013, vol. 75, no. 2, pp. 214-225.

Possibilities of applying acoustic emission sensors for monitoring general corrosion of carbon steel with nitrogen bubbling through working environment
Industrial and environmental safety, occupational safety and health

Authors: Marina L. MEDVEDEVAgraduated from Gubkin Moscow Institute of Petrochemical and Gas Industry in 1973. She is Doctor of Technical Sciences, full professor of the Department Metal Science and Non-Metallic Materials at Gubkin Russian State University of Oil and Gas. She is a specialist in the field of corrosion and protection of equipment of oil and gas industry. She is author of more than 80 scientific papers. E-mail: marmed04@mail.ru
Margarita D. RATANOVAis graduate student of Gubkin Russian State University of Oil and Gas at the Faculty of Mechanical Engineering. Since 2012 she has been a researcher of the Department of Metal Science and Non-Metal Materials. E-mail: rita-ratanova@rambler.ru

Abstract: Possibility of acoustic emission (AE) monitoring of carbon steel general corrosion during nitrogen barbotage through environment was investigated. The source of noise was similar to the main source of AE-signal during corrosion (cathodic hydrogen), i.e. nitrogen barbotage through environment. Corrosion of Steel 20 was investigated in electrolyte-solutions with pH 1,05,5 with and without nitrogen barbotage. Corrosion rate was determined by the gravimetric method. Parameters of AE signals were registered from GT200sensors using A-Line 32D (PCI-8) 4.98. multichannel system It was shown that there is a principal possibility of AE-corrosion monitoring even while bubbling nitrogen through an environment. It is possible to register the change in corrosion mechanism by means of AE-monitoring. These results can be used at refineries in corrosion monitoring systems

Index UDK: УДК 669.018.8.001; 534.8.081.7

Keywords: corrosion, acoustic emission, signal, corrosion environments

1. Online resource — http://protectcor.narod.ru/
2. Investigation of possibilities of acoustic emission monitoring in relation to the problems of corrosion monitoring equipment crude oil distillation plants. Ch. I. Registration the general corrosion. M.L. Medvedevа, A.K. Prygaev, E.A. Markov, Y.S. Popkov, M.V. Chernyh. Corrosion: Materials, protection, 2012, no. 12, p. 36.
3. Medvedeva M.L., Ratanova M.D. Identifying main source of acoustic emission under general corrosion of carbon steel. Proceedings of the State University of Oil and Gas named after I.M. Gubkin, 2014, no. 2, p. 94–102.
GOST 9.908-85 4. Unified system of corrosion and ageing protection. Metals and alloys. Methods for determination of corrosion and corrosion resistance indices.
5. Medvedevа M.L. Corrosion and protection equipment in the processing of oil and gas. M.: Federal State Unitary Enterprise Moscow, Oil and Gas State University of Oil and Gas. I.M. Gubkin, 2005, p. 312.

Economic background for development of russian shelf deposits
Economics and management in fuel and energy complex industries

Authors: Nicholay S. BARANOV graduated from the Finance Academy under the Government of the Russian Federation specializing in ‚Accounting and Audit’ in 2006. In 2012 he graduated from the Moscow State Institute of International Relations (MGIMO) program and received MBA degree in ‚International Oil and Gas Business’. In 2013 defended Candidate of Sciences thesis in economics at Gubkin Russian State University of Oil and Gas. He is Head of the Department of Joint Projects with ‚Statoil’ at OAO ‚NK’ Rosneft”. He is author of 13 publications. E-mail: Baranov.nikolay@gmail.com

Abstract: The paper provides a rationale for prioritizing projects of offshore fields development from the perspective of accelerating economic growth in the country. The tendencies of the development of the oil and gas industry are considered, the effect of complex development of offshore projects is shown.

Index UDK: УДК 553.98

Keywords: offshore fields, economic growth, investment, localization of production, the Arctic

1. Ader Terner. Zemlja — robotam//: Forbes, 2014, no. 06 (123), p. 23.
2. http://www.ifr.org
3. Larina E., Ovchinskij V. Russkoe chudo XXI veka. www.zavtra.ru
4. . www.glazev.ru
5. Nekipelov A., Ivanter V., Glaz’ev S. Politika perehoda k jeffektivnoj jekonomike. Jekonomist, 2014. 17.01.2014, no. 12, p. 14.
6. BP Statistical Review of World Energy: BP, 2013, p. 16.
7. www.rosneft.ru
8. Bojan Shoch. Ispolnitel’nyj direktor ExxonMobil Reks Tillerson uveren v prodolzhenii sotrudnichestva s Rossiej//http://www.oilandgaseurasia.com— 18.06.2014.
9. BP Statistical Review of World Energy: BP, 2011, p. 124.
10. http://www.gazprom.ru
11. Baranov N.S. Osvoenie shel’fovyh mestorozhdenija Rossii. Jekonomicheskoe stimu-lirovanie. Fiskal’noe regulirovanie. M.: Nedra, 2014, p. 151.
12. Baranov N.S. Normativno-pravovye bar’ery na puti osvoenija shel’fa//Problemy jekonomiki i upravlenija neftegazovym kompleksom, 2014, no. 5, p. 18.
13. Baranov N.S. Stimulirovanie jekonomicheskogo rosta za schet kompleksnoj realizacii proektov osvoenija shel’fovyh mestorozhdenij. Neft’, Gaz i Biznes, 2014, no. 6, p. 8.
14. Klejner G.B. Kljuchevye problemy sovremennogo menedzhmenta. Vestnik RJeU, 2012, no. 6, p. 50.

Account of osmotic swelling clays in modeling clay reservoirs for oil development
Drilling and development of hydrocarbon fields

Authors: Valery V. CADET was born 1953. He graduated from the Moscow Engineering Physics Institute in «Theoretical Nuclear Physics». He has been Head of the Department of Petroleum and Underground fluid mechanics at Gubkin Russian State University of Oil and Gas.. E-mail: trudyrgung@gubkin.ru
Pavel S. CHAGIROV was born in 1988; he graduated from Gubkin Russian State University of Oil and Gas in 2012 with Master’s Degree. He is currently doing a postgraduate course of studies at the Department of Petroleum and Underground fluid mechanics at Gubkin Russian State University of Oil and Gas. E-mail: pavel.chagirov@enconco.ru

Abstract: The analysis of osmotic swelling on the border between the injected agent and clay-containing rock allowed obtaining the dependence of the reservoir properties on the clay content and mineralization rate of injected water. The dependnces obtained show that with the decrease in salinity of the injected agent the pore space structure changes, i.e. the share of «fine» pores grows thus by reducing the share of «larg» ones, the variance of the pore radius distribution function as well as porosity decrease. On the basis of micromechanical description of the process of fluid flow in a lattice model of the porous medium analytical dependences of relative permeability curves as a function of salt concentration in the injected fluid were obtained. The process of two-phase flow of Newtonian fluids, one of which is a solution of electrolyte, in clay-containing porous medium was simulated. The influence of the parameters of the porous medium and injected saline fluid on the process of oil displacement was studied

Index UDK: УДК 622.276

Keywords: clay reservoir, flow in porous medium, osmotic swelling, percolation simulation

1. Tang G.-Q. & Morrow N.R. Influence of brine composition and fines migration on crude oil/brine/rock interactions and oil recovery. Journal of Petroleum Science and Engineering, 1999, no. 24, p. 99-111.
2. Morrow N., Buckley J. Improved oil recovery by Low-Salinity Waterflooding. SPE 129421.
3. Austad T., Rezaeidoust A. & Puntervold T. Chemical Mechanism of Low Salinity Water Flooding in Sandstone Reservoirs. SPE Improved Oil Recovery Symposium. Tulsa, Oklahoma, 2010. USA: Society of Petroleum Engineers.
4. Hanin A.A. Porody i kollektory nefti i gaza i ih izuchenie. М.: Nedra, 1969. P. 140-141.
5. Wilcox R., Fisk J. Test show shale behavior, aid well planning. Oil and gas J., 1983, 12/IX, v. 81, no. 37.
6. Rumynina V.G. Ocenka vlijanija atomno-promyshlennogo kompleksa na podzemnye vody i smezhnye prirodnye ob’ekty. S-Pb.: Izdatel’stvo S.-Peterburgskogo universiteta, 2003, p. 85-90.
7. Kadet V.V. Metody teorii perkoljacii v podzemnoj gidromehanike. M.: centrlitneftegaz, 2008. — 96 p.
8. Stupochenko V.E. Vlijanie glinistosti kollektora na polnotu vytesnenija nefti vodoj. Geologo-geofizicheskie aspekty obosnovanija kojefficienta nefteotdachi. M.: VNIGNI, 1981, vyp. 228, p. 59-79.
9. Havkin A.Ja., Alishaeva O.M. O vlijanii mineralizacii plastovyh vod na fazovye pronicaemosti i vybor optimal’noj tehnologii polimernogo vozdejstvija na neftjanoj plast. Vniineft’, 1983, 11 p.
10. Basniev K.S., Kochina I.N., Maksimov V.M. Podzemnaja gidromehanika. M.: Nedra, 1993, 408 p.
11. Zareckij S.A., Suchkov V.N., Zhivotinskij P.B. Jelektrohimicheskaja tehnologija neorganicheskih veshhestv i himicheskie istochniki toka. M: Vysshaja shkola, 1980, p. 34.
12. Seljakov V.I., Kadet V.V. Perkoljacionnye modeli processov perenosa v mikroneodnorodnyh sredah. M.: 1-j topmash, 2006, 247p.
13. Uljasheva N.M., Ivenina I.V. Vlijanie ionnoj sily rastvora na skorost’ uvlazhnenija glinistyh porod. Stroitel’stvo neftjanyh i gazovyh skvazhin na sushe i na more [Construction of oil and gas wells on land and sea], 2010, no. 4, p. 28–30.
Makeeva T.G. Metodicheskie novacii dlya umen’sheniya pogreshnosti opredeleniya plotnosti tverdoi fazi dispersnih gruntov standartnim metodom. Estestvennie i tehnicheskie nauki [Natural and technical sciences], 2009, no. 5, p. 231-243.
15. Khramchenkov M.G., Eirish M.V., Kornil’cev U.A. Izuchenie strukturnih izmenenii I termodinamicheskaya model’ fil’tracionnih svoistv glinistih porod. Izv. RAN. Geoekologiya [Russian Academy of Science, Geoecology], 1996, no. 5, p. 63-73.

Experimental setup for studying mechanism of elastic waves action on filtering process
Drilling and development of hydrocarbon fields

Authors: Evgeny A. MARFIN graduated from KSU (Kazan State University) named after Ulyanov-Lenin in 1999. He is PhD, Leading Researcher at the Research Center for Energy KSC of the RAS, Senior Lecturer in electronics of the KFI. He is specialist in the field of energy-saving technologies and technical means of enhanced oil recovery and oil production intensification. He is author of over 100 scientific publications. : E-mail: marfin76@mail.ru
Alexei A. ABDRASHITOV graduated from KAI (Tupolev Kazan State Technical University) in 1981. He is Junior Researcher at the Research Center for Energy of KSC of the RAS. He specializes in the field of gas dynamics. He is author of more than 10 scientific publications E-mail: abdary@mail.ru.
Evgeny V. BELYAEV is student at Kazan State Power Engineering University. He is specializes in the field of electric power supply for industrial heat engineering. He is Fellow of Presidential and Governmental Scholarship of the Russian Federation. He is author of 4 scientific public

Abstract: The action of elastic waves on the fluid flow in porous media is studied. It is shown that the impact of elastic fluctuations on the saturated porous me- dium will increase the filtration coefficient. Increased filtration coefficient under wave action can increase the rate of flow of fluid in porous media and the effectiveness of the method of production. Based on the analysis of data from dif- ferent studies an experimental setup was developed to implement various options of overlaying fields of elastic waves. Some results confirming the hypothesis of the mechanism of action of elastic waves on the filtration process were obtained

Index UDK: УДК 622.276.6

Keywords: filtration, porous medium, oil, viscosity, elastic waves, wave action, oscillator, frequency, amplitude of oscilla-tion, filter factor

1. Dyblenko V.P., Kamalov R.N., Sharifullin R.Ja., Tufanov I.A. Povyshenie produktivnosti i reanimacija skvazhin s primeneniem vibrovolnovogo vozdejstvija [Productivity increase and reanimation wells with application vibrational-wave action]. Moscow: OOO “Nedra-Biznescentr”, 2000. — 381 p.
2. Kuznecov O.L., Efimova S.A. Primenenie ul’trazvuka v neftjanoj promyshlennosti [The use of ultrasound in the petroleum industry]. Moscow: Nedra, 1983. — 286 p.
3. Miheev N.I., Davletshin I.A. Method of measuring the average values of the coefficient of heat transfer in complex flows. Izvestija RAN. Jenergetika, 2005, no. 6, p. 16-19 (In Russian).
4. Davletshin I.A., Miheev N.I., Molochnikov V.M. Heat transfer in turbulent separated region with superimposed pulsations. Teplofizika i ajeromehanika [Thermophysics and Aeromechanics], 2008, vol. 15, no. 2, p. 229-236 (In Russian).
5. Mikhailov D.N., Nikolaevskii V.N. Dynamics of flow through porous media with unsteady phase permeabilities. Fluid Dynamics, 2000, vol. 35, no. 5, p. 715-724.
6. Kirsanov Ju.A., Nazipov R.A., Danilov V.A., Bashkircev G.V. Mathematical model of thermal processes and methods of research of heat transfer in a porous cylinder. Izvestija Samarskogo nauchnogo centra RAN, 2010, vol. 12, no. 4, p. 90-96 (In Russian).
7. Butorin Je.A., Zagidullina A.R. Forced vibration propagation and energy loss in the wall of vertical well. Izvestija RAN. Jenergetika, 2008, no.1, p. 131-136 (In Russian).
8. Esipov I.B., Zozulja O.M., Fokin A.V. The resonance method of measuring the shear viscoelastic properties of liquids based on the excitation of torsional oscillations in tubes. Akusticheskij zhurnal [Acoustical Physics], 2010, vol. 56, no.1, p. 124-134 (In Russian).

Analysis of accidents at booster compressor stations of gas pipelines
Design, construction and operation of pipeline transport

Authors: Alan M. REVAZOV graduated from the North-Caucasian Institute of Mining and Metallurgy in 1983. He is Doctor of Technical Sciences, professor the Department of Construction and Maintenance of Oil and Gas Pipelines and Storage Facilities of Gubkin Russian State University of Oil and Gas. He is licensed expert in industrial safety in the oil and gas industry of RosTechNadzor (Federal Service for Environmental, Technological and Nuclear Supervision). He is author 86 scientific and educational works. E-mail: alanrevazov@rambler.ru
Igor A. LEONOVICH graduated from the Department of Pipeline Transport of Polotsk State University in 2013 he is postgraduate student at the Department of Construction and Maintenance of Oil and Gas Pipelines and Storage Facilities of Gubkin Russian State University of Oil and Gas. E-mail: ned.flander@mail.ru

Abstract: The statistics of accidents at booster compressor stations of gas-main pipe- lines is considered. The factors causing the occurrence of emergencies at booster compressors are identified. The causes of fires are shown. The key affecting factors resulting from explosions and fires at booster compressors are outlined

Index UDK: УДК 622.691.4

Keywords: gas-main pipeline, booster compressor station, accident rate

1. Godovye otchety o dejatel’nosti Federal’noj sluzhby po jekologicheskomu, tehnolo-gicheskomu i atomnomu nadzoru, 2004-2012. URL: http://www.gosnadzor.ru/public/annual_reports/ (data obrashhenija: 06.02.2014).
2. Diagnosticheskoe obsluzhivanie magistral’nyh gazoprovodov: Uchebnoe posobie. A.M. Angalev, B.N. Antipov, S.P. Zarickij, A.S. Lopatin. M.: MAKS Press, 2009, 112 р.
3. Butusov O.B., Meshalkin V.P. Komp’juternoe modelirovanie nestacionarnyh poto-kov v slozhnyh truboprovodah. M.: FIZMATGIZ, 2005, 550 р.
4. Revazov A.M. Analiz chrezvychajnyh i avarijnyh situacij na ob’ektah magistral’-nogo gazoprovodnogo transporta i mery po preduprezhdeniju ih vozniknovenija i snizheniju posledstvij. Upravlenie kachestvom v neftegazovom komplekse [Quality management for oil and gas industry], 2010, no. 1, р. 68-72.
5. Angalev A.M., Sokolinskij L.I., Lopatin A.S. Issledovanija vibracii i pul’sacii gaza v sistemah «centrobezhnyj nagnetatel’ truboprovod». Trudy Rossijskogo gosudar-stvennogo universiteta nefti i gaza im. I.M. Gubkina [Proceedings of Gubkin Russian State University of Oil and Gas], 2009, no. 4, р. 74-85.
6. Revazov A.M., Chuhareva N.V., Rudachenko A.V., Dmitrienko V.V. Dinamika avarijnosti ob’ektov magistral’nyh truboprovodov, jekspluatiruemyh na territorii sibirskogo i dal’nevostochnogo. Upravlenie kachestvom v neftegazovom komplekse [Quality management for oil and gas industry], 2012, no. 2, р. 35-38.

Effect of pipeline branch on mode of pumping of oil by pipeline
Design, construction and operation of pipeline transport

Authors: Vadim A. POLYAKOV graduated from Lomonosov Moscow State University majoring in „Mechanics” in 1981. He is Full Professor of the Department of Design and Operation of Oil and Gas Pipelines of Gubkin Russian State University of Oil and Gas. He is a specialist in the design and operation of pipeline transportation systems of oil and gas. He is author of 88 publications.E-mail: vapolyakov@rambler.ru
Roman A. SHESTAKOV graduated with honors from Gubkin Russian State University of Oil and Gas in 2013. He is postgraduate student of the Department of Design and Operation of Oil and Gas Pipelines of Gubkin Russian State University of Oil and Gas. He is a specialist in the design and operation of pipeline transportation systems of oil and gas. He is author of 3 publications.
E-mail: dur187@mail.ru

Abstract: The article considers the problem of branching of the trunk oil pipeline, i.e. the change of operating practices in the final cross section of the pipeline. Three-dimensional diagrams of the dependency of operating practices of the trunk pipeline in the final cross section on the structural and technological parameters of the branch are built. A software package for designing the section of the trunk pipeline with a branch is presented

Index UDK: УДК 622.691.4

Keywords: trunk pipeline, operation practices, branch, software package

1. Polyakov V.A. Basics of technical diagnostics. Lectures: Textbook. Moscow: INFRA-M, 2012, p. 118.
2. Polyakov V.A., Shestakov R.A. The changing nature of technological regime of high oil pipeline transport along the length of the pipeline. Proceedings of the Gubkin Russian State University of Oil and Gas, 2013, no. 4 (273), p. 79-83.
3. RD-23.040.00-KTN-110-07. Trunk oil pipelines. Design standards. M.: ОАО „AK „Transneft”, 2007.
4. RD Unified technological calculations of objects of the main oil wires and pipelines. M.: ОАО „AK „Transneft”, 2009.

Computer modeling of structure and properties of intermolecular complexes in diesel fuels using depressor and dispersant additives
Oil and gas processing, chemistry of oil and gas

Authors: Valentina A. LYUBIMENKO graduated from the Department of Chemistry of Lomonosov Moscow State University in 1974. She is Ph.D., Associate Professor of the Department of Physical and Colloid Chemistry Gubkin Russian State University of Oil and Gas. She is a specialist in the field of colloid chemistry, physical chemistry, quantum-chemical calculations. She is author of about 40 scientific publications. E-mail: ljubimenko@mail.ru

Abstract: Computer simulation methods were used to study the structure and properties of intermolecular complexes of paraffins using components of depressor-dispersant additive in diesel fuel. The semi-empirical quantum chemical PM6 method was applied to calculate the interaction energy of molecules in intermolecular com-plexes. Based on the calculations the mechanism of action of depressor-disper-sant additive is proposed

Index UDK: УДК 539.196.3:544.147:544.773:547.74

Keywords: diesel, depressor-dispersant additives, mechanism, intermolecular complexes, interaction energy, quantum chemical calculations

1. Internet-resurs http://www.creonenergy.ru/consulting/detailConf.php?ID=109871.
2. Danilov A.M. Prisadki k toplivam. Razrabotka i primenenie v 1996-2000 gg. Himija i tehnologija topliv i masel [Chemistry and Technology of Fuels and Oils], 2001, no. 6, p. 43-50.
3. Mitusova T.N., Polina E.V., Kalinina M.V. Sovremennye dizel’nye topliva i prisadki k nim. M.: Tehnika, OOO «Tuma Grup», 2002, 64 p.
4. Danilov A.M. Primenenie prisadok v toplivah. M.: Mir, 2005, p. 288.
5. Danilov A.M. Klassifikacija prisadok i dobavok k toplivam. Neftepererabotka i neftehimija [Oil Refining and Petrochemistry], 1997, no. 6, p. 11-14.
6. Bashkatova S.T. Prisadki k dizel’nym toplivam. M.: Himija, 1994, p. 256.
7. Danilov A.M. Razrabotka i primenenie prisadok k toplivam v 2006–2010 gg. Himija i tehnologija topliv i masel [Chemistry and Technology of Fuels and Oils], 2011, no. 6, p. 41-51.
8. Danilov A.M. Sovremennoe sostojanie proizvodstva i primenenija prisadok pri vyrabotke dizel’nyh topliv EVRO-3, 4, 5. Doklad na sovmestnom zasedanii uchenogo soveta VNII NP i Komiteta po toplivam i maslam ANN RF. M.: Izdatel’stvo «Sputnik+», 2009, p. 27.
9. Danilov A.M. O sovmestimosti prisadok k toplivam. Himija i tehnologija topliv i masel [Chemistry and Technology of Fuels and Oils], 1998, no. 5, p. 14-15.
10. Grishina I.N. Fiziko-himicheskie osnovy i zakonomernosti sinteza, proizvodstva i primenenija prisadok, uluchshajushhih kachestvo dizel’nyh topliv. M.: Neft’ i gaz, 2007, p. 230.
11. Grishina I.N., Ljubimenko V.A., Kolesnikov I.M., Vinokurov V.A. Mehanizm dejstvija depressorno-dispergirujushhih prisadok k dizel’nym toplivam. Materialy VI mezhdunarodnoj nauch- notehnicheskoj konferencii «Glubokaja pererabotka neftjanyh dispersnyh sistem». M., 2011, p. 118-120.
12. Grishina I.N., Ljubimenko V.A., Kolesnikov I.M., Vinokurov V.A. Vyjavlenie mehanizma dejstvija depressorno-dispergirujushhih prisadok k dizel’nym toplivam. Tez. dokl. IX Vserossijskoj na-uchno-tehnich. konf. «Aktual’nye problemy razvitija neftegazovogo kompleksa Rossii». 30 janvarja — 1 fevralja 2012 g. Ch. 1. Sekcii 1-4. M., 2012, p. 241.

Danilov A.M. Primenenie prisadok v toplivah dlja avtomobilej: Sprav. M.: Himija, 2000, p. 232.
14. Borshh V.N., Kolesnikov I.M., Grishina I.N., Ljubimenko V.A. Kvantovohimicheskoe issledovanie kompleksoobrazovanija sukcinimida s uglevodorodami. Trudy RGU nefti i gaza im. I.M. Gubkina, 2009, no. 2, p. 112-119.
15. Borshh V.N., Ljubimenko V.A., Kil’janov M.Ju., Kolesnikov I.M., Vinokurov V.A. Kvantovohimicheskoe issledovanie kompleksoobrazovanija maleinimida s molekulami benzola i vody. Hi-micheskaja fizika [Chemical Physics], 2011, t. 30, no. 8, p. 11-21.

Study of oxidizability of cellulosic raw material with hydrogen peroxide over colloidal cata-lyst based on iron oxide (iii)
Oil and gas processing, chemistry of oil and gas

Authors: Yakov A. MASYUTIN completed Master’s degree Gubkin Russian State University of Oil and Gas in 2012, specializing in „Chemical Technology and Biotechnology”. He is currently doing a postgraduate course of studies at Gubkin Russian State University of Oil and Gas and occupies the position of engineer of the Department of Physical and Colloid Chemistry of the named university. He is a specialist in the sector of biofuels synthesis of ionic liquids, application of spectroscopic methods for the analysis of petroleum and petroleum products. He is author of 20 scientific publications.E-mail: YMA1989@mail.ru
Roman I. KLYUKIN completed Bachelor’s degree in Kazakhstan branch of the Lomonosov Moscow State University University (Astana) in 2012, majoring in „Ecology and NatureManagement”. He is currently doing a graduate course at Gubkin Russian State University of Oil and Gas and occupies the position of engineer of the Department of Physical and Colloid Chemistry of the named university. The area of his research includes environmental impact assessment of oil and gas industry, including pipeline transportation, as well as methods of producing alternative energy sources.E-mail: klyukin_roman@bk.ru
Andreу A. NOVIKOV completed Master’s degree of the Perm State University majoring in „Chemistrу” in 2007. In 2010, he graduated from the graduate school at Gubkin Russian State University of Oil and Gas. He is Candidate of Chemical Sciences, Head of the Laboratory „Center for Nanodiagnostics” Gubkin Russian State University of Oil and Gas. He is a specialist in the field of organic chemistry, microbiology and nanodiagnostics, author of more than 30 scientific publications. E-mail: gubkin.biotech@gmail.com
Vladimir A. VINOKUROV graduated from Gubkin Moscow Institute of Petrochemical and Gas Industry in 1972 as „Manufacturing Engineer”. He is Doctor of Chemical Sciences, Head of the Department of Physical and Colloid Chemistry at Gubkin Russian State University of Oil and Gas. He is well-known a specialist in the field of surface chemistry and disperse systems, synthesis and stabilization of nanoparticles, and biotechnology. He is author of over 200 scientific publications.:E-mail: vinok_ac@mail.ru

Abstract: We have studied the oxidation of pre-radiated and original cellulosic feedstock (pine sawdust, bamboo chips) with dilute solutions of hydrogen peroxide over a catalyst based on colloidal iron oxide (III). As a result, it was found that the combined pretreatment by radiation and catalytic oxidation with hydrogen peroxide is an effective method of preparation of lignocellulosic feedstock for hydrolysis. This is due to the reduced content of lignin, the degree of polymerization and the crystallinity of cellulose. The byproducts (water solutions of oxidative degradation products of lignin) obtained during pretreatment can be used as plant growth stimulants or additives for animal feed. Analysis of the by-products by the me- thod of capillary electrophoresis revealed single, two-and tribasic carboxylic acids, while the gas chromatography-mass spectrometry analysis confirmed the presence of aldehydes, alcohols, esters, and nitrogen-containing heteroatomic compounds besides carboxylic acids

Index UDK: УДК 663.031.7 + 544.478.42 + + 66.097.3-039.672

Keywords: lignocellulose, irradiation pretreatment, hydrogen peroxide, colloid particles of iron (III) oxide, carboxylic acids

1. Sun R.C. Cereal Straw as a Resource for Sustainable Biomaterials and Biofuels. Chemistry, Extractives, Lignins, Hemicelluloses and Cellulose. Publ.: Elsevier, 2010, 300 р.
2. Tretyakov V.F., Makarfi Yu.I., Tretyakov K.V. Catalytic conversion of bioethanol into hydrocarbon fuels. Kataliz v promyshlennosti [Catalysis in industry], 2010, no. 5, pp. 11–32. (in Russian).
3. Varfolomeev S.D., Moiseev I.I., Myasoedov B.F. Energy carriers obtained from renewable raw materials. Vestnik Rossiyskoy akademii nauk [Bulletin of Russian Academy of Sciences], 2009, vol. 79, no. 7, pp. 595–607. (in Russian).
4. Makarfi Yu.I., Trushin A.A., Tretyakov V.F. Resource-saving and energy-saving technologies in chemical and petrochemical industry: Tezisy dokladov pervoy mezhdunarodnoy konerencii RKhO imeni D.I. Mendeleeva. [Abstracts of the 1st international conference of Russian Chemical Society named after Dmitriy Mendeleev, Moscow], 2009, p. 48. (in Russian).
5. Berberov A.B., Masyutin Ya.A., Afonin D.S., Borzaev H.H. Application of the colloid catalyst based on iron (III) oxide and polymetallic nanocatalyst (Fe-Co-Ni) for modification of lignocellulose structure. Izvestiya Kabardino-Balkarskogo nauchnogo centra RAN [Proceedings of Kabardino-Balkar Scientific Center of RAS], 2013, vol. 1, no. 6 (56), pp. 72-78. (in Russian).
6. Lesin V.I., Pisarenko L.M., Kasaikina O.T. Colloid catalysts based on iron (III) oxide. 1. Hydrogen peroxide decomposition. Kolloidnyy zhurnal [Colloid journal], 2012, vol. 74, no. 1, pp. 90-95. (in Russian).
7. Kasatkina O.T., Pisarenko L.M., Lesin V.I. Colloid catalysts based on iron (III) oxide. 2. Features of catalytic oxidation of palm oil. Kolloidnyy zhurnal [Colloid journal], 2012, vol. 74, no. 4, pp. 503-508. (in Russian).
8. Kropotkina V.V., Khmelyova A.N., Vereshchagin A.L. Pod red. Leonov G.V. The mechanism of growth-promoting action of ultra-low doses of natural organic acids. Innovatsionnye tekhnologii: proizvodstvo, economika, obrazovanie: materialy Vserossiyskoy nauchno-prakticheskoy konferencii 24 Sentyabrya 2009 goda [Innovative Technologies: production, economics, education: materials of All-Rusaian scientific and practical conference. September, 24, 2009]. Altai State Technical University, BTI. — Biysk: Publishing house of Altai State Technical University, 2009, pp. 372–375. (in Russian).
9. New corrective feed additive „Ekolin-4” for high-producing cows. G.V. Naumova, A.I. Ko-zinets, N.L. Makarova, T.F. Ovchinnikova, N.A. Zhmakova, O.G. Golushko. Prirodopolzovanie [Natural management], 2011, Issue 20, pp. 117-122. (in Russian).

Applying conservation compositionsfor corrosion protection of heat exchange and storage equipment
Oil and gas processing, chemistry of oil and gas

Authors: Igor R. TATUR graduated from Gubkin Moscow Institute of Petrochemical and Gas Industry in 1979. He is Candidate of Chemical Sciences, Associate Professor of the Department of Chemistry and Technology of Lubricants and Chemmotology. He is author of more than 80 scientific publications. E-mail: igtatur@yandex.ru.
Dina V. SHARAFUTDINOVA graduated from Gubkin Russian State University of Oil and Gas in 2009. She is Candidate of Technical Sciences. She is technical a specialist at LLC „STANDARD”. She is author of 15 scientific publications. E-mail: shara-dina@yandex.ru.
Vladimir A. LAZAREV graduated from Gubkin Moscow Institute of Petrochemical and Gas Industry in 1971. He is Candidate of Chemical Sciences, Deputy Director for R&D at LLC „Palette”. He is author of 95 scientific publications.E-mail: vlanlaz@mail.ru.
Dmitry N. SHERONOV graduated from Gubkin Russian State University of Oil and Gas in 2008. He is postgraduate student of the Department of Chemistry and Technology of Lubricants and Chemmotology. He is author of 2 scientific publications. E-mail: r75opposite@mail.ru.

Abstract: A conservation composition comprising a waste protective liquid, amine-type corrosion inhibitor, demulsifier, surpassing the performance characteristics of that currently used in the VNIINM-33/80 composition. It is used to conserve heat exchangers and storage equipment at machine-building enterprises. Its high demulsibility permits to combine the process of applying this composition on the inner surface with the process of hydraulic testing of equipment.

Index UDK: УДК 665.6/7

Keywords: conservation composition, waste protection fluid, corrosion inhibitor, demulsifier, corrosion rate hydro testing of equipment

1. Tatur I.R., Jakovlev D.A., Lazarev V.A. VNIINM-PAV-31/87-sostav dlja konservacii sovmestno s gidroispytanijami teploobmennogo i emkostnogo oborudovanija [VNIINM-PAV-31/87 as a reagent for simultaneous conservation and hydrotesting of heat exchanging and storage equipment]. Himicheskoe i neftjanoe mashinostroenie [Chemical and petroleum refining machinery], 1989, no. 9, p. 38–39 (in Russian).
2. Tatur I.R., Timohin I.A., Prigul’skij G.B. Prognozirovanie sroka zashhity teploobmennogo i emkostnogo oborudovanija konservacionnym maslom VNIINM-31/80 [Forecasting the protection time of heat exchanging and storage equipment by conservative oil type VNIINM-31/80]. Himicheskoe i neftjanoe mashinostroenie [Chemical and petroleum refining machinery], 1991, no. 9, p. 7–8 (in Russian).
3. Shehter Ju.N., Shkol’nikov V.M., Krjejn S.Je., Teterina L.N. Maslorastvorimye poverhnostno-aktivnye veshhestva [Oil-soluble surface-active substances]. Moscow, 1978, 304 p.
4. Frolov Ju.G. Kurs kolloidnoj himii. Poverhnostnye javlenija i dispersnye sistemy [Course of colloid chemistry. Surface properties and dispersed systems]. Moscow, 1988, 464 p.
5. Fuks I.G., Tumanjan B.P. Kolloidnaja himija nefti i nefteproduktov [Colloid chemistry of oil and oil products]. Moscow, 2001, 96 p.
6. K. Mittel. Micellobrazovanie, soljubilizacija i mikrojemul’sii [Micelles formation, solubilization and microemulsion]. Moscow, 1980, 600 p.