Extended Search

- in all fields
- in the title
- in key words
- in the abstract
- in the bibliography
Issue
Name
Authors
Category
2019/2
Issues of capital repair of gas pipelines in zones of natural and technogenic risks
Geosciences

Authors: Alexey S. LOPATIN graduated from Gubkin Moscow Institute of Petrochemical and Gas Industry in 1979. He is Doctor of Technical Sciences, professor, Head of Dept. of Termodynamics and Heat Engines of Gubkin Russian State University of Oil and Gas (National Research University). Author of over 350 papers in the field of diagnostics, energy saving in the transport of gas and energy efficiency. E-mail: Lopatin.a@gubkin.ru
Ashot R. AKOPIAN graduated from Gubkin Moscow Institute of Petrochemical and Gas Industry in 1986. He is Deputy Director General, Chief Engineer of ZAO «Gazprom Armenia», specialist in improving the reliability and efficiency of main gas pipelines.
E-mail: inbox@gazpromarmenia.am
Mikhail M. ZADERIGOLOVA graduated from the Dnepropetrovsk Mining Institute in 1962. He is Candidate of Technical Sciences, Director General of OOO «Altumgeo», author of about 150 scientific papers and patents in the field of geodynamic safety of large-scale national projects. E-mail: Lopatin.a@gubkin.ru

Abstract: Optimization of the choice of facilities for repair work and the volume of their financing can be carried out on the basis of reliable diagnostic data on both the technical condition and integrity of the pipe itself and the soils of the near-pipe space. Traditional methods of diagnostics are not quite suitable for monitoring and forecasting emergencies in areas of natural and man-made risks (landslides, karst, tectonic disturbances, faults, underground mining, etc.). A significant step in solving the problem can be made by incorporating into the diagnostics system radio wave methods, which have been successfully implemented at a number of facilities of OOO «Gazprom». These are aimed at eliminating the possibility of accidents at the earliest stages of natural and man-made processes.

Index UDK: 621.6.029

Keywords: geodynamic monitoring, dangerous geological processes, gas pipeline, capital repair, radio-wave method, diagnostics

Bibliography:
1. Dmitrievskij A.N. Formirovanie i dinamika ehnergoaktivnyh zon v geologicheskoj srede. Doklady Akademii nauk, 2006, t. 411, no. 3, р. 395-399.
2. Neobhodimost’ povysheniya ehffektivnosti capital’nogo remonta uchastkov LCHMG OAO «GAZPROM» na osnove kompleksnogo analiza ih tekhnicheskogo sostoyaniya. A.A. Filatov, I.I. Veliyulin, D.K. Migunov i dr. Gazovaya promyshlennost’, 2015, no. 3, p. 33-35.
3. Zaderigolova M.M., Lopatin A.S. Primenenie radiovolnovogo metoda kontrolya dlya obespecheniya bezopasnosti gazotransportnyh sistem. M: Izd. centr RGU nefti i gaza imeni Gubkina, 2014, 72 p.
4. Zaderigolova M.M., Lopatin A.S., Suslikov S.P. Problemy geodinamicheskoj bezopasnosti ehkspluatacii gazoprovoda «CHusovoj-Berezniki-Solikamsk». Trudy RGU nefti i gaza (NIY) imeni I.M. Gubkina, 2016, no. 4 (285), p. 84-93.
5. Geodinamicheskaya bezopasnost’ magistral’nyh gazoprovodov. B.V. Budzulyak, A.A. Apostolov, A.S. Lopatin, M.M. Zaderigolova. Truboprovodnyj transport: teoriya i praktika, 2018, no. 3, p. 50-54.
6. Svod pravil po inzhenernym izyskaniyam dlya stroitel’stva SP-11-105-97, ch. IV. Pravila proizvodstva geofizicheskih issledovanij. M: Gosstroj RF, 2004, 51 p.
7. Zaderigolova M.M. Obespechenie geodinamicheskoj bezopasnosti gazotransportnyh sistem radiovolnovymi metodami. M: Nauchnyj mir, 2009, 398 p.
8. Zaderigolova M.M., Lopatin A.S. Kriterii ocenki prognozirovaniya vnezapnoj opasnosti katastroficheskih aktivizacij gruntov okolotrubnogo prostranstva. Oborudovanie i tekhnologii dlya neftegazovogo kompleksa, 2018, no. 6, p. 73-80.
9. Zaderigolova M.M. Ustrojstvo dlya monitoringa lokal’nyh neodnorodnostej geodinami- cheskih i korrozionnyh zon verhnej chasti geologicheskogo razreza. Patent RF no. 123546 ot 27.12.2012 g.
10. Selyukov E.I., Stigneeva L.T. Kratkie ocherki prakticheskoj mikrogeodinamiki. SPb: Piter, 2010, 175 р.

2019/2
Analysis and systematization of risk management processes in design of offshore pipelines
Geosciences

Authors: Vladimir P. BEZKOROVAYNYY the postgraduate course from Gubkin Moscow Institute of petrochemical and gas industry in 1978. He is Doctor of Technical Sciences, Professor of the Department of Computer Aided Design of Oil and Gas Industry Facilities of Gubkin Russian State university of Oil and Gas (National Research University). He is specialist in the field of design automation and project management. He is author of more than 180 scientific publications. E-mail: vpbp@mail.ru
Pavel S. YAKOVENKO graduated from Gubkin Russian State University of Oil and Gas (National Research University) in technological machines and equipment. E-mail: yakovenko_p@hotmail.com

Abstract: The paper considers the approach to risk management in the design of offshore pipelines. The methodology is based on the analysis of hazardous factors of production by HAZOP method. The main characteristics of the analysis and its algorithms are presented. The practical use of these methods in project ma- nagement is explained.

Index UDK: 621.644.07

Keywords: risk management, offshore pipelines, safety integrity level, hazard and operability, project management

Bibliography:
1. GOST R 51901.11-2005. Menedzhment riska. Issledovanie opasnosti i rabotosposobnosti. Prikladnoe rukovodstvo, р. 7-12.
2. PD Tеrminal po priеmu, hranеniyu i rеgazifikacii szhizhеnnogo prirodnogo gaza (SPG) v Kalinigradskoj oblasti.
3. Primenenie metodov analiza opasnostej HAZID i HAZOP pri proektirovanii gazotransport-nogo terminala. M.V. Lisanov, V.V. Simakin, A.I. Makushenko, P.I. Dvornichenko, A.V. Еremeev-Rajhert. Bezopasnost’ truda v promyshlennosti, 2008, no. 8, p. 4-10.
4. Doan Dyk Nya. Otsеnka riskov v proеktah podvodnyh truboprovodov v usloviyah shеl’fa V’еtnama. Diss. na soiskanie uchenoj stepeni kandidata tekhnicheskih nauk, 2015, p. 47-50.

2019/2
Method of pipeline construction in swamplands with use of refrigeration circuit
Geosciences

Authors: Evgeniy A. GILMIYAROV graduated from Tyumen Industrial University in 2018, specializing in Petroleum Engineering.
E-mail: egilmiyarov@list.ru
Irina G. SILINA graduated from Tyumen Industrial University in 2018, specializing in Petroleum Engineering.
E-mail: i_g_silina@mail.ru
Sergei I. SENTSOV graduated from Gubkin Russian State University of Oil and Gas in 1978, he is Doctor of Technical Sciences, Professor of the Department of Construction and Repairs of Gas and Oil Pipelines and Storage Facilities of Gubkin Russian State University of Oil and Gas (National Research University). He is specialist in the field of construction of gas and oil pipelines and storage facilities. He is author of over 80 scientific and educational methodical works. E-mail: srgnp@mail.ru
Vadim A. IVANOV is Professor, Doctor of Technical Sciences of Tyumen Industrial University, Honored Scientist of the Russian Federation, member of the International Academy of Ecology and Life Protection sciences, author of more than 400 scientific works. E-mail: ivanov_v_a@list.ru

Abstract: The article describes the method of pipeline construction in swamps of II and III types. The choice of working fluid was established and formulae for approximate calculating of refrigerating circuit parameters were presented. Moreover, the ways of the development of the described method were identified

Index UDK: 622.692.4

Keywords: trunk lines, swampland, refrigeration circuit, refrigerant, ice wall

Bibliography:
1. GOST 12.1.007-76. Sistema standartov bezopasnosti truda (SSBT). Vrednyye veshchestva. Klassifikatsiya i obshchiye trebovaniya bezopasnosti.
2. GOST 28084-89. Zhidkosti okhlazhdayushchiye nizkozamerzayushchiye. Obshchiye tekhnicheskiye usloviya.
3. GOST 6221-90. Ammiak bezvodnyy szhizhennyy. Tekhnicheskiye usloviya.
4. Dimov L.A., Bogushevskaya E.M. Magistral’nyye truboprovody v usloviyakh bolot i obvodnennoy mestnosti. M.: Gornaya kniga, 2010, 392 p.
5. Karnaukhov N.N., Kushnir S.Ya., Gorelov A.S., Dolgikh G.M. Mekhanika merzlykh gruntov i printsipy stroitel’stva neftegazovykh ob’yektov v usloviyakh Severa. M.: TsentrLitNefteGaz, 2008, 432 p.
6. SP 86.13330.2014. Magistral’nyye truboprovody.

2019/2
Causes for intensification of carbon dioxide corrosion of steel equipment and pipelines of oil and gas fields
Technical sciences

Authors: Ksenia V. NAKONECHNAYA graduated from Gubkin Russian State University of Oil and Gas (National Research University) in 2018. She is postgraduate student of the Department of Tribology and Technology of Repair of Oil and Gas Equipment. She is author of 9 scientific publications. E-mail: nakonechnaya.k@gubkin.ru
Oksana Y. ELAGINA graduated from Gubkin Moscow Institute of Petrochemical and Gas Industry in 1989. She is Doctor of Technical Sciences, Head of the Department of Tribology and Technology of Repair of Oil and Gas Equipment of Gubkin Russian State University of Oil and Gas (National Research University). She is Head of the Interdepartmental Center for the Study of New Materials for Fuel and Energy Complex Objects. She is author of over 100 scientific papers. E-mail: elaguina@mail.ru

Abstract: The article is devoted to the reasons causing the intensification of carbon dioxide corrosion. Methods of its identification are considered on the example of production of wells of the Karazhanbas field. The results of the studies showed the pos-sibility of using X-ray structural analysis of corrosion deposits as a method of corrosion monitoring. The necessity to isolate wells with a pH value of 6,5 and below was revealed with an increase in partial pressure up to 3 kPa and above at the temperature of the produced fluid of 50 °C to a complicated pool for selecting equipment in corrosion-resistant design.

Index UDK: 620.193/197:622.692.4

Keywords: carbon dioxide corrosion, corrosion rate, intensification of the corrosion process.

Bibliography:
1. Markin A.N., Nizamov R.E. SO2-korroziya neftepromyslovogo oborudovaniya. [CO2 corrosion of oilfield equipment]. Moscow, 2003, 188 p.
2. Erekhinsky B.A., Chernukhin V.I., Popov K.A., Shiryaev A.G., Rekin S.A., Chetverikov S.G. [Oil country tubing resistant to carbon dioxide corrosion]. Territory neftegaz [Territory neftegaz], 2016, no. 6, p. 72-76.
3. Avtorskiy nadzor za realizatsiey proektnogo dokumenta na razrabotku mestorozhdeniya Karazhanbas. [Designer supervision of the implementation of the project document for the development of the Karazhanbas field. Report of KazNIPImunaygas JSC]. Otchet AO «KazNIPImunaygaz». Almaty, 2016, 135 p.

2019/2
Computer-aided design and modeling in machine building: orthogonal cylinder-bevel gears
Technical sciences

Authors: Aleksey Ya. NEKRASOV born in 1971, graduated from Moscow State Technological University «STANKIN» in 1994 by specialty «Designing machine tools and tools». The candidate of Technical Sciences, assistant professor of Sub-department of Machines of MSTU «STANKIN». The specialist in engineering. The author and co-author of more than 60 scientific and educational works. E-mail: stankin-okm@yandex.ru
Alexander N. SOBOLEV born in 1979, graduated from Moscow State Technological University «STANKIN» in 2002 in the direction of the magistracy «Technology, Equipment and Automation of engineering industries». Candidate of Technical Sciences. Assistant professor of the Sub-department of Machines of MSTU «STANKIN». The specialist in the theory of mechanisms and machines, CAD. The author and co-author of more than 60 scientific and educational works. E-mail: stankin-okm@yandex.ru
Michail O. ARBUZOV born in 1942, graduated from Moscow machine tool institute in 1964 by specialty «Designing machine tools». The candidate of Technical Sciences, assistant professor of Sub-department of Machines of MSTU «STANKIN». The specialist in the field of designing and calculating machine parts. The author and co-author of about 35 scientific and educational works.
E-mail: stankin-okm@yandex.ru
Victor G. PIROZHKOV born in 1949, graduated from the Krasnoyarsk Polytechnic Institute in 1971 with a degree in mechanical engineering technology, machine tools and metalworking. He is Candidate of Technical Sciences, Professor at the Department of Technical Mechanics of Gubkin Russian State University of Oil and Gas (National Research University). He is expert in the field of calculation of strength and reliability of elements of engineering structures. He is author of more than 60 scientific publications.
E-mail: pirogkov.v@gubkin.ru

Abstract: Orthogonal cylinder-bevel gears have been applied since ancient times. The main advantage of such transmission versus the traditional conical one is the possibility of some axial displacement of the gear that significantly simplifies the mounting of the gear. However, the geometric calculations required in the manufacture of this type of transmission are extremely complex. Therefore, effective software, that would simplify the geometric modeling of transmission elements, is needed. The article describes the scope of orthogonal cylinder-bevel gears in modern engineering. An algorithm for the geometric calculation of the elements of cylinder-bevel gear, implemented using the application program module developed by the authors, is presented

Index UDK: 621.0.01:621.833.2

Keywords: orthogonal cylinder-bevel gear, geometric calculations, software module

Bibliography:
1. Sobolev A.N., Kosov M.G. Avtomatizaciya kinematicheskogo i dinamicheskogo analiza tehnologicheskih mashin. Vestnik MGTU «Stankin» [Messenger of Moscow State University of Technology «STANKIN»], 2010, no. 2, p. 32-36 (in Russian).
2. Kosov M.G., Sobolev A.N. Avtomatizirovannoe proektirovanie na osnove metodologii netverdotelnogo modelirovaniya. Tehnologiya mashinostroeniya [Engineering technology], 2010, no. 3, p. 44-48 (in Russian).
3. Kissling U., Beermann S. Face Gears: Geometry and Strength [M]. USA: Gear Technology, 2007, vol. 1, p. 54-61.
4. Litvin F. L., Wang J. C., Bossler R. B. Application of face gear drives in helicopter trans- missions. Journal of Mechanical Design, Transactions of the ASME, 1994, vol. 3, no. 116, p. 672-676.
5. Litvin F.L., Fuentes A. Gear Geometry and Applied Theory, second ed., Cambridge University Press. Cambridge, 2004, 818 p.
6. Spravochnik konstruktora tochnogo priborostroeniya [Reference instrument designer precision instrument]. Pod redakciey doktora tehnicheskih nauk, prof. F.L. Litvina. M., L.: Mashinostroenie, 1964, 943 p.
7. Litvin F.L. Teoriya zubchatih zacepleniy [Gearing theory]. M., Nauka, 1968, 584 p.
8. Kazakov A.A., Arbuzov M.O., Pirozhkov V.G., Saldadze A.D. Vliyanie pogreshnostey formi detali v raschetah tochnostey oborudovaniya. Neft, gaz i biznes [Oil, Gas and Business], 2012, no. 1-2, p. 98-101 (in Russian).
9. Nekrasov A.Ya., Arbuzov M.O., Pirozhkov V.G. Primenenie universalnoy sistemi avtomatizirovannogo analiza shemi raspredeleniya nagruzki megdu elementami v mnogokontaktnih kinema-ticheskih parah (dlya vibora chisla zubiev menshego shkiva v zubchato-remennoy peredache). Neft’, gaz i biznes [Oil, Gas and Business], 2010, no. 7-8, p. 69-74 (in Russian).
10. Nekrasov A.Ya., Sobolev A.N., Arbuzov M.O. Innovacionniy interaktivniy programmniy product kak sredstvo povisheniya effektivnosti proektirovaniya mehanizmov. Innovacii [Innovations], 2016, no. 8, p. 104-107 (in Russian).
11. Pirozhkov V.G., Sobolev A.N., Nekrasov A.Ya., Arbuzov M.O. K voprosu formoobrazovaniya profilya cilindricheskih zubchatih koles pri elektroerozionnom virezanii. Trudi RGU nefti i gaza (NIU) imeni I.M. Gubkina [Proceedings of Gubkin Russian State University of Oil and Gas], 2018, no. 4, p. 118-131 (in Russian).
12. Sobolev A.N., Kosov M.G., Nekrasov A.Ya. Modelirovanie konstrukciy korpusnih detaley s ispolzovaniem raschetnih makroelementov. Vestnik MGTU «Stankin» [Messenger of Moscow State University of Technology «STANKIN»], 2014, no. 3, p. 98-101 (in Russian).
13. Kosov M.G., Sobolev A.N., Nekrasov A.Ya. Informacionnaya struktura sistemi netverdotelnogo modelirovaniya. Vestnik MGTU «Stankin» [Messenger of Moscow State University of Technology «STANKIN»], 2015, no. 1, p. 108-111 (in Russian).
14. Nekrasov A.Ya., Arbuzov M.O. Matematicheskaya model nagrugeniya zveniev mehanicheskih ustroistv s mnogoparnim silovim kontaktom. Vestnik MGTU «Stankin» [Messenger of Moscow State University of Technology «STANKIN»], 2012, no. 1, p. 32-35 (in Russian).
15. Sobolev A.N., Nekrasov A.Ya. CAD/CAE Modeling of Maltese Cross Mechanisms in Machine Tools. Russian Engineering Research, 2016, vol. 36, no. 4, p. 300-302.
16. Sobolev A.N., Nekrasov A.Ya., Arbuzov M.O. Usovershenstvovannaya metodika proekti- rovaniya zubchatih i chervyachnih mehanizmov v CAD/CAE-sistemah. Vestnik MGTU «Stankin» [Messenger of Moscow State University of Technology «STANKIN»], 2014, no. 2, p. 102-106 (in Russian).
17. Sobolev A.N., Nekrasov A.Ya. Raschet i modelirovanie v CAD-sisteme evolventnih i cikloidalnih (chasovih) zubchatih peredach priborov. Vestnik MGTU «Stankin» [Messenger of Moscow State University of Technology «STANKIN»], 2016, no. 2, p. 13-16 (in Russian).
18. Chekanin V.A., Chekanin A.V. Evristicheskiy algoritm optimizacii resheniy zadachi pryamougolnogo raskroya. Vestnik MGTU «Stankin» [Messenger of Moscow State University of Techno-logy «STANKIN»], 2014, no. 4, p. 210-213 (in Russian).

Authors: Konstantin V. SHATALOV graduated from the Ulyanovsk Higher Military Technical School named after B. Khmelnitsky in 1988, the Military Academy of Logistics and Transport in 1998. Candidate of Technical Sciences, Associate Professor. Head of the department of qualification assessment of fuels and oils of the FAE «The 25th State Research Institute of Chemmotology of Ministry of Defense of the Russian Federation». His research interests are chemotology, quality assessment of fuels and oils, metrological assurance of testing fuels and oils. He is author of more than 80 scientific publications. E-mail: 1499090@mail.ru.
Lidiya A. VLASENKOVA, Post-Graduate Student, Gubkin Russian State University of Oil and Gas (National Research University). The main direction of research is the jet fuel chemmotology. E-mail: vlasenkova.l@ya.ru.
Natalya M. LIKHTEROVA graduated from Gubkin Moscow Institute of Petrochemical and Gas Industry in 1968. Doctor of Technical Sciences, Professor. Leading Researcher of the department for the qualification assessment of fuels and oils of the FAE «The 25th State Research Institute of Chemmotology of Ministry of Defense of the Russian Federation». Her research interests are oil refining technology, chemical and motor fuel chemmotology, dispersed oil systems, heavy oil feedstock processing. She is author of more than 289 scientific publications. E-mail: 1499090@mail.ru.

Abstract: The article shows the need to study the chemical stability of fuels for jet engines, which contain components of deep oil refining, and suggests a method for studying the chemical stability of fuels for jet engines. Based on this method, studies of fuels for jet engines of various production technologies have been carried out. The minimum chemical stability has a fuel based on kerosene fraction of hydrocracking. This fact is explained by the conversion of the hydrocarbon composition of the kerosene fractions in the hydrocracking process

Index UDK: 665.7.035.5

Keywords: Fuel for jet engines, chemical stability, oxidation, hydrocracking

Bibliography:
1. Grishin N.N., Sereda V.V. Entsiklopediya khimmotologii [Encyclopedia of chemmotology]. Moscow, 2016, 960 p.
2. Seregin E.P. Razvitie khimmotologii [Development of chemotology]. Moscow, 2018, 880 p.
3. Ryabov V.A. Oil refining is the basis of economic development. Ekonomika i TEK segodnya, 2009, no.10, p. 25-27 (in Russian).
4. Khavkin V.A., Chernysheva E.A., Gulyaeva L.A. Gidrogenizatsionnye protsessy polucheniya motornykh topliv [Hydrogenation processes for the development of motor fuels]. Ufa: Izd. GUP INHP RB, 2013, 264 p.
5. Khavkin V.A., Gulyaeva L.A., Vinogradova N.Ya., Shmel’kova O.I. Hydrogenation processes at the refinery of Russia. Mir nefteproduktov, 2009, no. 3, p. 15-21 (in Russian).
6. Khavkin V.A., Galiev R.G., Gulyaeva L.A., Pugach I.A. About hydrogenation processing of oil residues. Mir nefteproduktov, 2009, no. 3, p. 15-19 (In Russian).
7. Shatalov K.V., Likhterova N.M., Seregin E.P. Jet fuel quality. Tekhnologii nefti i gaza, 2016, no. 1, p. 3-6 (in Russian).
8. Butin K.P., Waters W.A. Mechanisms of oxidation of organic compaunds. London, Wiley, 1966, 175 p. (Russ. ed.: Butin K.P., Waters W.A. Mekhanizm okisleniya organicheskikh soedineniy. Moscow, Mir Publ., 1966, 173 p.).
9. Semenov N.N. Development of the chain theory of oxidation of hydrocarbons. Problemy okisleniya uglevodorodov, 1954, p. 13-19 (in Russian).
10. Berezin I.V., Denisov E.T., Emanuel’ N.M. Okislenie tsiklogeksana [Cyclohexane oxidation]. Moscow, 1962, 303 p.
11. Emanuel’ N.M., Denisov E.T., Mayzus E.K. Tsepnye reaktsii okisleniya uglevodorodov v zhidkoy faze [Chain reactions of oxidation of hydrocarbons in the liquid phase]. Moscow, 1965, 375 p.
12. Kovalev G.I., Gogitidze L.D., Kuranova V.I., Denisov E.T. Natural jet fuel oxidation inhibitors. Neftekhimiya, 1981, vol. 21, no. 5, p. 718-725 (in Russian).
13. Denisov E.T., Kovalev G.I. Okislenie i stabilizatsiya reaktivnykh topliv. [Oxidation and stabilization of jet fuels]. Moscow, 1983, 272 p.
14. Khavkin V.A., Belousov A.I. Jet fuel production technologies. Neftepererabotka i neftekhimiya. Nauchno-tekhnicheskie dostizheniya i peredovoy opyt, 2014, no. 11, p. 5-7 (In Russian).
15. Kulik N.S., Aksenov A.F., Yanovskiy L.S., Boychenko S.V., Zaporozhets A.I. Aviatsionnaya khimmotologiya. Topliva dlya aviatsionnykh dvigateley. Teoreticheskie i inzhenernye osnovy primeneniya. [Aviation chemmatology. Jet fuels. Theoretical and engineering bases of application]. Kiev, 2015, 557 p.
16. Veselyanskaya V.M., Radchenko E.D., Englin B.A. Oxidizability of jet fuels T-6 and RT during long-term storage. Khimiya i tekhnologiya topliv i masel, 1983, no. 12, p. 27-28.
17. Instruktsiya ob organizatsii obespecheniya kachestva goryuchego v Vooruzhennykh Silakh Rossiyskoy Federatsii (prikaz ZMO RF 1994 goda № 105). Moscow, Voenizdat Publ., 1994, 220 p. (in Russian).

2019/1
Geoinformation environment of remote methods of geoecological research of oil and gas complex objects
Geosciences

Authors: Viktor G. AKOVETSKY graduated from Moscow Institute of Geodesy, Aerial Photo- graphy and Cartography specializing in aerofotogeodesy in 1973, in 1978 he graduated from the Moscow Institute of Physics and Technology with a degree in Automation of Experimental Research, and in 2006 he graduated from the Institute for Advanced Studies of the Russian Federal Center for Forensic Expertise “IPK RFTSSE”) specializing in “Investigation of ecological state of objects of soil-geological origin”. He is Doctor of Technical Sciences, Professor of the Department of Geoecology of Gubkin Russian State University of Oil and Gas (National Research University), specialist in environmental geoscience, aerospace research of the Earth, photogrammetry, geoinformatics, mapping and geodesy, author of over 150 scientific papers. E-mail: geoinforisk@mail.ru
Alexey V. AFANASYEV graduated from the Moscow State Forest University with a degree in Applied Mathematics. He is Candidate of Technical Sciences. Associate Professor of the Department of Geoecology of Gubkin Russian State University of Oil and Gas (National Research University), specialist in the field of modeling and programming. He is author of more than 25 scientific works.
E-mail: geoinforisk@mail.ru
Ekaterina R. MATROSOVA graduated from Gubkin Russian State University of Oil and Gas (National Research University) with a degree in ecology and nature management in 2017. She is Master student of Gubkin Russian State University of Oil and Gas (National Research University). E-mail: geoinforisk@mail.ru

Abstract: Particular attention is paid to the problems of the development and use of digital platforms for working with spatial data obtained on the basis of remote sensing systems (Earth remote sensing). The key task in this list is to develop the technologies for automated processing of remote sensing data, based on the use of methods of interpretation, modeling and visualization. The results of experimental studies of the construction of the geoinformation environment in the tasks of geoecological research on the basis of remote sensing technologies for the implementation of oil and gas complex projects are presented

Index UDK: 528(075.8)

Keywords: geoinformation environment, remote sensing of the Earth, digital economy, technological platform, geospatial data, geoecological research

Bibliography:
1. Program “Digital Economy of the Russian Federation”, approved by the order of the Government of the Russian Federation of July 28, 2017, no. 1632-r.
2. Federal Law No. 431-FZ of the Russian Federation of December 30, 2015 “On Geode- sy, Cartography and Spatial Data and on Amending Certain Legislative Acts of the Russian Fede- ration”.
3. “Plan for the phased introduction of information modeling technologies in the field of industrial and civil engineering in the design”. Order of the Ministry of Construction and Housing and Communal Services of the Russian Federation, no. 926/pr dated December 29, 2014.
4. Akovetsky V.G. Aerospace monitoring of oil and gas fields. Textbook for high schools. M.: LLC “Nedra-Business Center”, 2008, 454 p.
5. Aerospace monitoring of oil and gas facilities, Monograph, edited by V.G. Bondura, Moscow: Nauchniy mir, 2012, 558 p.
6. Akovetsky V.G. Engineering survey and geoinformation environment in the tasks of oil and gas complex risk management. Engineering Survey, 2015, no. 9, p. 54-62.

2019/1
Technologies and Features of Development of Hydrocarbon Deposits in Shallow-Water Transit Zones of the Kara Sea Priyamalsk Shelf
Geosciences

Authors: Alexander D. DZUBLO graduated from Gubkin University in 1972. He is Doctor of Geological and Mineralogical Sciences, Professor of the Department of Development of Offshore Oil and Gas Fields of the Gubkin Russian State University of Oil and Gas (National Research University). He is specialist in the field of geology and geophysics of oil and gas fields and author of more than 130 scientific publications. E-mail: dzyublo.a@gubkin.ru
Ksenia V. ALEKSEEVA graduated with honors from Gubkin Russian State University of Oil and Gas (National Research University) in 2018 with Master Degree in development of offshore oil and gas fields. She specializes in the development of offshore oil and gas fields. She has participated in international scientific and technical conferences, and has authored 4 publications.
E-mail: kseniya-alekseeva-95@mail.ru

Abstract: Deposits Kharasaveyskoe and Kruzenshternskoye are located on the Arctic shelf of the Kara Sea. The main difficulties encountered during the development are the harsh Arctic climate, the navigation period of 2-3 months, permafrost, shallow depths of the sea with a thick stratum of mud up to 20 m. Taking into account the climatic and geological conditions, the article suggests various options for the development of hydrocarbon deposits in shallow-water transit zones of the Priyamalsk shelf of the Kara Sea. We propose to use up-to-date technologies and methods of arrangement: to construct artificial islands and drill inclined wells from the shore

Index UDK: 622.276.031:532.11 (571.56)

Keywords: shallow water, arctic climate, hydrocarbons, drilling wells from shore, artificial island

Bibliography:
1. Vyakhirev R.I., Nikitin B.A., Mirzoev D.A. Construction and development of offshore oil and gas fields. M.: Publishing house of the Academy of Mining Sciences, 1999, 373 p.
2. Zolotukhin A.B., Gudmetad O.T., Ermakov A.I. Basics of development of offshore fields and construction of offshore structures in the Arctic. M.: State Unitary Enterprise “Oil and Gas” of the RGU of Oil and Gas named after I.M. Gubkin, 2000, 770 p.
3. Badu Yu.B. The gas-bearing structures and cryogenic strata of the Yamal peninsula cryolithology provinces. Engineering Geology, 2017, no. 1, p. 23-34.
4. Mirzoev D.A. Fundamentals of offshore oil and gas field business. T. 1. Construction and operation of offshore oil and gas fields. M.: Russian State University of Oil and Gas named after I.M. Gubkin, 2014, 272 p.
5. Mirzoev D.A. The fundamentals of the offshore oil and gas field. T. 2. Offshore oil and gas field engineering facilities — facilities for offshore oil and gas fields. M.: Russian State University of Oil and Gas named after I.M. Gubkin, 2015, 286 p.
6. Nikitin B.A., Dziublo A.D., Shuster V.L. Geological and geophysical assessment of oil and gas potential prospects of deep-lying horizons of the Yamal Peninsula and the Priyamalsky shelf of the Kara Sea. Oil Industry, 2014, no. 11, p. 102-106.
7. Khalikova D.F. In the Arctic shallow water: the definition of a constructive type of an SPBU for exploration drilling. Oil & Gas Journal Russia, 2012, issue 5 (60), p. 52-57.

2019/1
Petrophysical Model of Dependence between Resistivity Saturation Factor and Normalized Effective Porosity
Geosciences

Authors: Kazimir V. KOVALENKO is Doctor of Geological and Mineralogical Sciences, Professor of the Geophysical Information Systems Department, Gubkin Russian State University of Oil and Gas (National Research University). His research interests focus on algorithmical formalization of petrophysical interpretation of well-logging data. He is author and co-author of more than 50 scientific publications. E-mail: kazimirk@hotmail.com
Ziyun CHENG is student of the master’s program at the Geophysical Information Systems Department, Gubkin Russian State University of Oil and Gas (National Research University). Her research interests are petrophysics and well logging analysis.
E-mail: chengziyun7@gmail.com

Abstract: На основании разработанной модели предложены алгоритмы расчета коэффициента нефтегазонасыщенности и способы контроля результатов интерпретации данных комплекса геофизических исследований скважин (ГИС). The paper considers derivation of the dependence between resistivity saturation factor and normalized effective porosity in the zone of maximum hydrocarbon saturation of the reservoir. Verification of the developed parametric model showed good agreement between the calculated values of the resistivity saturation factor and the results of the laboratory petrophysical measurements on core samples from terrigenous reservoirs of Western Siberia.
On the basis of the developed model algorithms for calculating oil and gas saturation coefficient and methods for monitoring the interpretation results of well logging data are proposed

Index UDK: 550.83

Keywords: petrophysical modeling, resistivity saturation factor, effective porosity

Bibliography:
1. Dahnov V.N. Geofizicheskie metodi opredeleniya kollektorskih svoystv I neftegazonasisheniya gornih porod [Geophysical methods for determining reservoir properties and oil and gas saturation of reservoirs]. M.: Nedra, 1975, 344 p. (in Russian).
2. Dobrinin V.M., Vendelshteyn B.Yu., Kozhevnikov D.A. Petrofizika (Fizika gornih porod) [Petrophysics (Physics of rocks)]. M.: Neft I gas, 2004, 368 p. (in Russian).
3. Kozhevnikov D.A., Kovalenko K.V. Izuchenie kollektorov nefti i gaza po dannim adaptivnoy interpretacii geofizicheskih issledovaniy skvazhin [The study of oil and gas reservoirs based on the results of adaptive interpretation of well logging data]. Moscow, 2011, 219 p. (in Russian).
4. Kozhevnikov D.A., Kovalenko K.V. Princip petrofizicheskoy invariantnosti kollektorov I ego primemenie pri geomodelirovanii mestorozhdeniy nefti i gaza [The principle of petrophysical invariance of reservoirs and its use in geomodeling oil and gas reservoirs]. Doklady Earth Sciences, 2011, v. 440, no. 4, p. 530-532 (in Russian).
5. Leontyev E.I. Modelirovaniye v petrofizike [Petrophysics Modeling]. M.: Nedra, 1978, 125 p. (in Russian).

2019/1
Oil-Gas Potential of Chengbei Sag in Bohai Bay Basin (China)
Geosciences

Authors: Shiqi LIU is PHD student of the Department of Lithology of Gubkin Russian State University of Oil and Gas (National Research University). Her research interests are geology and lithology of oil and gas field.
E-mail: liushiqi1990@gmail.com

Abstract: Chengbei sag is one of the structure units of the Bohai Bay basin, which is a major oil and gas field in China. It is a graben basin depositing on the basement of Precambrian and mainly developing Cenozoic sedimentation. The hydrocarbon potential and saturation of these deposits are considered

Index UDK: 551.24:553.98(510)

Keywords: the source rock, Dongying formation, Chengbei sag, oil-gas saturation, alluvial system

Bibliography:
1. Limonov A.F., Burlin Ju.K. Stroenie, razvitie i neftegazonosnost’ bassejna Bohaj (KNR). Geologija nefti i gaza, 1988, no. 10, p. 53-57.
2. Rejnek G.Je., Singh I.B. Obstanovki terrigennogo osadkonakoplenija. M.: Nedra, 1981, 438 p.
3. Fu Zhaohui, Qin Weijun, Li Min. Depositional Characteristics and Hydrocarbon Traps of the Palaeogene in Chengbei Sag, Bohai Bay Basin. Marine Geology Frontiers, 2015, no. 31 (1), p. 9-15.
4. Fu Zhaohui, Zhang Zaizhen, Li Dechun, et al. Analysis on Sedimentary Systems and Hydrocarbon Accumulation of Palaeogene, CB Sag. ACTA SEDIMENTOLOGICA SINICA, 2009, no. 1, p. 26-31.
5. Gao Xilong. Sequence stratigraphic characteristics and hydrocarbon exploration targets of Dongying Formation in Eastern Slope Area of Chengdao Oilfield. Fault-Block Oil and Gas Field, 2013, no. 20 (2), p. 140-146.
6. Hao Fang, Zhou Xinhuai, Zou Huayao, Teng Changyu, Yang Yuanyuan. Petroleum Char- ging and Leakage in the BZ25-1 Field, Bohai Bay Basin. Journal of Earth Science, 2012, no. 23 (3), p. 253-267.
7. Hua Liu, Donggao Zhao, Youlu Jiang, etc. Hydrocarbon accumulation model for Neogene traps in the Chengdao area, Bohai Bay Basin, China. Marine and Petroleum Geology, 2016, no. 77, p. 731-745.
8. He Yun. Development situation analysis of reservoir formation Dongying, field Chengdao. Inner Mongolia Petrochemical Industry, 2014, no. 3, p. 40-41.
9. Liu Yin, Chen Qinghua, Hu Kai. Comparison of the Bohai Bay Basin and Subei-South Yellow Sea Basin in the Structural Characteristics and Forming Mechanism. Geotectonica et Metallogenia, 2014, no. 38 (1), p. 38-51.
10. Ryder R.T., Qiang Jin, McCabe P.J., etc. Shahejie—Shahejie/Guantao/Wumishan and Carbo- niferous/Permian Coal−Paleozoic Total Petroleum Systems in the Bohaiwan Basin, China (based on geologic studies for the 2000 World Energy Assessment Project of the U.S. Geological Survey): U.S. Geological Survey Scientific Investigations Report, 2011, 5010, 2012, 89 p.
11. Song Guoqi, Hao Xuefeng, Liu Keqi. Tectonic evolution, sedimentary system and petroleum distribution patterns in dustpan-shaped rift basin: a case studу from Jiyang Depression, Bohai Bay Basin. Oil and Gas geology, 2014, no. 35 (3), p. 303-309.
12. Tan Heqing. Analysis of oil and gas resource potential in Chengbei sag, Southern Bohai Basin. Journal of Jiang Han Pet Roleum Institute, 2004, no. 26 (1), p. 39-41.
13. Yuexia D., Shang Y., Lei C., et al. Braided river delta deposition and deep reservoirs in the Bohai Bay Basin: A case study of the Paleogene Sha 1 Member in the southern area of Nanpu Sag. Petroleum Exploration and Development, 2014, no. 4, p. 429-436.
14. Zhu Weilin, Wu Jingfu, Zhang Gongcheng, et al. Discrepancy tectonic evolution and petro- leum exploration in China offshore Cenozoic basins. Earth Science Frontiers, 2015, no. 22 (1), p. 88-101.
15. Zhao Yuehan. Gravity Flow Sedimentary Characteristics and Facies Model for Dongying Formation on East Slope of Chengdao, Jiyagn Depression. Special Oil and Gas reservoirs, 2017, no. 24 (4), p. 24-31.