Extended Search

- in all fields
- in the title
- in key words
- in the abstract
- in the bibliography
Issue
Name
Authors
Category
2020/3
Automation of design and technological preparation of gear production by copying method
Technical sciences

Authors: Alexander N. SOBOLEV graduated from Moscow State University of Technology “STANKIN” in 2002 in the direction of the magistracy “Technology, Equipment and Automation of Engineering Industries”. He is Candidate of Technical Sciences, Assistant Professor of the Sub-department of Machines of MGTU “STANKIN”. He is expert in the theory of mechanisms and CAD. He is author and co-author of more than 120 scientific and educational works. E-mail: stankin-okm@yandex.ru
Alexey Ya. NEKRASOV graduated from Moscow State University of Technology “STANKIN” in 1994 by specialty “Machine tools and metalworking”. He is Candidate of Technical Sciences, Assistant Professor of Sub-department of Machines of MSUT “STANKIN”. He is expert in engineering. He is author and co-author of more than 120 scientific and educational works.
E-mail: stankin-okm@yandex.ru
Michail O. ARBUZOV graduated from Moscow machine tool institute in 1964 by specialty “Mechanical engineering technology, machine tools and metalworking”. He is Candidate of Technical Sciences, Assistant Professor of Sub-department of Machines of MSUT “STANKIN”. He is expert in the field of designing and calculating machine parts. He is author and co-author of more than 60 scientific and educational works. E-mail: stankin-okm@yandex.ru
Victor G. PIROZHKOV graduated from the Krasnoyarsk Polytechnic institute in 1971 with a degree in mechanical engineering technology, machine tools and metalworking. He is Candidate of Technical Sciences, Professor at the Department of Technical Mechanics of Gubkin Russian State University of Oil and Gas (National Research University). He is expert in the field of calculation of strength and reliability of elements of engineering structures. He is author of more than 70 scientific and educational works.
E-mail: pirogkov.v@gubkin.ru

Abstract: The article discusses the problems of automation of technological preparation for the production of spur involute gears using the copy method. The performance capabilities of the software module developed by the authors are described. These allow to reduce the labour effort of design, technological and economic calculations. The software application has been tested on milling and EDM equipment, with the help of contouring, gears with an exact involute profile have been obtained

Index UDK: 621.833.1

Keywords: copying method, EDM, gear, design automation

Bibliography:
1. Gushchin V.G., Baltadzhi S.A., Sobolev A.N., Brovkina Yu.I. Proyektirovaniye mekhanizmov i mashin [Design of mechanisms and machines]. Tutorial. Stary Oskol, 2019, 488 p.
2. Pirozhkov V.G., Sobolev A.N., Nekrasov A.Ya., Arbuzov M.O. To the question of the shaping of the profile of cylindrical gears during electrical discharge cutting. Trudi RGU nefti i gaza (NIU) imeni I.M. Gubkina [Proceedings of Gubkin Russian State University of Oil and Gas], 2018, no. 4, p. 118-131 (in Russian).
3. Sobolev A.N., Nekrasov A.Ya., Andreev V.N., Kaliteevsky D.A. Economic aspects and features of EDM of gears. Vestnik MGTU “Stankin” [Messenger of Moscow State University of Techno-logy “Stankin”], 2018, no. 3, p. 141-146 (in Russian).
4. Sobolev A.N., Kosov M.G. Automation of kinematic and dynamic analysis of technologi- cal machines. Vestnik MGTU “Stankin” [Messenger of Moscow State University of Technology “Stankin”], 2010, no. 2, p. 32–36 (in Russian).
5. Egorov O.D., Bujnov M.А., Prokhorenko L.S. Structural analysis of mechanisms using graphs. Tekhnologiya mashinostroeniya [Engineering Technology], 2017, no. 7, p. 33-36 (in Russian).
6. Sobolev А.N., Nekrasov А.Ya., Yаgol’nitser O.V., Butrimova E.V. An experimental model for assessing the technical and environmental indicators of machine tools. Vestnik MGTU “Stankin” [Messenger of Moscow State University of Technology “Stankin”], 2016, no. 1, p. 33-37 (in Russian).
7. Pirogkov V.G., Sobolev A.N., Nekrasov A.Ya., Arbuzov M.O. Computer-aided design and modeling in mechanical engineering: orthogonal bevel gears. Trudi RGU nefti i gaza (NIU) imeni I.M. Gubkina [Proceedings of Gubkin Russian State University of Oil and Gas], 2019, no. 2, p. 95-106 (in Russian).
8. Pirozhkov V.G., Sobolev А.N., Nekrasov А.Ya., Аrbuzov M.O. Gear mechanisms of intermittent intermittent motion: designs, calculation methods, modeling. Trudi RGU nefti i gaza (NIU) imeni I.M. Gubkina [Proceedings of Gubkin Russian State University of Oil and Gas], 2019, no. 4, p. 156-166 (in Russian).
9. Nekrasov А.Ya., Аrbuzov M.O., Pirozhkov V.G. On a formalized method for determining the additional loads caused by individual errors in the steps of links in mechanical devices with multi-pair contact of elements. Neft’ gaz i biznes [Oil, Gas and Business], 2011, no. 3, p. 62-67 (in Russian).
10. Kazakov A.A., Arbuzov M.O., Pirogkov V.G., Saldadze A.D. Influence of part shape errors in equipment accuracy calculations. Neft’ gaz i biznes [Oil, Gas and Business], 2012, no. 1-2, p. 98-101 (in Russian).
11. Sobolev A.N., Nekrasov A.Ya. Improving the design technique of the pin chain gearing based on new software for calculating and modeling. Vestnik MGTU “Stankin” [Messenger of Moscow State University of Technology “Stankin”], 2015, no. 3, p. 34-38 (in Russian).
12. Sobolev A.N., Kosov M.G., Nekrasov A.Ya. Modeling of structures of hull parts using calculated macrocells. Vestnik MGTU “Stankin” [Messenger of Moscow State University of Technology “Stankin”], 2014, no. 3, p. 98-101 (in Russian).
13. Pronin А.I., Myl’nikov V.V., Val’ko D.А., Kondrashkin O.B. Development and research of part design using CAD/CAE systems. Remont. Vosstanovlenie. Modernizatsiya [Repairs. Recovery. Modernization], 2018, no. 6, p. 13-16 (in Russian).
14. Kosov M.G., Gurevich YU.E., Kapitanov А.V. Load distribution on rolling bodies of wave transmission generators. Vestnik MGTU “Stankin” [Messenger of Moscow State University of Technology “Stankin”], 2018, no. 1, p. 36-44 (in Russian).
15. Chekanin V.A., Chekanin A.V. Data structure for the problem of three-dimensional orthogonal packing of objects. Vestnik MGTU “Stankin” [Messenger of Moscow State University of Technology “Stankin”], 2015, no. 1, p. 112-116 (in Russian).
16. Sobolev А.N., Nekrasov А.YA., Аrbuzov M.O. Effective methods of training future engineering and scientific personnel at the machine tool department of MGTU “Stankin”. Tekhni- cheskoe tvorchestvo molodyozhi [Technical creativity of youth], 2016, no. 1, p. 21-24 (in Russian).
17. Pirozhkov V.G., Arbuzov M.O., Sobolev A.N., Nekrasov A.Ya. Progressive ways of mounting parts on the shaft. Trudi RGU nefti i gaza (NIU) imeni I.M. Gubkina [Proceedings of Gubkin Russian State University of Oil and Gas], 2020, no. 2, p. 99–110 (in Russian).

Authors: Alexander V. MURADOV graduated from Azizbekov Azerbaijan State Institute of Oil and Chemistry in 1973. He is Doctor of Technical Sciences, Professor of the Dept. of Metallurgy and Non-metallic materials of Gubkin Russian State University of Oil and Gas (National Research University). He is specialist in the field of corrosion of the equipment of oil and gas complex. He is the author of more than 100 scientific works. E-mail: com@gubkin.ru
ALEXEY I. LAVRENCHUK graduated from the Ulyanovsk branch of the Military Academy of Logistics And Transport in 2002 and the Military Academy of Logistics and Transport in 2009. He is Candidate of Technical Sciences, Head of the Military Training Center of Gubkin Russian State University of Oil and Gas (National Research University). He is author of 14 scientific publications.
E-mail: andrej.elizarov.80@mail.ru
Mikhail Yu. KIL’YANOV graduated from Gubkin Moscow Institute of Petrochemical and Gas Industry in 1984. He is Candidate of Chemical Sciences, senior researcher at the Department of Physical and Colloid Chemistry of Gubkin Russian State University of Oil and Gas (National Research University). He is specialist in the field of catalytic processes of oil refining an author of over 80 scientific papers. E-mail: m.kilyanov@mail.ru
Sergey I. KOLESNIKOV graduated from Gubkin Russian State University of Oil and Gas in 1981. Ph.D. in Chemical Sciences, head of the laboratory of the Department of Phy- sical and Colloidal Chemistry of Gubkin Russian State University of Oil and Gas (National Research University). Specialist in catalysis, oil and gas processing and thermodynamics of phase transitions. He is the author of more than 25 inventions and 135 scientific publications. E-mail: sikolesn@mail.ru
Sergey N. BABAEV graduated from Moscow State University in 1978. He is Candidate of Chemical Sciences, Assistant Professor of the Dept. of Physical and Colloidal Chemistry of the Gubkin Russian State University of Oil and Gas (National Research University). He is specialist in physical chemistry. He is the author of more than 30 scientific publications. E-mail: sbabaev@gubkin.ru

Abstract: The article presents the results of studies on catalytic pyrolysis of the gasoline fraction using the mineral sillimanite as a high-temperature aluminum catalyst to effectively increase the output of olefins. The process of pyrolysis on such a catalyst is based on the high temperature resistance of sillimanite (used for the production of fire retardants in the steel industry and in the production of cera-mics) and the presence of more than 50 % of active aluminium atoms concen-
trated in tetrahedrons. Based on the results of practical studies for the new high-temperature sillimanite catalyst, the equation of kinetics of the pyrolysis process of the gasoline fraction has been developed, and constants on the theory of transitional state have been determined. Studies at the pyrolysis laboratory have shown that sillimanite catalyst is a significant activator of the process

Index UDK: 661.715.4

Keywords: сatalysis, pyrolysis, gasoline, olefins, sillimanite, aluminosicate, kinetics

Bibliography:
1. Aliyev R.R. Catalysts and Oil Refining Processes. M.: JJJ “VNIINP”, 2010, 389 p.
2. Kolesnikov I.M. Cataliz and Catalyst Production. M.: Technique, TUM GROUP, 2004, 400 p.
3. Kolesnikov I.M. Cataliz in the oil and gas industry. Oil and gas, 2013, 484 p.
4. Le Page J.-F. et al. Applied heterogeneous catalysis. Paris. Ed. Technip, 1987, 515 p.
5. Bannow P.G. Oil Refining Processes, ch. 2. M.: CNIITEneftehim, 2001, 415 p.
6. Justino G.T., Vale C.S.F., da Silva V.A.P., Secchi A.R. Modeling Sterne Hydrogenation Kinetics Using Palladium Catalysts. Brazilian Journal of Chemical Engineering, vol. 33, no. 03, p. 637-647.
7. Kesia K.V. Castro, Anelise I. Figueiredo, Amanda D. Gondin, Ana C.F. Coriolano, Ana P.M. Alves. Pyrolysis of atmospheric residue of petroleum (ATR) using AKSBA-15 mesoporous material by TG and Py-GC|MS. J. Them.Calorin, 2014, no. 4, р. 678-684.
8. Xianghai Meng, Chunming Xu, Li Li, Jinsen Gao. Cracring erformence of Gasoline and Diesel Fraction from Catalytic Pyrolysis of Heavy Gas Oil Derived from Canadian Syntetic Crude Oil. Am.Chem.Soc., 2011, vol. 25, p. 3382-3388.
9. Xianghai Meng, Chunming Xu, Li Li, Jinsen Gao. Cracring Performence and Feed Characte- rization Study of Catalytic Pyrolysis for Light Olefin Production. Аm. Chem.Soc., 2011, vol. 25, p. 1357 -1363.
10. Liu Yibin, Chen Xiaobo, Zhao Hui, Yang Chaohe. Establishment of Kinetic Model for Catalytic Pyrolysis of Daqing Atmospheric Residue. Chinese J. Chem.Eng., 2009, vol. 17 (1), p. 78-82.
11. Li Li, Gang Wang, Xianghai Meng, Chunming Xu, Jinsen Gao. Catalytic Pyroilysis of Gas Oil Derived from Canadian Oil Sands Bitumen. Ind.Eng.Chem.Res., 2008, vol. 47, p. 710-716.
12. Xianghai Meng, Chunming Xu, Jinsen Gao. Production of Light Olefinse by Catalytic Pyrolysis of Heavy Oil. Petroleum Science and Technology, 2006, vol. 24, p. 413-422.

2020/3
Gel-generation of systems based on aluminum polyoxychloride under various physicochemical conditions
Chemical sciences

Authors: Irina V. NIKITINA graduated from Gubkin Russian State University of Oil and Gas (National Research University) in 2019. She is Master program student of the Specialized Department of Technologies for Improving Oil Recovery for Reservoirs with Complicated Conditions of Gubkin Russian State University of Oil and Gas (National Research University).
E-mail: irina_nikitina_xxxd@mail.ru
Kira A. POTESHKINA graduated from Gubkin Russian State University of Oil and Gas in 2012. She is Candidate of Technical Sciences, assistant professor of the Department of Technology for Oil and Gas Industry of Gubkin Russian State University of Oil and Gas (National Research University). She is specialist in oilfield chemistry and author of 25 scientific publications.
E-mail: poteshkina.k@gubkin.ru
Ljubov’ A. MAGADOVA graduated from Gubkin Moscow Institute of Petrochemical and Gas Industry 1975. She is Doctor of Technical Sciences, Professor at the Department of Chemical Technology for Oil and Gas Industry of Gubkin Russian State University of Oil and Gas (National Research University). She is Head of Laboratory of Scientific and Educational Center for Field Chemistry. She is specialist in the field of oilfield chemistry. She is author of more than 230 scientific publications. E-mail: lubmag@gmail.com
Mihail A. SILIN graduated from Gubkin Moscow Institute of Petrochemical and Gas Industry in 1978. He is Doctor of Chemical Sciences, Head at the Department of Chemical Technology for Oil and Gas Industry of Gubkin Russian State University of Oil and Gas (National Research University). He is specialist in the field of chemicals and technologies for oil and gas production. He is author of more than 250 scientific publications. E-mail: silin.m@gubkin.ru
Vladimir V. MAKIENKO graduated from the Ufa State Petroleum Technical University in 1996. Postgraduate student of the Department of chemical technology for the oil and gas industry of Gubkin Russian State University of Oil and Gas (National Research University). Head of the Lukoil-Western Siberia department. Specialist in the field of oilfield chemistry. The author of more than 15 scientific publications. E-mail: vladimir.makienko@lukoil.com

Abstract: Тhe influence of terrigenous rocks mineralogical composition and water chemical composition on gel-generation time of systems based on aluminum polyoxychlorides was studied. It was shown that with an increase in rocks clay and carbonate content, the gel-generation time decreases linearly for the VIS-1 system and exponentially for the SiXell system. It was established that with an increase in water mineralization, the time of sedimentation decreases, showing a larger decrease for sodium hydrogen carbonate waters due to their greater alkalinity. It was determined that these processes are associated with a change in the pH of solutions of gel-generation systems in the presence of alkaline and alkaline-earth metal ions contained in water and rock

Index UDK: 622.276.57/58

Keywords: enhanced oil recovery, gel-generated systems based on aluminum polyoxychlorides, gel-generation time, rock`s mineralogical composition, mineralization of edge and bottom water

Bibliography:
1. Koncepcija gosudarstvennogo upravlenija racional’nym ispol’zovaniem zapasov nefti. A.A. Bokserman, V.K. Gomzikov, A.Ja. Fursov, Je.M. Halimov, I.S. Dzhafarov. M.: JSC “Zarubezhneft’ ”, 2005, 118 p.
2. Muslimov R.H. Sovremennye metody povyshenija izvlechenija. Proektirovanie, optimizacija i ocenka jeffektivnosti. Kazan’: Akademija nauk RT, 2005, 300 p.
3. Poddubnyj Ju.A., Zhdanov S.A. O klassifikacii metodov uvelichenija nefteotdachi plastov (v porjadke obsuzhdenija). Neftjanoe hozjajstvo, 2003, no. 4, p. 19-25.
4. Poteshkina K.A. Razrabotka i issledovanie osadkogeleobrazujushhego sostava dlja povyshenija nefteotdachi plastov. Kand. Diss. Moskva, 2016, 76 p. (in Russian).
5. Sladovskaja O.Ju., Bashkirceva N.Ju., Kurjashov D.A., Lahova A.I., Mingazov R.R., Ismagilov I.F., Vagapov B.R. Primenenie kolloidnyh sistem dlja uvelichenija nefteotdachi plastov. Vestnik Kazanskogo tehnologicheskogo universiteta, 2010, no. 10, p. 585-591.
6. Hisamov R.S., Gazizov A.A., Gazizov A.Sh. Uvelichenie ohvata produktivnyh plastov vozdejstviem: uchebnoe posobie. M.: JSC “VNIIOJENG”, 2003, 568 p.
7. Trofimov A.S., Ahmetshin M.A., Novgorodov V.V., Evremov I.F., Jeler A.A., Altunina L.K., Kuvshinov V.A. Sostav dlja povyshenija nefteotdachi. Patent SSSR no.1654554, 1989.
8. Altunina L.K., Kuvshinov V.A., Stas’eva L.A. Sostav dlja povyshenija nefteotdachi plastov. Patent RF no. 2066743, 1993.
9. Shuvalov A.V., Nazmiev I.M., Emaletdinova L.D., Kamaletdinova R.M., Sadykov R.R., Kargapol’ceva T.A. Sostav dlja regulirovanija pronicaemosti plasta. Patent RF no. 2283854, 2006. Bjul. no. 26.
10. Gorlovskij D.M., Al’tshuler L.N., Kucherjavyj V.I. Tehnologija karbamida. Leningrad: “Himija”, 1981, 320 p..
11. Korchuganova O.M., Abuzarova K.R., Zarajs’ka O.S., Kursa N.Є. Doslidzhennja vplivu рН na kinetiku gidrolizu karbamidu. Naukovi visti NTUU “KPI”, 2012, no. 3, p. 50-56 (in Rus- sian).
12. Silin M.A. Puti razvitija tehnologij fiziko-himicheskogo vozdejstvija na plasty mestorozhdenij Zapadnoj Sibiri s cel’ju povyshenija ih nefteotdachi. M.A. Silin, D.Ju. Eliseev, A.N. Kulikov. Trudy RGU nefti i gaza imeni I.M. Gubkina, 2012, no. 4 (269), p. 40-47.
13. Mel’nikov B.P. Proizvodstvo mocheviny. M.: Goshimizdat, 1965, 167 p.
14. Altunina L.K., Kuvshinov V.A. Fiziko-himicheskie metody uvelichenija nefteotdachi plastov neftjanyh mestorozhdenij. Uspehi v himii, 2007, no. 10, p. 1034-1052.
15. Nikolaev N.M., Kokorev V.I., Karpov V.B., Darishhev V.I., Harlanov S.A., Filenko D.G., Silin M.A., Magadova L.A., Poteshkina K.A., Magadov V.R., Gubanov V.B. Sostav mnogofunkcional’nogo reagenta dlja fiziko-himicheskih metodov uvelichenija nefteotdachi (MUN). Patent RF no. 2529975, 2014. Bjul. no. 28.
16. Murinov K.Ju., Gvozdik S.P., Savel’eva E.N., Shishlova L.M. Vlijanie litologo-mineralogicheskogo sostava na petrofizicheskie svojstva terrigennyh porod nizhnego karbona Hasanovskoj ploshhadi. “Territorija neftegaz”, 2015, no. 12, p. 70-75.
17. Kachinskas I.V. Vlijanie litologo-mineralogicheskogo sostava i postsedimentacionnyh processov na fil’tracionno-emkostnye svojstva terrigennyh kollektorov (na primere mestorozhdenij nefti i gaza Vostochnoj i Zapadnoj Sibiri): Kand. Diss, Tjumen’, 2013, 16 p.
18. Kurushina Ju.V., Valeeva S.E., Fahrutdinov Je.I. Osobennosti litologo-mineralogicheskogo sostava frolovskoj svity (na primere Severo-Krutinskogo mestorozhdenija nefti). “Jespozicija neft’ gaz”, 2017, no. 4 (57), p. 19-22.

2020/3
Requirements for continuous monitoring systems of oil-contaminated areas
Chemical sciences

Authors:
Irina S. IVASCHENKO graduated from Samara State Technical University in 2018. She is Graduate student of the Department of Chemical Engineering and Industrial Ecology of Samara State Technical University. She is Engineer of third category at Technological Department of AO “Samaraneftekhimproekt”. She is author and co-author of 2 scientific publications.
E-mail: irinkairiska94@mail.ru
Vasily V. YERMAKOV graduated from Samara State Technical University in 2006. He is Candidate of Technical Sciences, Associate Professor of the Dept. of Chemical Engineering and Industrial Ecology. He is Head of the Laboratory of the NCPE FSBOU VO of the Samara State Technical University. He has authored and co-authored 68 scientific publications. E-mail: ncpe@mail.ru

Abstract: As a result of the development of oil production and refining industries, the risk of emergency oil spills increases. The complex chemical composition of oil and petroleum products leads to a number of environmental problems related to changes in the biological and microbiological properties of the soil cover, as well as to extensive damage to plants and animals. The process of natural rehabilitation of oil-contaminated soils is long and requires new technologies for continuous monitoring. The analysis of the collected data allows to correct and predict the progress of restoration of disturbed territories under the influence of many factors using the construction of a multidimensional trajectory. It is first proposed to use process-analytical technology (PAT) to control the restoration of contaminated areas

Index UDK: 550.8.05

Keywords: continuous technological control, process-analytical territory, multidimensional model, assimilation, chemometrics

Bibliography:
1. Bogomolov A.Yu. Optical multisensor systems: development and application in analysis. Abstract diss. doc. Chem. science. Moscow, 2019, 41 p. (in Russian).
2. Glazovskaya M.A., Pikovsky Yu.I., Korontsevich T.I. Integrated zoning of the territory of the USSR by types of possible changes in the natural environment during oil production. Landscape-geochemical zoning and environmental protection. M., 1983, issue 120, p. 84-108 (in Russian).
3. Chijov B.E., Zaharov A.I., Garkunov G.A. Degradation and rebellion dynamics of forest phytocenoses after oil pollution. Forests and forestry of Western Siberia. Tyumen, 1998, issue 6, p. 160-172 (in Russian).
4. Nazarov A.V. Impact of oil soil pollution on plants. Journal of Perm State University. Biology, 2007, issue 5 (10), p. 134-141 (in Russian).
5. GOST 27593-88 of the Soil. Terms and definitions (in Russian).
6. Golovanov A.I., Zymin F.M., Smetanine V.I. Recultivation of disturbed lands. M.: Kolos, 2009, 325 p. (in Russian).
7. Drebuschak T.N. Introduction to Chemometric. Tutorial. Novosibirsk, 2013, p. 7-9 (in Russian).
8. Available at: https://www.pharmaguideline.com/2016/12/process-analytical-technology-PAT. html (date of the address: 21.05.2020).
9. Available at: http://archive.promoboz.com/n3_14/58-61.pdf (date of the address: 01.11.2019).

2020/2
Interpretation of results of geological-geochemical studies of southern areas of West-Siberian oil and gas province (Demyanskaya and Nizhne-Keumskaya areas)
Geosciences

Authors: Sergey F. KHAFIZOV graduated from Gubkin Russian State University of Oil and Gas in 1987. He is Doctor of Geological and Mineralogical Sciences, Professor, Member of the Russian Academy of Natural Sciences and AAPG, Head of the Geology of Hydrocarbon Systems Department at Gubkin Russian State University of Oil and Gas (National Research University). He is specialist in the field of oil and gas fields’ exploration. He is author of four monographs and more than 60 scientific publications in Russian and international periodicals. E-mail: khafizov@gubkin.ru
Maria V. ZAKHARCHENKO graduated from Gubkin Russian State University of Oil and Gas in 2011 as a specialist, and after completing a postgraduate course of Gubkin Russian State University of Oil and Gas in 2015, she qualified as Candidate of Technical Sciences in 2017. From 2017-2019 she worked as Assistant Lecturer and Senior Lecturer of the Department of Theoretical Foundations of Oil and Gas Prospecting and Exploration. Currently, she is the Director for Coordinating Programs and Projects of the SIRTEK Association. She is author of more than 23 scientific publications. E-mail: m.zaxarchenko@inbox.ru
Kristina I. DANTSOVA graduated from Gubkin Russian State University of Oil and Gas (National Research University) in 2017. She is Assistant Lecturer at the Department of Theoretical Foundations of Oil and Gas Exploration and Prospecting of Gubkin Russian State University of Oil and Gas (National Research University). She is author of more than 12 scientific publications.
E-mail: kristinadantsova@yandex.ru

Abstract: The paper presents the results of interpretation of pyrolytic studies using Bulk Rock and Reservoir methods in the Jurassic deposits of the Demyanskaya and Nizhne-Keumskaya areas (West Siberian Oil and Gas Province). The detailed study was necessitated by the significant prospect of their oil and gas potential. The content of organic carbon, the stages of thermal maturity, the type of kerogen and the generation potential for source rocks were determined. The composition of asphalt-resinous substances in coarse-grained sandstones was detailed

Index UDK: 550.8.05:542.92 + 550.4:542.92

Keywords: Rock Eval, Reservoir, Bulk Rock method, Bazhenov formation, West Siberia, Jurassic deposits, organic carbon content, Demyanskaya area, Nizhne-Keumskaya area

Bibliography:
1. https://www.vsegei.ru/ru/info/gisatlas/ufo/tyumenskaya_obl/f_13_rayonir_NG.jpg
2. Zaharchenko M.V., Lyushin M.M. Ocenka generacionnogo potenciala osadochnogo chekhla yuzhnoj chasti Predural’skogo progiba (na osnove rezul’tatov piroliticheskih issledovanij). Neft’, gaz i biznes, 2015, no. 9, p. 17-20.
3. Zaharchenko M.V., Lyushin M.M. Ocenka neftegazovogo potenciala OV materinskih porod yuzhnoj chasti Predural’skogo progiba. V kn. “Fundamental’nyj bazis innovacionnyh tekhnologij poiskov, razvedki i razrabotki mestorozhdenij nefti i gaza i prioritetnye napravleniya razvitiya resursnoj bazy TEK Rossii”, 2016, p. 110-115.
4. Shimanskij V.K., Shapiro A.I., Vasil’eva V.F., Vishnevskaya N.B., Kunaeva N.T., Turenkova G.V. Osobennosti sostava bitumoidov rasseyannogo organicheskogo veshchestva argillitov mezozojskih otlozhenij yuga Zapadnoj Sibiri. Neftegazovaya geologiya. Teoriya i praktika, 2006, t. 1. http://www.ngtp.ru/rub/1/09.pdf

2020/2
Mechanism of formation of increased natural radioactivity of deposits of the Osinskiy horizon in the south of the Siberian Platform
Geosciences

Authors: Victoria A. LOSHKAREVA graduated from Gubkin Russian State University of Oil and Gas (National Research University) in 2016. She is Assistant Lecturer of the Department of Lithology of Gubkin Russian State University of Oil and Gas (National Research University). E-mail: viyurr@gmail.com
Olga V. POSTNIKOVA graduated from Gubkin Moscow Institute of Petrochemical and Gas Industry in 1979. Doctor of Geological and Mineralogical Sciences. Her academic interests focus on the lithology of reservoirs. She is author of more than 80 scientific publications, including 35 articles in journals from the list of the Higher Attestation Commission of the Russian Federation.
E-mail: olga.postnikova@yandex.ru
Irina A. KITAEVA is Assistant Lecturer of the Department of Lithology of Gubkin Russian State University of Oil and Gas (National Research University). She is author of 33 scientific publications. E-mail: irina_kitaeva@bk.ru
Ekaterina V. MILOVANOVA graduated from Gubkin Russian State University of Oil and Gas (National Research University) in 2019, she is graduate student of the Department of Lithology of Gubkin Russian State University of Oil and Gas (National Research University). E-mail: katerina.milovanova95@gmail.com

Abstract: The paper gives a brief lithological characteristic and description of the patterns of the structure of the productive Osinskiy horizon of the Nepsko-Botuoba anteclise. According to the results of studies of rock radioactivity (gamma-ray, spectrometry), zones of increased natural radioactivity of the carbonate deposits of the Osinskiy horizon were identified and possible causes of its occurrence were formulated. According to the results of comprehensive laboratory studies, factors of endogenous and exogenous influence on the formation of zones of abnormal radioactivity values were identified

Index UDK: 552.54:550.832.5

Keywords: East Siberia, Nepsko-Botuoba anteclise, Osinskiy horizon, carbonate rock radioactivity, uranium, cyano-bacterial mats

Bibliography:
1. Gottikh R.P. Radioaktivnye elementy v neftegazovoi geologii [Radioactive elements in oil and gas geology]. Moscow, 1980, 253 p.
2. Bacterial paleontology. M.: PIN RAS, 2002, 188 p.
3. Neruchev S.G. Periods of radioactivity on the Earth surface and their influence on the organic world revolution. Neftegazovaya Geologiya. Teoriya i praktika, 2007, no. 2, p. 3-8. http://www.ngtp. ru/rub/10/032.pdf
4. Kuznetsov A.S., Kitaeva I.A. Mineralogical features of osinskiy horizont carbonate reservoir rocks of Nepsko-Botuoba anteclise. Trudy RGU nefti i gaza (NIU) imeni I.M. Gubkina, 2017, no. 2, p. 45-55.

2020/2
Lithological, petrophysical and geochemical support for well logging data interpretation to determine mass and volume concentrations of organic matter
Geosciences

Authors: Nikita I. SAMOKHVALOV is postgraduate student of Well Logging Department, Gubkin Russian State University of Oil and Gas (National Research University). His research inte-rests include petrophysical and geochemical investigation and well logging data interpretation. E-mail: hikz1@mail.ru
Natalya A. SKIBITSKAYA head of Laboratory at Oil and Gas Institute of Russian Academy of Sciences. Candidate of Geological and Mineralogical Sciences. She is specialist in petrophysics, geochemistry and reservoir engineering. She is author of more than 100 scientific publications and 5 patents. E-mail: skibitchka@mail.ru
Kazimir V. KOVALENKO is Doctor of Geological and Mineralogical Sciences, Professor of the Geophysical Information Systems Department, Gubkin Russian State University of Oil and Gas (National Research University). His research interests focus on algorithmical formalization of petrophysical interpretation of well-logging data. He is author and co-author of more than 50 scientific publications. E-mail: kazimirk@hotmail.com

Abstract: The methodological basis of lithological-petrophysical and geochemical support of well logging data interpretation is substantiated to estimate mass and volume concentrations of organic matter on the basis of laboratory data. A method for separate assessment of the concentrations of kerogen and bitumen according to pyrolytic and bituminological studies has been developed. Methods for determining kerogen density that do not require dissolution of the rock mineral matrix are proposed. The list of necessary methods for determining kerogen density, according to the proposed methods, includes X-ray phase analysis, pycnometry, determination of porosity by the method of hydrostatic weighing and the method of nuclear magnetic resonance.
The results of the work are necessary for accurate determination of OM concentrations on the basis of well logging data.

Index UDK: 550.83:552.5 + 550.84:543

Keywords: source rocks, petrophysical modeling, pyrolysis, extraction, kerogen, bitumen

Bibliography:
1. Bazhenova O.K., Burlin Yu.K., Sokolov B.A. i dr. Geologiya i geokhimiya nefti i gaza. Uchebnik. MGU imeni M.V. Lomonosova, 2012.
2. Bogorodskaya L.I., Kontorovich A.E., Larichev A.I. Kerogen. Metody izucheniya, geokhimicheskaya interpretatsiya. Novosibirsk: Izd-vo SO RAN, filial Geo, 2005.
3. Borisenko S.A. Smachivaemost’ i metody ee opredeleniya dlya slozhnopostroennykh porod-kollektorov prirodnykh rezervuarov nefti i gaza. Diss. k.t.n. M., 2019.
4. Gudok N.S., Bogdanovich N.N., Martynov V.G. Opredelenie fizicheskikh svoystv neftevodosoderzhashchikh porod. M.: OOO “Nedra-Biznestsentr”, 2007, 592 p.
5. Dratsov V.G., Abdukhalikov Ya.N., Trukhin V.Yu. Otsenka kharaktera smachivaemosti karbonatnykh porod po dannym GIS. Geofizika, 1999, no. 6, p. 28-33.
6. Zoloeva G.M., Srebrodol’skaya M.A., Kosterina V.A. Opredelenie soderzhaniya kerogena v kollektorakh bazhenovskoy svity po dannym gamma-metoda s uchetom tsiklov osadkonakopleniya. Geofizika, 2014, no. 1, p. 46-52.
7. Kalmykov G.A. Stroenie Bazhenovskogo neftegazonosnogo kompleksa kak osnova prognoza differentsirovannoy nefteproduktivnosti. Diss. d.g.-m.n. M., 2016.
8. Kobranova V.N. Petrofizika: Uchebnik dlya vuzov. M.: Nedra, 1986.
9. Kuznetsov V.G. Litologiya. Osadochnye gornye porody i ikh izuchenie: uchebnoe posobie dlya vuzov. M.: Nedra-Biznestsentr, 2007.
10. Orlov L.I., Karpov E.N., Toporkov V.G. Petrofizicheskie issledovaniya kollektorov nefti i gaza. M.: Nedra, 1987, 217 p.
11. Pirson S.D. Uchenie o neftyanom plaste. M.: Gostoptekhizdat, 1961, t. 580.
12. Samokhvalov N.I., Skibitskaya N.A., Kovalenko K.V. Differentsirovannaya otsenka kharakteristik produktivnosti porod po dannym GIS na osnove petrofizicheskogo i geokhimicheskogo obespecheniya. Geofizika, 2019, no. 6, p. 85-92.
13. Samokhvalov N.I., Skibitskaya N.A., Kovalenko K.V. Voprosy opredeleniya soderzhaniya kerogena v porodakh neftegazomaterinskikh otlozheniy. Geologiya, geofizika i razrabotka neftyanykh i gazovykh mestorozhdeniy (VNIIOENG), 2019, no. 6, p. 69-74.
14. Tisso B., Vel’te D. Obrazovanie i rasprostranenie nefti. Mir, 1981.
15. Bust V.K., Majid A.A. et al. The petrophysics of shale gas reservoirs: Technical challenges and pragmatic solutions. Petroleum Geoscience, 2013, t. 19, no. 2, p. 91-103.
16. Craddock P.R., Mossé L., Prioul R., Miles J. et al. Integrating Measured Kerogen Properties With Log Analysis for Petrophysics and Geomechanics in Unconventional Resources. SPWLA 59th Annual Logging Symposium. Society of Petrophysicists and Well-Log Analysts, 2018.
17. Dang S.T. A new approach to measure organic density. Unconventional Resources Technology Conference, Denver, Colorado, 25-27 August 2014. Society of Exploration Geophysicists, American Association of Petroleum Geologists, Society of Petroleum Engineers, 2014, p. 433-439.
18. Jarvie D.M., Maende A. Mexico’s Tithonian Pimienta Shale: Potential for Unconventional Production. Unconventional Resources Technology Conference, San Antonio, Texas, 1-3 August 2016. Society of Exploration Geophysicists, American Association of Petroleum Geologists, Society of Petroleum Engineers, 2016, p. 528-542.
19. Herron M.M., Grau J., Herron S.L. et al. Total organic carbon and formation evaluation with wireline logs in the Green River Oil Shale. SPE Annual Technical Conference and Exhibition. Society of Petroleum Engineers, 2011.
20. Herron S.L. In Situ Evaluation of Potential Source Rocks by Wireline Logs: Chapter 13: GEOCHEMICAL METHODS AND EXPLORATION, 1991.
21. Kinghorn R.R.F., Rahman M. Specific gravity as a kerogen type and maturation indicator with special reference to amorphous kerogens. Journal of Petroleum Geology, 1983, t. 6, no. 2, p. 179-194.
22. Sanei H., Wood J.M. et al. Characterization of organic matter fractions in an unconventional tight gas siltstone reservoir. International Journal of Coal Geology, 2015, t. 150, p. 296-305.
23. Steiner S., Ahsan S.A., Raina I. et al. Interpreting Total Organic Carbon TOC in Source Rock Oil Plays. Abu Dhabi International Petroleum Exhibition & Conference. Society of Petroleum Engineers, 2016.
24. Ward J. Kerogen density in the Marcellus shale. SPE Unconventional Gas Conference. Society of Petroleum Engineers, 2010.

2020/2
Improving efficiency of development based on digital lithological and petrophysical models of productive layers
Geosciences

Authors: Radmir R. YUNUSOV is head of the Department of Control and Analysis of Oil and Gas Field Development at OOO “LUKOIL-Zapadnaja Sibir”. E-mail: Radmir.Unusov@lukoil.com
Andrew S. KUZNETSOV is engineer of the Department of Lithology at Gubkin Russian State University of Oil and Gas (National Research University). Нe is author of more than 15 scientific publications. E-mail: andrey.kuznecov.91@mail.ru

Abstract: Тhe successful development of oil fields primarily depends on the most accurate geological understanding of the reservoir structure, determined by the correct lithological-facies and lithological-petrophysical and tectonic models. The complex geological model must accurately describe all the geological features of the reservoir for making further decisions on the methods and approaches to field development

Index UDK: 552.5:004.9 + 552:004.9

Keywords: Vikulov formation, core, lithological-facies model, X-ray tomography, typification of well prognosis, geological and engineering operations

Bibliography:
1. Promyshlennyj podschet zapasov plastov v granicah Kamennoj (vostochnaja chast’) LU Krasnoleninskogo mestorozhdenija. OOO NPK “Geoproekt”, 2010, p. 426.
2. Dopolnenie k tehnologicheskoj sheme razrabotki Krasnoleninskogo mestorozhdenija (vostochnaja chast’) (OOO “LUKOJL-Zapadnaja Sibir”), filial OOO “LUKOJL-Inzhiniring” “KogalymNIPIneft’ ” v g. Tjumeni, 2015.
3. Shkandratov V.V., Fedorov Ju.N., Takkand G.V., Ljagushov S.V., Chertenkov M.V. Opyt izuchenija geomehanicheskih svojstv plasta VK1 Vostochno-Kamennogo licenzionnogo uchastka Krasnoleninskogo mestorozhdenija. Neftjanoe hozjajstvo, 2011, no. 8, p. 10-13.
4. Gavura V.E., Lejbson V.G., Chipas E.I., Shefer A.B. Metod izmenenija napravlenija fil’tracionnyh potokov pri razrabotke neftjanyh mestorozhdenij. M.: VNIIOJeNG, 1976, 63 p.
5. Merkulov V.P., Krasnoshhekova L.A. Issledovanie prostranstvennoj litologo-petrofizicheskoj neodnorodnosti produktivnyh kollektorov mestorozhdenij nefti i gaza. Izvestija TPU, 2002, t. 305, no. 6, p. 296-303.
6. Dmitrievskij A.N. Izbrannye trudy. Tom 1. Sistemnyj podhod v geologii. Teoreticheskie i prikladnye aspekty. M.: Nauka, 2008, 454 p.

2020/2
Advantages of underwater platforms in arctic shelf conditions
Geosciences

Authors: Сhingis S. GUSEYNOV graduated from Azerbaijan Industrial Institute, Faculty of Oilfield Development and graduate school of Gubkin Moscow Institute of Petrochemical and Gas Industry, Department of Transportation and Storage of Oil and Gas. He is Doctor of Technical Sciences, Professor of Computer Aided Design of Facilities of Oil and Gas Industry of Gubkin Russian State University of Oil and Gas (National Research University). He is author of over 300 published works. E-mail: guseinov2@yandex.ru
Vadim B. KHAZEEV graduated from Gubkin Russian State University of Oil and Gas specialising in “Offshore Oil & Gas structures” in 2009. He is author of 10 publications. E-mail: hazvad@yandex.ru

Abstract: The article outlines the problems of developing oil and gas fields in the Arctic Ocean, requiring the creation of submarine-ice floating vessels for the development of hydrocarbon resources in the freezing seas, and proposes an original design for drilling and production of oil and gas underwater floating structures (hereinafter — OGUFS). The article also describes the advantages of underwater placement of offshore oil and gas facilities at depths of approximately 138 meters below ice formations in comparison with the traditional Pentagon-88 type propulsion system. Based on these calculations, it was concluded that there is a significantly lower level of heat loss and that there is no icing problem in submarine floating structures, and the associated expediency of using this design in the development of Arctic shelf deposits is noted. A review of the remaining operational advantages of the subsea oil and gas facilities is provided

Index UDK: 622.242.424(204)

Keywords: underwater oil and gas structures (UOGS), Arctic Seas, environmental loads, UOGS shells, arctic structures icing

Bibliography:
1. Buzin I.V. Aisbergi i ledniki Barentseva morya: Issledovaniya posslednikh let. Problemi Arktiki i Antarktiki, 2008, no. 1 (78), p. 66-80.
2. Huseynov Ch.S., Nadein V.А. Zonirovanie dlitelno zamerzaushikh arkticheskikh akvatoryi po glubinam s celiu osvoenia otkrivaenikh nefregazovikh mestorozhdenii suchestvyushimi i novimi predlagaemimi teknicheskimi sredstvami i teknologiyami. Burenie i neft’, 2017, no. 4, p. 10-16.
3. Khazeev V.B., Huseynov Ch.S. Ocenka vneshnikh vozdeisvyi na pogruzhnie i podvodnie morskie neftegazovie soorusheniya. Burenie i neft’, 2018, no. 3, p. 24-27.
4. Patent RF no. 2012151565/03, 03.12.2012. Huseynov Ch.S., Ivanters V.K., Shvets S.А., Musabirov А.А., Gromova G.V. Podvodnoe sooruzhenie dlya bureniya neftegazovikh skvazhin i dobichi uglevodorodov, i sposobi ego transportirovki, montazha i ekspuatacii. Patnet Rossii no. 2517285, 2014, bul. no. 15.
5. Gidrometeorologiya i gidrokhimiya Morey SSSR. Tom 1. Barentsevo more. SPB: Gidrometeoizdat, 1990, 280 р.
6. Kutateladze S.S., Borishanskyi V.M. Sprvaochnik po teploperedache. L.: Gosudarstevennoe energeticheskoe izdatelstvo, 1958, 414 р.
7. Mikheev M.A., Mikheeva I.M. Osnovi teploperedachi. M.: Energiya 1977, 344 р.
8. Elektonni resurs: http://www.trawler pictures.net/gallery/image/16188-ocean-bounty-in-front-of-MT-taranaki/
9. David L. Ice observation program on the semisubmersible drilling vessel SEDCO 708. Minsk, 1984, 24 p.
10. Charles C., Ryerson U.S. Army Engineer Research and Development Center — Cold Regions Research and Engineering Laboratory, Hanover, NH, United States, 2010, 14 p.

2020/2
Calculation methods of determining physical and thermodynamical properties of natural gas. Methods of evaluating critical and pseudo-critical parameters of natural gas
Geosciences

Authors: Vitaly A. SHVECHKOV graduated from Gubkin Russian State University of Oil and Gas in “Computer Science and Computer Facilities” in 2002. He is Candidate of Technical Sciences, Associate Professor of Dept. of Design and Operation of Oil and Gas Pipelines of Oil and Gas of Gubkin Russian State University of Oil and Gas (National Research University). He is author of 49 scientific and methodical works: 2 educational publications, 38 scientific works, 9 copyright certificates of state registration of computer programs. E-mail: shvechkov.v@gubkin.ru
Sergey A. SARDANASHVILI graduated from Moscow Institute of Petrochemical and Gas Industry in 1976. He is Doctor of Technical Sciences, Associate Professor, Head of Dept. of Design and Operation of Gas and Oil Pipelines of Gubkin Russian State University of Oil and Gas (National Research University). He is specialist in the field of computer dispatchers decision-support systems for oil and gas industry and author of more than 50 scientific papers. E-mail: sardanashvili.s@gubkin.ru
Alexandr A. ALEKSANOCHKIN graduated from the Bauman Moscow State Technical University in 1998. He is Deputy Head of Dispatch Service of Gazprom Transgaz Moscow. E-mail: alexanochkin@gtm.gazprom.ru

Abstract: The problem of adequate determination of the critical and pseudocritical parameters of natural gas is solved in the presence of initial data on the incomplete component composition A review of existing methods for determining the critical and pseudocritical parameters of natural gas in the presence of baseline data on the full component composition and on incomplete component composition (based on density data under standard conditions and the content of nitrogen and carbon dioxide) has been made. The results of the study of the limits of the possible application of the law of the corresponding states for natural gas are shown. New calculated dependencies of pseudocritical parameters are proposed with the aim of their application in calculation methods for determining the physical and thermodynamic properties of natural gas in computer models, mode calculations and technological problems of pipeline gas transport

Index UDK: 665.612:53

Keywords: natural gas, corresponding states law, thermodynamic similarity, methods of evaluation of critical and pseudo-critical parameters

Bibliography:
1. Aleksanochkin A.A., Sardanashvili S.A. Raschetnye metody opredeleniya fizicheskikh i termodinamicheskikh svoystv prirodnogo gaza. Metod razlozheniya nepolnogo komponentnogo sostava prirodnogo gaza na ekvivalentnyy komponentnyy sostav. Sbornik Trudy RGU nefti i gaza (NIU) imeni I.M. Gubkina, 2018, no. 3 (292), p. 184-194.
2. Kirillin V.A., Sychev V.V., Sheyndlin A.E. Tekhnicheskaya termodinamika: uchebnik dlya vuzov. 5-e izdanie, pererabotannoe i dopolnennoe. M. MEI, 2008, 496 p.
3. International Standard 30319.2-2015 Natural gas. Methods of calculation of physical properties. Calculation of physical properties on base information on density of standards conditions and nitrogen and carbon dioxide contents. Moscow, Standarinform publ., 2016, 13 p. (in Russian).
4. ISO 20765-2:2015 International Standard. Natural gas — Calculation of thermodynamic properties. Part 2: Single-phase properties (gas, liquid, and dense fluid) for extended ranges of application. Switzerland, 2015, 60 p. (in Russian).
5. State Standard 8.770-2011 State system for ensuring the uniformity of measurements. Natural gas. The coefficient of dynamic viscosity of compressed gas with a known component composition. The method of calculation. Moscow, Standarinform publ., 2012, 24 p. (in Russian).
6. International Standard 30319.3-2015 Natural gas. Methods of calculation of physical properties. Calculation of physical properties on base information on component composition. Moscow, Standarinform publ., 2016, 33 p. (in Russian).
7. State Standard 8.662-2009 (ISO 20765-1:2005) State system for ensuring the uniformity of measurements. Natural gas. Gas phase thermodynamic properties. Methods of calculation for transmission and distribution applications on base of the AGA8 fundamental equation of state. Moscow, Standarinform publ., 2010, 38 p. (in Russian).
8. International Standard 30319.1-2015 Natural gas. Methods of calculation of physical properties. General statements. Moscow, Standarinform publ., 2012, 5 p. (in Russian).