Authors: Maxim V. GIRUTS graduated from Gubkin Russian State University of Oil and Gas in 2004. PhD (Chemical Sciences), assistant professor of the Department of organic chemistry & petroleum chemistry, Gubkin Russian State University of Oil and Gas. Specialist in chemistry and geochemistry of petroleum hydrocarbons. Author of more than 60 scientific publications. E-mail: moxixh@yahoo.com
Abstract: Diamond-like structure hydrocarbons due to their physical and chemical properties features find a wide range of applications in various fields of science, technology and industry: nanotechnology, medicine, manufacturing of highly resistant polymer materials and others. However, the existing methods for the synthesis of diamondoids are complex and multistage, and require further improvement. We performed thermolysis of asphaltenes, resins and high-molecular saturated (boiling above 350 °C) petroleum fractions of different genotypes, catalytic transformations of paraffin-cycloparaffinic fractions (boiling within 180-350 °C above 350 °C) of oils, catalytic thermal transformations of oxygen-containing compounds - precursors of petroleum hydrocarbons, thermo-lysis of macromolecular n-alkanes, as well as catalytic transformations of biomass of bacteria. Analysis of the hydrocarbon composition of the original oils, paraffin-cycloparaffinic fractions, thermolysis products and catalytic transformations was carried out by capillary gas-liquid chromatography and chromato-graphy-mass spectrometry. We have found that diamond-like structure hydro-carbons C10 to C23 form as a result of the above transformations. Thus a possibility of obtaining hydrocarbon of adamantane series from alternative sources was shown
Index UDK: 547
Keywords: diamondoids, protodiamondoids, adamantanes, diamantanes, triamantanes, tetramantanes
Bibliography:
1. Balaban A.T. and Schleyer P.v.R. Systematic classification and nomenclature of diamond hydrocarbons. I: Graph-theoretical enumeration of polymantanes. Tetrahedron, 1978, vol. 34, pp. 3599–3609.
2. Bagrii Е.I. Adamantani [Adamantanes]. М.: Nauka, 1989, 264 p. (in Russian).
3. Mansoori G.A. Diamondoid Molecules, In Advances in Chemical Physics, vol. 136. Chapter 4/ Stuart A. Rice, editor. John Wiley & Sons, 2007, pp. 207–258.
4. Mansoori G.A., George T.F., Assoufid L. and Zhang G. Molecular Building Blocks for nanotechnology-from diamondoids to nanoscale materials and applications. Topics in Applied Physics, vol. 109. Springer: New York, 2007, 426 p.
5. Whitesides G.M. Mathias J.P. and Seto С.T. Molecular self-assembly and nanochemistry: a chemical strategy for the synthesis of nanostructures// Science, 1991, no. 254, pp. 1312–1319.
6. Mansoori G.A. Principles of Nanotechnology (Molecular-Based Study of Condensed Matter in Small Systems). World Scientific Pub. Co.: Hackensack, NJ, USA, 2005, 341 p.
7. Merkle R.C. Biotechnology as a route to nanotechnology// Trends in Biotechnology, 1999, vol. 17, pp. 271–274.
8. Merkle R.C. Molecular building blocks and development strategies for molecular nanotechnology// Nanotechnology, 2000, vol. 11, pp. 89–99.
9. Drexler К.E. Nanosystems: Molecular Machinery, Manufacturing and Computation. John Wiley & Sons, Inc. New York, NY, 1992.
10. Freitas Jr., R.A. Exploratory Design in Medical Nanotechnology: A Mechanical Artificial Red Cell// Artificial Cells, Blood Substitutes & Biotechnology, 1998, vol. 26, pp. 411–430.
11. Davies W.L., Grunert R.R., Haff R.F., McGahen J.W., Neumayer E.M., Paulshock M., Watts J.C., Wood T.R., Hermann E.C. and Hoffmann С.E. Antiviral activity of 1-adamantanamine (amantadine). Science, 1964, vol. 144, pp. 862–863.
12. Hayden F.G., Gwaltney Jr. J.M., DeCastle R.V., Adams K.F. and Giordani B. Comparative toxicity of amantadine hydrochloride and rimantadine hydrochloride in healthy adults. Antimicrob. Agents Chemotherap, 1981, vol. 19, pp. 226–233.
13. Zoidis G., Fytas C., Papanastasiou I., Foscolos G.В., Fytas G., Padalko E., De Clercq E., Naesens L., Neyts J. and Kolocouris, N. Heterocyclic rimantadine analogues with antiviral activity. Bioorg. Med. Chem, 2006, vol. 14, pp. 3341–3348.
14. Nayyar A., Monga V., Malde A., Coutinho E. and Jain R. Synthesis, anti-tuberculosis activity, and 3D-QSAR study of 4-(adamantan-1-yl)-2-substituted quinolines. Bioorg. Med. Chem., 2007, vol. 15, pp. 626–640.
15. Lee R.E., Protopopova M., Crooks E., Slayden R.A., Terrot M. and Barry С.E. Combinatorial lead optimization of [1,2]-diamines based on ethambutol as potential antituberculosis preclinical candidates. J. Comb. Chem., 2003, vol. 5, pp. 172–187.
16. Burnett J.C., Schmidt J.J., Stafford R.G., Panchal R.G., Nguyen T.L., Hermone A.R., Vennerstrom J.L., McGrath C.F., Lane D.J., Sausville E.A., Zaharevitz D.W., Gussio R., Bavari S. Novel small molecule inhibitors of botulinum neurotoxin A metalloprotease activity. Biochem. Biophys. Res. Commun., 2003, vol. 310, pp. 84–93.
17. Solaja B.A., Opsenica D., Smith K.S., Milhous W.K., Terzic N., Opsenica I., Burnett J.C., Nuss, J., Gussio, R. and Bavari, S. Novel 4-Aminoquinolines Active against Chloroquine-Resistant and Sensitive P. falciparum Strains that also Inhibit Botulinum Serotype A. J. Med. Chem., 2008, vol. 51, pp. 4388–4391.
18. Shanafelt T.D., Lee Y.K., Bone N.D., Strege A.K., Narayanan V.L., Sausville E.A., Geyer S.M., Kaufmann S.H., Kay N.E. Adaphostin-induced apoptosis in CLL B cells is associated with induction of oxidative stress and exhibits synergy with fludarabine. Blood., 2005, vol. 105, pp. 2099–2106.
19. Lipton S.A. Aradigm shift in NMDA receptor antagonist drug development: molecular mechanism of uncompetitive inhibition by memantine in the treatment of Alzheimer’s disease and other neurologic disorders. J. Alzheimer Dis., 2004, vol. 6, pp. S61—S74.
20. Demuth H.-U., Mcintosh С.H.S. and Pederson R.A. Type 2 diabetes — therapy with dipeptidyl peptidase IV inhibitors. Biochim. Biophys. Acta., 2005, vol. 1751, pp. 33–44.
21. Skare D., Radic В., Lucic A., Peraica M., Domijan A.M., Milkovic-Kraus S., Bradamante V. and Jukic I. Adamantyl tenocyclidines — adjuvant therapy in poisoning with organophosphorus compounds and carbamates. Arch. Toxicol., 2002, vol. 76, pp. 173–177.
22. Zoidis G., Papanastasiou I., Dotsikas I., Sandoval A., Dos Santos R.G., Papadopoulou-Daifoti Z., Vamvakides A., Kolocouris N. and Felix R. The novel GABA adamantane derivative (AdGABA): design, synthesis, and activity relationship with gabapentin. Bioorg. Med. Chem., 2005, vol. 13, pp. 2791–2798.
23. Chern Y.T. Synthesis of polyamides derived from 4,9-bis(4-aminophenyl)diamantine. Polymer., 1998, no. 39(17), pp. 4123–4127.
24. Burham K.S., Roth R., Zhou F., Fan W., Brouk E. and Stifanos M. Dimensionally and thermally stable polymer, containing disordered graphitic structure and adamantine. J. Polym. Sci. Part A: Polym. Chem., 2006, vol. 44, pp. 6909–6925.
25. Ghosh A., Sciamanna S.F., Dhal J.E., Liu S., Carlson R.M.K. and Schiraldi D.A. Effect of nanoscale diamondoids on the thermomechanical and morphological behaviors of polypopylene and polycarbonate. J. Polym. Sci. Part B: Polym. Phys., 2007, vol. 45, pp. 1077–1089.
26. Chern Y.T. and Wang W.L. Synthesis and characterization of tough polyamides derived from 4,9-bis[4-(4-aminophenoxy)phenyl]diamantine. Polymer., 1998, no. 39(22), pp. 5501— 5506.
27. Lee Y.K., Jeong H.Y., Kim К.M., Kim J.C., Choi H.Y., Kwon Y.D., Choo D.J., Jang Y.R., Yoo K, Jang H. and Talaie J.A. Synthesis of new PPV based polymer and its application to display. Current Appl. Physics, 2002, vol. 2, pp. 241–244.
28. Bagrii E.I. and Maravin G.B. Adamantane-Containing Esters as Potential Components of Thermostable Lubricating Oils. Petroleum Chemistry, 2013, vol. 53, no. 6, p. 418.
29. Apryatkin A.D., Bagrii Е.I., Dolgopolova Т.N. Avt. Svid. USSR № 1593205, 15.05.1990 г.
30. Wu M.M., Shen D.-M., Chen C.S.H. High viscosity index lubricant fluid. US Patent No. 5306851, 26 Apr. 1994.
31. Landa S. and Machacek, V. Sur l’adamantane, nouvel hydrocarbure extrait de naphte. Collect. Czech. Chem. Commun., 1933, vol. 5, pp. 1–5.
32. Prelog V., Seiwerth R. Über eine neue, ergiebigere Darstellung des Adamantans. Berichte der Deutschen Chemischen Gesellschaft (A and B Series), 1941, vol. 74, pp. 1769–1772.
33. Schleyer P.v.R. A Simple Preparation of Adamantane. J. Am. Chem. Soc., 1957, vol. 79, pp. 3292–3292.
34. Cupas C.A. Schleyer P.v.R., Trecker D.J. Congressane. J. Am. Chem. Soc., 1965, vol. 87, pp. 917–918.
35. Gund T.M., Thielecke W. and Schleyer P.v.R. Diamantane: Pentacyclo[7.3.1.14,12.02, 7.05,11]tetradecane (3,5,1,7-[1,2,3,4]Butanetetraylnaphthalene, decahydro). Org. Synth., 1973, vol. 53, pp. 30–34.
36. Mansoori G.A. Diamondoid Molecules With Application in Biomedicine, Material Science, Nanotechnology & Petroleum Science. — World Scientific Publishing Co. Pte. Ltd, Singapore, 2012. 408 p.
37. Olah G.A. Cage Hydrocarbons. — John Wiley & Sons, Hoboken, NJ, 1990.
38. Giruts M.V., Rusinova G.V. and Gordadze G.N. Generation of Adamantanes and Diamantanes from High-Boiling Saturated Fractions of Crude Oils of Various Genotypes in the Presence of Acid Catalysts. Petroleum Chemistry, 2005, vol. 45, no. 2, p. 141.
39. Williams V.Z., Schleyer P.R., Gleicher G.J., Rodewald L.B. Triamantane. J. Amer. Chem. Soc., 1966, vol. 88, no. 16, pp. 3862–3863.
40. Hollowood F.S., McKervey M.A., Hamilton R. and Rooney J.J. Synthesis of Triamantane. J. Org. Chem., 1980, vol. 45, pp. 4954–4958.
41. Farooq O., Farnia S.M.F., Stephenson M. and Olah G.A. Superacid-catalyzed near-quantitative isomerization of C4n+6H4n+12 (n = 1-3) polycyclic precursors to diamondoid cage hydrocarbons promoted by 1-haloadamantanes and sonication. J. Org. Chem., 1988, vol. 53, pp. 2840–2843.
42. McKervey M.A. Synthetic Approaches to Large Diamondoid Hydrocarbons. Tetrahedron, 1980, vol. 36, pp. 971–992.
43. Gordadze G.N. Termoliz organicheskogo veshhestva v neftegazopoiskovoj geohimii [Thermolysis of organic matter in the oil and gas geochemistry]. Moscow, 2002, 336 p. (in Russian).
44. Badmaev Ch.M., Giruts M.V., Erdnieva O.G., Koshelev V.N. and Gordadze G.N. Generation of C11—C17 Monoalkyladamantanes via Catalysis of Some Oxygen-Containing Precursors of Petroleum Hydrocarbons. Petroleum Chemistry, 2011, vol. 51, no. 5, pp. 331–335.
45. Giruts M.V. and Gordadze G.N. Generation of Adamantanes and Diamantanes by Thermal Cracking of Polar Components of Crude Oils of Different Genotypes. Petroleum Chemistry, 2007, vol. 47, no. 1, pp. 12–22.
46. Giruts M.V., Rusinova G.V. and Gordadze G.N. Generation of Adamantanes and Diamantanes by Thermal Cracking of High-Molecular-Mass Saturated Fractions of Crude Oils of Different Genotypes. Petroleum Chemistry, 2006, vol. 46, no. 4, pp. 225–236.
47. Okunova T.V., Giruts M.V., Erdnieva O.G., Koshelev V.N. and Gordadze G.N. The Formation of Petroleum Biomarker Hydrocarbons from Possible Oxygen-Containing Precursors. Petroleum Chemistry, 2009, vol. 49, no. 3, pp. 207–217.
48. Giruts M.V., Badmaev Ch.M., Erdnieva O.G., Stokolos O.A., Koshelev V.N. and Gordad- ze G.N. Identification of Triamantanes in Crude Oils. Petroleum Chemistry, 2012, vol. 52, no. 2, pp. 65–67.
49. Giruts M.V., Derbetova N.B., Erdnieva O.G., Stokolos O.A., Koshelev V.N. and Gordadze G.N. Identification of Tetramantanes in Crude Oils. Petroleum Chemistry, 2013, vol. 53, no. 5, pp. 285–287.
50. Gordadze G.N. and Giruts M.V. Synthesis of Adamantane and Diamantane Hydrocarbons by High-Temperature Cracking of Higher n-Alkanes. Petroleum Chemistry, 2008, vol. 48, no. 6, pp. 414–419.
51. Giruts М.V., Gordadze G.N. N-alkany — vozmozhnye predshestvenniki diamantanov, naydennykh v organicheskom veshchestve kristallicheskogo fundamenta Tatarstana [n-Alkanes are possible precursors of diamantanes found in the organic matter of the crystalline basement of Tatarstan]. Georesursy — Georesources, 2008, no. 1(24), pp. 9–12 (in Russian).
52. Giruts M.V., Gordadze G.N., Stroeva A.R., Stokolos O.A., Bogatyrev S.O. and Koshelev V.N. Generation of Hydrocarbons Having Adamantine Structure from Bacterial Biomass. Chemistry and Technology of Fuels and Oils, 2014, vol. 50, no. 4, pp. 290–298.
53. Giruts M.V., Gordadze G.N., Stroeva A.R. and Koshelev V.N. K voprosu obrazovaniya uglevodorodov nefti iz biomassy bakteriy [On the question of formation of petroleum hydrocarbons from bacteria biomass]. Trudy RGU nefti i gaza imeni I.M. Gubkina [Proceedings of Gubkin Russian State University of Oil and Gas], 2014, no. 2(275), pp. 82–93.