Extended Search

- in all fields
- in the title
- in key words
- in the abstract
- in the bibliography
Issue
Name
Authors
Category
2014/4
Study of physicochemical properties of solvent-refined extracts and their mixtures with mineral base oils
Technical sciences

Authors: Marina B. BERGELSON graduated from the Gubkin Russian State Oil and Gas University in 2009. Postgraduate of „Chemistry and technology of lubricants and Chemmotology” department of the Gubkin Russian State Oil and Gas University. The author of 8 scientific publications.E-mail: marina.bergelson@gmail.com
Igor r. TATUR (b. 1956) graduated from the Gubkin Moscow Institute of Oil Chemistry and Gas Industry in 1979. PhD, Assistant professor of „Chemistry and technology of lubricants and Chemmotology” department of the Gubkin Russia State Oil and Gas University. The author of 70 scientific publications, 25 patents and author certificates, 1 monography and 2 textbooks.E-mail: igtatur@yandex.ru
Elvina R. MINNEBAEVA student of „Chemistry and technology of lubricants and Chemmotology” department of the Gubkin Russian State Oil and Gas University. She is the author of 2 scientific publications.E-mail: elvin15@yandex.ru
Vladimir G. SPIRKIN (b. 1937) graduated from the Military Rocket forces Academy named after Great Peter in 1959. D.Sc., Professor of „Chemistry and technology of lubricants and Chemmotology” department of the Gubkin Russia State Oil and Gas University. Author of more than 450 publications.E-mail: v.g.spirkin@mail.ru

Abstract: There are no qualified applications of the extracts oil distillate selective treatment, wherein the extracts contain surface active agents, which show antiwear, antioxidant and adhesive properties. The possibility of using solvent refining extracts oil distillate selective treatment as a component of lubricants dispersion medium was investigated. Rheological, low-temperature, oxidation and surface properties of solvent-refined extracts oil distillate selective treatment and its mixtures of mineral base oils were determined. It was established that at concentration 40 % by weight of the extract in a mixture of industrial oil tensile strength, oil separation characteristic, oxidation stability, low temperature properties, adhesion to metal surfaces and lubricity are increased. Greases based on the extracts have a lower cost in comparison with conventional lubricants based on oil mixtures

Index UDK: 665.795

Keywords: extracts oil distillate selective treatment, oil mixtures, rheological properties, low temperature properties, oxidation stability, surface properties, greases

Bibliography:
1. LUBE’N’GREASES Magazine, Base Stock Guide 2014.
2. Rabinovich V.U. Poluchenie masel-plastifikatorov dlja kauchukov i rezin razlichnogo naznachenija [Preparation of oil softeners for rubber for various purposes]. Diss. kan. teh. nauk MINHiGP [Gubkin MSU of oil and gas PhD thesis], Moscow 1975, p. 26-28 (in Russian).
3. Markova L.M. Issledovanie produktov pererabotki nefti kak plastifikatorov kauchuka i rezin [The study of refined petroleum products as rubber softeners]. Diss. kan. teh. nauk MINHiGP [Gubkin MSU of oil and gas PhD thesis], Moscow 1964, p. 100 (in Russian).
4. Problema sovershenstvovanija tehnologii proizvodstva i uluchshenija kachestva neftjanyh masel [The problem of production technology and petroleum oil quality improving]. Sbornik trudov [Collection of studies], Moscow 1996, p. 49-50 (in Russian).
5. Bergelson M.B., Tonkonogov B.P., Tatur I.R., “Tribologicheskie svojstva jekstraktov selektivnoj ochistki masljanyh distilljatov” [Tribilogical properties of solvent refining extracts]. Zhurnal “Himija i tehnologija topliv i masel” [Magazine “Chemistry and Technology of Fuels and Oils”], 2011, no. 1, p. 35-36.

2014/4
Using of modern hydrocatalytic processes for producing base oils for special purposes
Technical sciences

Authors: Tatiana N. SHABALINА graduated from Kuibyshev Industrial Institute named after V.V. Kuibyshev in 1962 as „Manufacturing Engineer”. She is Doctor of Engineering Science, professor of the Department of chemistry and technology of lubricants and Chemmotology at Gubkin Russian State University of Oil and Gas. She is a qualified specialist in the field of lubricants production by hydrocatalytic processes. She is author of more than 220 scientific publications.E-mail: ShabTN@gmail.com
Yevgeny V. KASHIN graduated from Master’s degree Gubkin Russian State University of Oil and Gas specializing in „Chemical Technology and Biotechnology” in 2012. At the moment he is a post graduate student at Gubkin Russian State University of Oil and Gas.E-mail: evgen_kashin@mail.ru
Irina V. PIGOLEVA graduated from Master’s degree Gubkin Russian State University of Oil and Gas specializing in „Chemical Technology and Biotechnology” in 2014. At the moment she is a post graduate student at Gubkin Russian State University of Oil and Gas. E-mail: pigolevairina@yandex.ru

Abstract: This paper is dedicated to the study of currently used technologies for producing lubricants for cold regions. The existing technologies of low pour point lubricating oil production and the latest developments in this field have been considered. The advantages and disadvantages of the available technologies and prospects for their implementation are discussed

Index UDK: 665.656

Keywords: low pour point lubricating oils, hydrotreating processes, hydroisome-rization, catalysts

Bibliography:
1. Shabalina T.N., Kaminskiy S.E. Gidrokatalititcheskie protsessy v proizvodstve masel [Hydro-catalytic processes in oil production]. Samara, 2003, 56 p.
2. Lynch T.R. Process chemistry of lubricant base stocks. Canada, Mississauga: CRC Press, 2008, 369 p.
3. Orochko D.I., Sulimov A.D., Osipov L.N. Gidrogenizatsionnye protsessy v neftepererabotke [Hydrogenation processes in oil refining]. Мoscow, 1971, 352 p.
4. Shkol’nikov V.M., Usakova N.A., Stepuro O.C. Catalytic dewaxing processes in base oil production. Khimia i tekhnologiya topliv i masel, 2000, no.1, pp. 26-27 (in Russian).
5. Shabalina T.N., Ushatinskaya O.P., Stefanskaya F.A. Poluchenie malovyazkikh nizkozastyvaiuschikh gidravlicheskikh masel iz produktov gidrokrekinga-gidroizomerizatsii petrolatuma [Production of low-viscosity hydraulic oils from the products of petrolatum hydrocracking-hydroisome-rization]. Sbornik trudov KF VNII NP „Masla i zhidkosti dlya promyshlennogo oborudovania” [Proc. of the KF VNII NP ‘‘Oils and fuels for industrial equipment’’], 1983, pp. 45-55.
6. Gerasimov D.N., Fadeev V.V., Loginova A.N., Lyseneko S.V. Catalytic dewaxing and isodewaxing of oil feedstock. Trudy 14 Mezhdunarodnoi nauchno-tekhnicheskoi konferentsii „Naukoemkie khimicheskie tekhnologii — 2012” [14th Int. Conf. High-tech chemical technologies — 2012”]. Tula, 2012, p. 134. (In Russian).
7. US Patent 3668113, 06.06.1972.
8. US Patent 4229282, 21.10.1980.
9. Wilson M.W., Mueller T.A., Kraft G.W. Commercialization of Isodewaxing-A New Technology for Dewaxing to Manufacture High Quality Lube Base Stocks, FL-94-112, NPRA, November 1994.
10. Helton T.E., Degnan T.F., Mazzone D.N. et al. Catalytic hydroprocessing a good alternative to solvent processing. Oil and Gas Journal, 1998, 96, no. 29, рр. 58-67.
11. Chemistry of Zeolites and Catalysis on zeolites. (Russ. ed.: Academician Minchaev Kh.M. Khimia tseolitov i kataliz na tseolitakh. Moscow, Mir Publ., 1980, 442 p.).
12. Radchenko E.D., Nefedov B.K., Aliev R.R. Promishlennye katalizatory gidrogenizatsionnykh protsessov neftepererabotki [Commercial catalysts of hydrogenation processes in oil refining]. Moscow, 1987, 223 p.
13. Gerasimov D.N., Fadeev V.V., Loginova A.N., Lyseneko S.V. The catalysts based on zeolite ZSM — 23 in oil feedstock isodewaxing. Kataliz v promishlennosti, 2013, no. 1, pp. 26-33 (in Russian).
14. US Patent № 4642176, 10.02.87.
15. US Patent № 4975177, 04.12.90.
16. US Patent № 4986894, 22.01.91.
17. US Patent № 56433440, 01.07.97.
18. RU Patent 2 359 995, 27.06.2009.
19. RU Patent 2 469 072, 10.12.2012.
20. RU Patent 2 141 506, 27.08.2000.
21. US Patent № 4490242, 25.12.1984.
22. US Patent № 4554065, 19.11.1985.
23. EP Patent № 0092376, 14.04.1983.
24. US Patent № 4181598, 01.01.1980.
25. US Patent № 4574043, 04.03.1986.
26. US Patent № 5264116, 23.11.1993.
27. US Patent № 7662273, 16.02.2010.
28. US Patent 0261307, 18.10.2012.
29. RU Patent 2 155 209, 27.08.2000.
30. US Patent 4822476, 18.04.1989.

2014/4
Basic problems of small-scale production and consumption of liquefied natural gas
Technical sciences

Authors: Elena B. FEDOROVA graduated Gubkin Moscow Institute of Oil-Chemical and Gas Industry in 1984. Candidate of Technical Sciences, associate professor of the Engineering Mechanics Department of Gubkin Russian State University of Oil and Gas. Specialist in the field of processes and apparatus of oil and gas producing, and of LNG production. She is the author of more than 20 scientific publications. E-mail: fedorova.e@gubkin.ru
Vyacheslav B. MEL’NIKOV graduated Gubkin Moscow Institute of Oil-Chemical and Gas Industry in 1970. Doctor of Chemical Sciences, professor of the Engineering Mechanics Department of Gubkin Russian State University of Oil and Gas. Specialist in the field of collection and preparation of gas and gas condensate. He is the author of more than 170 scientific publications. E-mail:v.mel@mail.ru

Abstract: Small-scale production of liquefied natural gas (LNG) occupies a significant place in the structure of the Global LNG industry, but in Russia the development of small-scale production is at an early stage. The article shows the possibility of providing Russia regions with energy based on small-scale LNG, the experience of Russian regions. The problems and prospects of small-scale LNG are identified. It is shown that the creation of the LNG infrastructure should be based on a comprehensive approach that takes into account the socio-economic and industrial features of the region

Index UDK: 661.91

Keywords: liquefied natural gas, LNG, gasification, small-scale LNG, LNG as a fuel

Bibliography:
1. IGU World LNG Report — 2014 edition. URL: http://www.igu.org /sites/default/files/node-page-field_file/IGU%20-%20World%20LNG%20Report%20-%202014%20Edition.pdf (accessed 18 November 2014).
2. Pchelintsev D. State support to using of liquefied natural gas in Russia! Avtogazozapravochnyy kompleks+Al’ternativnoe toplivo, 2003, no. 2, p. 3 (in Russian).
3. Serdyukov S., Khodorkov I. Prospects of LNG technology and business demonstration zone creation in Russia. Sanct-Petersburg and Leningrad region. Avtogazozapravochnyy kompleks+Al’ternativnoe toplivo, 2003, no. 1, p. 56-59 (in Russian).
4. Belyaev A., Mashkantsev М., Fokin G., Fursenko S. Prospects of development of natural gas liquefaction technology on Gazprom’s facilities. Avtogazozapravochnyy kompleks+Al’ternativnoe toplivo, 2005, no. 6, p. 44-47 (in Russian).
5. Fedorova Е.B. State-of-the-art and development of the Global LNG Industry: technologies and equipment. — М.: Gubkin Russian State University of Oil and Gas, 2011, 159 p. (in Russian).
6. LNG Blue Corridors. http://lngbc.eu/ (accessed 12 December 2014).

2014/4
The effect of viscosity modifiers on performance properties of dialkyl benzene oils
Technical sciences

Authors: Alena V. ANISINA graduated from Gubkin Russian State University of Oil and Gas in 2003. Degree-seeking student of the Department of Chemistry and Technology of lubricants and Chemmotology of Gubkin Russian State University of Oil and Gas.E-mail: alena.kochenova@gmail.com
Leonid N. BAGDASAROV graduated from the Tashkent automobile & road technical University in 1986. Candidate of Technical Sciences, assistant professor of the Department of Chemistry and Technology of lubricants and Chemmotology of Gubkin Russian State University of Oil and Gas. Specialist in the field of lubricants application and obtaining. He is author of 104 scientific publications.E-mail: lebage1963@mail.ru

Abstract: This paper investigates the effect of viscosity modifiers on the low-temperature properties of alkylbenzene oils as well as the resistance of additives to mechanical destruction. It is shown that copolymers of ethylene and propylene as well as polyisobutylene are also effective viscosity modifiers for alkylbenzene oils, however they show inadequate resistance to mechanical degradation as compared with foreign counterparts

Index UDK: 665.765, 621.892.28, 621.89.099.6

Keywords: synthetic oils, alkyl benzene oils, viscosity modifiers, ethylene-pro-pylene copolymers, poly-isobutylene, low-temperature properties

Bibliography:

2014/4
Quality management of information system design for oil and gas industry with respect for integration processes
Technical sciences

Authors: Valery V. SIDOROV MINHiGP by Gubkin in 1974. Candidate of Technical Sciences, Professor, Head of Department of Computer Science. Expert in the field of information technology. Author of more than 50 scientific publications.E-mail: vvs@gubkin.ru, sidoroff52@mail.ru

Abstract: The article deals with the interaction of the control object (business process) and system of control of the object (business process), suggesting the emergence of a new quality of the object with extended internal and external attributes. The concept of unified object of study (design) UOS, reflecting the universal uniform representation of the object with its control system is introduced. The main principles that reflect the integration component at the design phase of the UOS are formulated

Index UDK: 004:005.21

Keywords: quality management, information system, engineering, oil and gas industry, integration processes

Bibliography:
1. Godin V.V. Upravlenie innovatsionnymi protsessami v informatsionnykh sistemakh organizatsii. M.: GUU, 2004.
2. Granichin O.N., Kiyaev V.I. Informatsionnye tekhnologii v upravlenii. M.: Internet-Universitet Informatsionnykh Tekhnologiy; BINOM. Laboratoriya znaniy, 2008, 336 p.
3. Bosharnikov M.P., Bocharnikov I.V., Sveshnikov S.V. Osnovy sistemnogo analiza I upravleniya organizatsiyami. Teoriya I praktika. M.: DMK Press, 2014, 226 p.
4. Sidorov V.V., Dzyublo A.D. Elektronnoe khranilishche dannykh kak sredstvo povysheniya kachestva prinyatiya resheniy pri provedenii geologorazvedochnykh rabot na kintinental’nom shel’fe. Tezisy dokladov V Mezhdunarodnoy konferentsii “Osvoenie resursov nefti I gaza Rossiqskogo shel’fa: Arktika I Dal’niy Vostok”, 29-30 oktyabrya 2014. M.: Gazprom VNIIGAZ, 2014.

2014/4
Correction of error from active conductance of pulse digital electric transducer when measuring water content of oil
Technical sciences

Authors: Evgeni N. BRAGO (b. 1929), graduated from the Moscow Power Engineering Institute in 1953, Doctor of T1echnical Sciences, Professor of Gubkin Russian State University of Oil and Gas. Author of more than 300 scientific publications.E-mail:rgung@gubkin.ru
Dmitri N. VELIKANOV was born in 1972. Graduated from the Gubkin State Academy of Oil and Gas in 1994. He is Associate Professor of the Department of Automation of Technological Processes at Gubkin Russian State University of Oil and Gas, PhD. Author of 23 scientific publications in the field of measurement of multiphase flow of oil and gas production wells.E-mail: velikanov@gubkin.ru
Dmitri V. MARTYNOV (b.1967) graduated from the State Academy of Oil Gas named after I.M. Gubkin in 1991. Engineer of the department „Automation of technological processes” Gubkin Russian State University of Oil and Gas. Author of 14 scientific publications in the field of humidity measurement of oil.E-mail: martynov@gubkin.ru

Abstract: Development of new transducers of water content of oil with higher measurement accuracy and sensitivity is an important task, since the use of existing electric moisture meters of both commodity and crude oil is significantly limited in operating conditions. A considerable additional error up to 1-5 %, occurs when the resistance of the formation water in the emulsion bypasses the capacity of the measuring sensor. The article discusses the digital pulse electric transducer of water content with automatic error correction, taking into account the influence of the conductivity of water-oil emulsion

Index UDK: 681.518, 681.5.08, 553.988, 543.42

Keywords: measurement of water content in oil, dielectrometric method, water monitor

Bibliography:
1. Brago E.N., Martynov D.V. Povyshenie chuvstvitel’nosti i tochnosti diel’kometricheskogo izmeritel’nogo preobrazovatelya vlagosoderzhaniya v nefti. Trudy Rossiyskogo gosudarstvennogo universiteta nefti i gaza imeni I.M. Gubkina. [Proceedings of Gubkin Russian State University of Oil and Gas], 2010, no. 4, pp. 1-8.
2. Brago E.N. Martynov D.V. Metody povysheniya chuvstvitel’nosti diel’kometricheskogo izme-ritel’nogo preobrazovatelya vlagosoderzhaniya nefti. Datchiki i sistemy, 2010, no. 4, рp. 7-11.
3. Bondarenko P.M. Issledovanie elektricheskikh svoystv nefti: Dis. kand. tekh. nauk, Moscow, 1967, p. 164.
4. Brago E.N., Martynov D.V. Impul’snyy izmeritel’nyy diel’kometricheskiy preobrazovatel’ vlagosoderzhaniya. Trudy Rossiyskogo gosudarstvennogo universiteta nefti i gaza imeni I.M. Gubkina. [Proceedings of Gubkin Russian State University of Oil and Gas], 2011, no. 3, рp. 95-102.
5. Emul’sii. Per. s angl. рod red. Abramzona A.A. Leningrad: Khimiya, 1972, pp. 336-347.
6. Vargaftik N.B., Golubtsov V.A., Stepanenko N.N. Elektricheskiy metod opredeleniya vlazhnosti nefteproduktov. Moscow: Gostekhizdat, 1947, p. 20.
7. Khmunin S.F. Dielektricheskaya pronitsaemost’ neftyanykh emul’siy. Kol. zhur., T. XXI, 1959, no. 6, 9 р.
8. Klugman I.Yu., Kovylov N.B. Dielektricheskie neftyanye vlagomery. Moscow: VNIIOENG, 1969, p. 11.
9. Wiener O. Die Theorie des MischköSrpers für das Feld der Stationären SträSmung. Abh. Math. Phys. Klasse Königlish Sächs. Ges., 32, 1912, pp. 509-604.
10. Levchenko D.N., Bergshteyn N.V., Khudyakova A.D., Nikolaeva N.M. Emul’sii nefti s vodoy i metody ikh razrusheniya. Moscow: Khimiya, 1967, p. 30.
11. Le Tkhan’ Tkhan’, Zaytsev N.K., Ferapontov N.B. Osobennosti razdeleniya ustoychivoy vodoneftyanoy emul’sii na koalestsiruyushim fil’tre s nasadkami na osnove tsellyulozy. II Sbornik dokladov IV mezhdunarodnoy konferentsii “Sovremennye tekhnologii vodopodgotovki i zashchity oborudovaniya ot korrozii i nakipeobrazovaniya”. 23-26 Oktyabrya 2011, MVTs “EKSPOTsENTR”, Moscow, pp. 92-94.

2014/4
Еxpansion of resource BASE of diamond-like structure hydrocarbons
Chemical sciences

Authors: Maxim V. GIRUTS graduated from Gubkin Russian State University of Oil and Gas in 2004. PhD (Chemical Sciences), assistant professor of the Department of organic chemistry & petroleum chemistry, Gubkin Russian State University of Oil and Gas. Specialist in chemistry and geochemistry of petroleum hydrocarbons. Author of more than 60 scientific publications. E-mail: moxixh@yahoo.com

Abstract: Diamond-like structure hydrocarbons due to their physical and chemical properties features find a wide range of applications in various fields of science, technology and industry: nanotechnology, medicine, manufacturing of highly resistant polymer materials and others. However, the existing methods for the synthesis of diamondoids are complex and multistage, and require further improvement. We performed thermolysis of asphaltenes, resins and high-molecular saturated (boiling above 350 °C) petroleum fractions of different genotypes, catalytic transformations of paraffin-cycloparaffinic fractions (boiling within 180-350 °C above 350 °C) of oils, catalytic thermal transformations of oxygen-containing compounds - precursors of petroleum hydrocarbons, thermo-lysis of macromolecular n-alkanes, as well as catalytic transformations of biomass of bacteria. Analysis of the hydrocarbon composition of the original oils, paraffin-cycloparaffinic fractions, thermolysis products and catalytic transformations was carried out by capillary gas-liquid chromatography and chromato-graphy-mass spectrometry. We have found that diamond-like structure hydro-carbons C10 to C23 form as a result of the above transformations. Thus a possibility of obtaining hydrocarbon of adamantane series from alternative sources was shown

Index UDK: 547

Keywords: diamondoids, protodiamondoids, adamantanes, diamantanes, triamantanes, tetramantanes

Bibliography:
1. Balaban A.T. and Schleyer P.v.R. Systematic classification and nomenclature of diamond hydrocarbons. I: Graph-theoretical enumeration of polymantanes. Tetrahedron, 1978, vol. 34, pp. 3599–3609.
2. Bagrii Е.I. Adamantani [Adamantanes]. М.: Nauka, 1989, 264 p. (in Russian).
3. Mansoori G.A. Diamondoid Molecules, In Advances in Chemical Physics, vol. 136. Chapter 4/ Stuart A. Rice, editor. John Wiley & Sons, 2007, pp. 207–258.
4. Mansoori G.A., George T.F., Assoufid L. and Zhang G. Molecular Building Blocks for nanotechnology-from diamondoids to nanoscale materials and applications. Topics in Applied Physics, vol. 109. Springer: New York, 2007, 426 p.
5. Whitesides G.M. Mathias J.P. and Seto С.T. Molecular self-assembly and nanochemistry: a chemical strategy for the synthesis of nanostructures// Science, 1991, no. 254, pp. 1312–1319.
6. Mansoori G.A. Principles of Nanotechnology (Molecular-Based Study of Condensed Matter in Small Systems). World Scientific Pub. Co.: Hackensack, NJ, USA, 2005, 341 p.
7. Merkle R.C. Biotechnology as a route to nanotechnology// Trends in Biotechnology, 1999, vol. 17, pp. 271–274.
8. Merkle R.C. Molecular building blocks and development strategies for molecular nanotechnology// Nanotechnology, 2000, vol. 11, pp. 89–99.
9. Drexler К.E. Nanosystems: Molecular Machinery, Manufacturing and Computation. John Wiley & Sons, Inc. New York, NY, 1992.
10. Freitas Jr., R.A. Exploratory Design in Medical Nanotechnology: A Mechanical Artificial Red Cell// Artificial Cells, Blood Substitutes & Biotechnology, 1998, vol. 26, pp. 411–430.
11. Davies W.L., Grunert R.R., Haff R.F., McGahen J.W., Neumayer E.M., Paulshock M., Watts J.C., Wood T.R., Hermann E.C. and Hoffmann С.E. Antiviral activity of 1-adamantanamine (amantadine). Science, 1964, vol. 144, pp. 862–863.
12. Hayden F.G., Gwaltney Jr. J.M., DeCastle R.V., Adams K.F. and Giordani B. Comparative toxicity of amantadine hydrochloride and rimantadine hydrochloride in healthy adults. Antimicrob. Agents Chemotherap, 1981, vol. 19, pp. 226–233.
13. Zoidis G., Fytas C., Papanastasiou I., Foscolos G.В., Fytas G., Padalko E., De Clercq E., Naesens L., Neyts J. and Kolocouris, N. Heterocyclic rimantadine analogues with antiviral activity. Bioorg. Med. Chem, 2006, vol. 14, pp. 3341–3348.
14. Nayyar A., Monga V., Malde A., Coutinho E. and Jain R. Synthesis, anti-tuberculosis activity, and 3D-QSAR study of 4-(adamantan-1-yl)-2-substituted quinolines. Bioorg. Med. Chem., 2007, vol. 15, pp. 626–640.
15. Lee R.E., Protopopova M., Crooks E., Slayden R.A., Terrot M. and Barry С.E. Combinatorial lead optimization of [1,2]-diamines based on ethambutol as potential antituberculosis preclinical candidates. J. Comb. Chem., 2003, vol. 5, pp. 172–187.
16. Burnett J.C., Schmidt J.J., Stafford R.G., Panchal R.G., Nguyen T.L., Hermone A.R., Vennerstrom J.L., McGrath C.F., Lane D.J., Sausville E.A., Zaharevitz D.W., Gussio R., Bavari S. Novel small molecule inhibitors of botulinum neurotoxin A metalloprotease activity. Biochem. Biophys. Res. Commun., 2003, vol. 310, pp. 84–93.
17. Solaja B.A., Opsenica D., Smith K.S., Milhous W.K., Terzic N., Opsenica I., Burnett J.C., Nuss, J., Gussio, R. and Bavari, S. Novel 4-Aminoquinolines Active against Chloroquine-Resistant and Sensitive P. falciparum Strains that also Inhibit Botulinum Serotype A. J. Med. Chem., 2008, vol. 51, pp. 4388–4391.
18. Shanafelt T.D., Lee Y.K., Bone N.D., Strege A.K., Narayanan V.L., Sausville E.A., Geyer S.M., Kaufmann S.H., Kay N.E. Adaphostin-induced apoptosis in CLL B cells is associated with induction of oxidative stress and exhibits synergy with fludarabine. Blood., 2005, vol. 105, pp. 2099–2106.
19. Lipton S.A. Aradigm shift in NMDA receptor antagonist drug development: molecular mechanism of uncompetitive inhibition by memantine in the treatment of Alzheimer’s disease and other neurologic disorders. J. Alzheimer Dis., 2004, vol. 6, pp. S61—S74.
20. Demuth H.-U., Mcintosh С.H.S. and Pederson R.A. Type 2 diabetes — therapy with dipeptidyl peptidase IV inhibitors. Biochim. Biophys. Acta., 2005, vol. 1751, pp. 33–44.
21. Skare D., Radic В., Lucic A., Peraica M., Domijan A.M., Milkovic-Kraus S., Bradamante V. and Jukic I. Adamantyl tenocyclidines — adjuvant therapy in poisoning with organophosphorus compounds and carbamates. Arch. Toxicol., 2002, vol. 76, pp. 173–177.
22. Zoidis G., Papanastasiou I., Dotsikas I., Sandoval A., Dos Santos R.G., Papadopoulou-Daifoti Z., Vamvakides A., Kolocouris N. and Felix R. The novel GABA adamantane derivative (AdGABA): design, synthesis, and activity relationship with gabapentin. Bioorg. Med. Chem., 2005, vol. 13, pp. 2791–2798.
23. Chern Y.T. Synthesis of polyamides derived from 4,9-bis(4-aminophenyl)diamantine. Polymer., 1998, no. 39(17), pp. 4123–4127.
24. Burham K.S., Roth R., Zhou F., Fan W., Brouk E. and Stifanos M. Dimensionally and thermally stable polymer, containing disordered graphitic structure and adamantine. J. Polym. Sci. Part A: Polym. Chem., 2006, vol. 44, pp. 6909–6925.
25. Ghosh A., Sciamanna S.F., Dhal J.E., Liu S., Carlson R.M.K. and Schiraldi D.A. Effect of nanoscale diamondoids on the thermomechanical and morphological behaviors of polypopylene and polycarbonate. J. Polym. Sci. Part B: Polym. Phys., 2007, vol. 45, pp. 1077–1089.
26. Chern Y.T. and Wang W.L. Synthesis and characterization of tough polyamides derived from 4,9-bis[4-(4-aminophenoxy)phenyl]diamantine. Polymer., 1998, no. 39(22), pp. 5501— 5506.
27. Lee Y.K., Jeong H.Y., Kim К.M., Kim J.C., Choi H.Y., Kwon Y.D., Choo D.J., Jang Y.R., Yoo K, Jang H. and Talaie J.A. Synthesis of new PPV based polymer and its application to display. Current Appl. Physics, 2002, vol. 2, pp. 241–244.
28. Bagrii E.I. and Maravin G.B. Adamantane-Containing Esters as Potential Components of Thermostable Lubricating Oils. Petroleum Chemistry, 2013, vol. 53, no. 6, p. 418.
29. Apryatkin A.D., Bagrii Е.I., Dolgopolova Т.N. Avt. Svid. USSR № 1593205, 15.05.1990 г.
30. Wu M.M., Shen D.-M., Chen C.S.H. High viscosity index lubricant fluid. US Patent No. 5306851, 26 Apr. 1994.
31. Landa S. and Machacek, V. Sur l’adamantane, nouvel hydrocarbure extrait de naphte. Collect. Czech. Chem. Commun., 1933, vol. 5, pp. 1–5.
32. Prelog V., Seiwerth R. Über eine neue, ergiebigere Darstellung des Adamantans. Berichte der Deutschen Chemischen Gesellschaft (A and B Series), 1941, vol. 74, pp. 1769–1772.
33. Schleyer P.v.R. A Simple Preparation of Adamantane. J. Am. Chem. Soc., 1957, vol. 79, pp. 3292–3292.
34. Cupas C.A. Schleyer P.v.R., Trecker D.J. Congressane. J. Am. Chem. Soc., 1965, vol. 87, pp. 917–918.
35. Gund T.M., Thielecke W. and Schleyer P.v.R. Diamantane: Pentacyclo[7.3.1.14,12.02, 7.05,11]tetradecane (3,5,1,7-[1,2,3,4]Butanetetraylnaphthalene, decahydro). Org. Synth., 1973, vol. 53, pp. 30–34.
36. Mansoori G.A. Diamondoid Molecules With Application in Biomedicine, Material Science, Nanotechnology & Petroleum Science. — World Scientific Publishing Co. Pte. Ltd, Singapore, 2012. 408 p.
37. Olah G.A. Cage Hydrocarbons. — John Wiley & Sons, Hoboken, NJ, 1990.
38. Giruts M.V., Rusinova G.V. and Gordadze G.N. Generation of Adamantanes and Diamantanes from High-Boiling Saturated Fractions of Crude Oils of Various Genotypes in the Presence of Acid Catalysts. Petroleum Chemistry, 2005, vol. 45, no. 2, p. 141.
39. Williams V.Z., Schleyer P.R., Gleicher G.J., Rodewald L.B. Triamantane. J. Amer. Chem. Soc., 1966, vol. 88, no. 16, pp. 3862–3863.
40. Hollowood F.S., McKervey M.A., Hamilton R. and Rooney J.J. Synthesis of Triamantane. J. Org. Chem., 1980, vol. 45, pp. 4954–4958.
41. Farooq O., Farnia S.M.F., Stephenson M. and Olah G.A. Superacid-catalyzed near-quantitative isomerization of C4n+6H4n+12 (n = 1-3) polycyclic precursors to diamondoid cage hydrocarbons promoted by 1-haloadamantanes and sonication. J. Org. Chem., 1988, vol. 53, pp. 2840–2843.
42. McKervey M.A. Synthetic Approaches to Large Diamondoid Hydrocarbons. Tetrahedron, 1980, vol. 36, pp. 971–992.
43. Gordadze G.N. Termoliz organicheskogo veshhestva v neftegazopoiskovoj geohimii [Thermolysis of organic matter in the oil and gas geochemistry]. Moscow, 2002, 336 p. (in Russian).
44. Badmaev Ch.M., Giruts M.V., Erdnieva O.G., Koshelev V.N. and Gordadze G.N. Generation of C11—C17 Monoalkyladamantanes via Catalysis of Some Oxygen-Containing Precursors of Petroleum Hydrocarbons. Petroleum Chemistry, 2011, vol. 51, no. 5, pp. 331–335.
45. Giruts M.V. and Gordadze G.N. Generation of Adamantanes and Diamantanes by Thermal Cracking of Polar Components of Crude Oils of Different Genotypes. Petroleum Chemistry, 2007, vol. 47, no. 1, pp. 12–22.
46. Giruts M.V., Rusinova G.V. and Gordadze G.N. Generation of Adamantanes and Diamantanes by Thermal Cracking of High-Molecular-Mass Saturated Fractions of Crude Oils of Different Genotypes. Petroleum Chemistry, 2006, vol. 46, no. 4, pp. 225–236.
47. Okunova T.V., Giruts M.V., Erdnieva O.G., Koshelev V.N. and Gordadze G.N. The Formation of Petroleum Biomarker Hydrocarbons from Possible Oxygen-Containing Precursors. Petroleum Chemistry, 2009, vol. 49, no. 3, pp. 207–217.
48. Giruts M.V., Badmaev Ch.M., Erdnieva O.G., Stokolos O.A., Koshelev V.N. and Gordad- ze G.N. Identification of Triamantanes in Crude Oils. Petroleum Chemistry, 2012, vol. 52, no. 2, pp. 65–67.
49. Giruts M.V., Derbetova N.B., Erdnieva O.G., Stokolos O.A., Koshelev V.N. and Gordadze G.N. Identification of Tetramantanes in Crude Oils. Petroleum Chemistry, 2013, vol. 53, no. 5, pp. 285–287.
50. Gordadze G.N. and Giruts M.V. Synthesis of Adamantane and Diamantane Hydrocarbons by High-Temperature Cracking of Higher n-Alkanes. Petroleum Chemistry, 2008, vol. 48, no. 6, pp. 414–419.
51. Giruts М.V., Gordadze G.N. N-alkany — vozmozhnye predshestvenniki diamantanov, naydennykh v organicheskom veshchestve kristallicheskogo fundamenta Tatarstana [n-Alkanes are possible precursors of diamantanes found in the organic matter of the crystalline basement of Tatarstan]. Georesursy — Georesources, 2008, no. 1(24), pp. 9–12 (in Russian).
52. Giruts M.V., Gordadze G.N., Stroeva A.R., Stokolos O.A., Bogatyrev S.O. and Koshelev V.N. Generation of Hydrocarbons Having Adamantine Structure from Bacterial Biomass. Chemistry and Technology of Fuels and Oils, 2014, vol. 50, no. 4, pp. 290–298.
53. Giruts M.V., Gordadze G.N., Stroeva A.R. and Koshelev V.N. K voprosu obrazovaniya uglevodorodov nefti iz biomassy bakteriy [On the question of formation of petroleum hydrocarbons from bacteria biomass]. Trudy RGU nefti i gaza imeni I.M. Gubkina [Proceedings of Gubkin Russian State University of Oil and Gas], 2014, no. 2(275), pp. 82–93.

2014/3
Environmental aspects of deep geothermal waters application at energy and biological complexes (on an example of explored geothermal fields of Dagestan)
Petroleum geology, geophysics

Authors: Tatiana V . SVETLICHNAYA graduated from Dagestan State University. She is Candidate of Geological and Mineralogical Sciences, Associate Professor of the Department of Geology, of Gubkin Russian State University of Oil and Gas. She is author of scientific publications in the field of environmental and industrial safety. E-mail: tata_svet_gaz@mail.ru
Gasan B . BADAVOV graduated from Lenin Daghestan State University and postgraduate course of Pamfilov Academy of Public Services. He is member of the Committee of RUSISU (RosSNIO) on the problems of RES, senior researcher of the Institute of Geothermal Resources of the Dagestan Research Center of the Russain Academy of Sciences. He is author of more than 50 scientific publications in the sphere of RES. E-mail: lotos155@yandex.ru.
Adolph A. CHERNYAVSKIY graduated from Novocherkassk Polytechnic Institute. He is winner of the Award of the RF Government in 2011 in the sphere of science and technology, Candidate of Sciences, chief specialist on economy and renewable energy of the Institute «Rostovteploelektroprojekt». He is author of more than 40 projects in the area of small power engineering and 70 scientific publications and inventions patented in USSR, Russia, USA, Great Britain. E-mail:mailto:MR.1936@BK.RU

Abstract: As a result of exploration work carried out on the territory of the plain and foothill Daghestan significant reserves of geothermal sources with temperature from 40 to 107 C have been identified suitable for use in various sectors of economy: from power generation, heating and hot water supply of buildings and constructions to breeding and cultivation of vegetables and microalgae

Index UDK: УДК 621.482.574.3

Keywords: geothermal water, project of energy and biological complex, business plan, ecoefficiency

Bibliography:
1. State balance of mineral reserves of the Russian Federation. Thermal water. M.: FGUNPP «Rosgeolfond», 2009, 68 p. (In Rus.).
2. Svetlichnaya T.V., Badavov G.B. Energy-saving and energy-efficient geothermal resources of the Republic of Daghestan. Upravlenije kachestvom v neftegasovom komplekse [Quality management in the oil and gas sector], 2010, t. 4, p. 9–15. (In Rus.).
3. Aliyev R.M., Israpilov M.I., Badavov G.B. Energy and biological complexes (EBK) of thermal and nuclear power plants and their assessment based on geothermal fields. Vestnik of Dagestan Scientific Center, Russian Academy of Sciences, 1999, no. 5, p. 32. (In Rus.).
4. Using geothermal water in the multipurpose complex energobiologicheskom. R.M. Aliyev (JSC «Geotermneftegaz»), G.B. Badawi (Institute of Geothermal Problems, Dagestan Scientific Center, Russian Academy of Sciences), A.A. Chernyavskii (RoTEP). Materiali VIII Mizhnarodnoi konferentsii «VIDNOVLYUVANA STOLITTYA XXI Energy and Utilities». Ukraina, AR Krym, smt.Mikolaivka 17–21 Veresnya 2007 rock. Ed of «Viva-print» m Kiiv, 2007, p. 226–232, 1 yl (Eng.)
5. Aliev Rasul M., Israpilov Magomed I., Badavov Gasan B. Geothermal Resources of Republic Daghestan, Proceedings World Geothermal Congress, 2010, Bali, Indonesia, 25–29 April 2010, paper no. 2849.
6. Aliyev R.M., Badavov G.B., Chernyavskiy A.A. The possibility of renewable energy sources using in agriculture. Problemy razvitija APK v regione [Problems of development of AIC in the region]. Daghestan State Agricultural Academy. Makhachkala, 2010, no. 4, p. 81–88. (In Rus.).
7. Prospects for large-scale use of geothermal energy in the Republic of Dagestan. R.M. Aliyev, V.A. Vasiljev, M.I. Israpilov, G.B. Badavov. Izvestija RAN. Energetika, 2010, no. 5, p. 125–131. (In Rus.).
8. Zaychenko V.M., Chernyavskii A.A. Problems creating large wind power stations in the south of Russia. Energy, 2014, no. 3, p. 18–21.
9.
Antipov S.A., Bogoroditskaya N.V., Zinoviev O.A., Ermolenko G.V., Ryzhenkov M.A., Shevchuk A.A. Draft wind power station of 60 MW in Yeisk district of Krasnodar region. Energy, 2014, no. 3, p. 10–17.

2014/3
The influence of porosity and permeability of carbonate reservoirs on oil recovery factor
Drilling and development of hydrocarbon fields

Authors: Larisa N. NAZAROVA graduated from Gubkin Moscow Institute of Petrochemical and Gas Industry in 1979. She is Candidate of Technical Sciences, Associate Professor of the Department of Development and Exploitation of Oil fields of Gubkin Russian State University of Oil and Gas. She is specialist in the field of development and design of oil fields. She is author of more than 50 scientific publications. E-mail: Nazarova-ln@irmu.ru

Abstract: One of the main technological parameters of efficiency of development of oil fields has been oil recovery factor (ORF). Its value is influenced by a number of natural factors. 197 layers were analyzed to assess the impact of reservoir porosity and permeability of a carbonate porous type reservoir on the magnitude of the calculated and actual final ORF. It is shown that the calculated and actual values of the ORF do not always correspond to a certain set of reservoir properties. The degree of divergence of the calculated and actual values of the ORF depends on the reservoir porosity and permeability of the productive strata

Index UDK: УДК 622.276

Keywords: oil recovery factor (ORF), conductivity, water permeability, reservoir porosity and permeability

Bibliography:
1. Amelin I.D. Vliyanie prirodnykh i tekhnologicheskikh faktorov na pokazateli razrabotki zalezhey nefti v karbonatnykh kollektorakh (po dannym opyta ikh ekspluatatsii). Materialy soveshchaniya. M.: VNIIOENG, 1990, p. 117 (in Russian).
2.Baziv V.F. Nefteotdacha v printsipe ne mozhet padat’. M.: Nedropol’zovanie — KhKhI vek, 2007, no. 1 (in Russian).
3.Baziv V.F., Vasil’ev I.P., Ustimov S.K., Egurtsov N.N. Osnovnye napravleniya po sovershenstvovaniyu proektnykh tekhnologicheskikh dokumentov. Sb. trudov Vserossiyskogo soveshchaniya po razrabotke neftyanykh mestorozhdeniy. Al’met’evsk, 2002 (in Russian).
4.Baishev B.T. O zadachakh, printsipakh i metodakh regulirovaniya protsessa razrabotki neftyanykh mestorozhdeniy pri rezhime vytesneniya nefti vodoy. M.: Nauka, 1976, p. 243 (in Russian).
5.Baturin Yu.E. Slovo o KINe (koeffitsient izvlecheniya nefti). Burenie i neft’, 2011, no. 2 (in Russian).
6.Gavura A.V. Statisticheskaya model’ dlya otsenki nefteotdachi karbonatnykh plastov pri zavodnenii. Effektivnost’ razlichnykh sistem zavodneniya neftyanykh plastov na mestorozhdeniyakh Kuybyshevskoy i Orenburgskoy oblastey. Tr. Giprovostoknefti. Kuybyshev, 1981, p. 64–73 (in Russian).
7.Gavura V.E. Kontrol’ i regulirovanie protsessa razrabotki neftyanykh i gazoneftyanykh mestorozhdeniy. M.: OAO «VNIIOENG», 2001, p. 340 (in Russian).
8.Geologiya i razrabotka krupneyshikh i unikal’nykh neftyanykh i neftegazovykh mestorozhdeniy Rossii: v 2-kh tomakh pod red. V.E. Gavury. M.: OAO «VNIIOENG», 1996 (in Russian).
9.Graf T., Zangl Dzh, Khartlib M., Al’-Kanani. Otbor i klassifikatsiya kollektorov na osnove veroyatnostnogo gidrodinamicheskogo modelirovaniya — prakticheskiy primer vybora kandidatov na zavodnenie. SPE-136373 (in English).
10. Zhdanov S.A., Malyutina G.S. Vliyanie razbalansirovki sistemy razrabotki na polnotu vyrabotki zapasov. Trudy 5-go Mezhdunarodnogo tekhnologicheskogo simpoziuma. INB, 2006, p. 150 (in Russian).
11. Ivanova M.M. Kratkiy obzor nachal’nogo osvoeniya neftyanykh nedr strany. M.: NP NAEN, 2008, p. 108 (in Russian).
12. Ivanova M.M., Cholovskiy I.P., Bragin Yu.I. Neftegazopromyslovaya geologiya. M.: Nedra, 2000 (in Russian).
13. Surguchev M.L., Kolganov V.I., Gavura A.V. i dr. Izvlechenie nefti iz karbonatnykh kollektorov. M.: Nedra, 1987, p. 230 (in Russian).
14. Lisovskiy N.N., Baziv V.F. O putyakh dal’neyshego sovershenstvovaniya proektirovaniya razrabotki. Tr. Mezhdunarodnogo simpoziuma. M., 2005 (in Russian).
15. Mishchenko I.T., Lutfullin A.A. Geologo-fizicheskie kriterii uspeshnosti primeneniya tekhnologiy, pozvolyayushchikh uvelichit’ koeffitsient okhvata plastov. Neftyanoe khozyaystvo, 2009, no. 4 (in Russian).
16. Nemkov A.S., Kovalev V.S., Sazonov B.F., Berlin G.D. Vliyanie geologo-fizicheskikh parametrov na effektivnost’ razrabotki neftyanykh zalezhey v karbonatnykh kollektorakh. Sb. nauchnykh trudov. M., 2000, vyp. 122 (in Russian).
17. Osobennosti nefteotdachi karbonatnykh kollektorov po dannym geologo-razvedochnykh rabot/ Malinovskiy I.N., Panteleev A.S., Gileva N.M. i dr. Neftyanoe khozyaystvo, 1982, no. 8.
18. Subbotina E.V. Analiz zavisimosti nefteotdachi zalezhey s karbonatnymi kollektorami porovogo tipa Uralo-Povolzh’ya ot razlichnykh faktorov. Sb.nauch. tr. VNII. Vyp. 100. M., 1987, p. 104— 110 (in Russian).
19. Rudenko M.N., Pis’mennikov D.N. Tekhniko-ekonomicheskoe obosnovanie koeffitsienta izvlecheniya nefti (TEO KIN) kak osnova otsenki investitsionnoy privlekatel’nosti neftyanoy otrasli. Rossiyskoe predprinimatel’stvo, 2012, no. 7 (in Russian).

2014/3
Mathematical modeling of hydrocarbons temperature fluctuations during storage in tanks of 1000–5000 cubic meters capacity
Design, construction and operation of pipeline transport

Authors: Roman Ye. LEVITIN is PhD, Associate Professor of Tyumen State Oil and Gas Uni- versity. E-mail: 89028130230@mail.ru

Abstract: Temperature fluctuations of hydrocarbons during storage in the vertical steel tanks of 15 thousand cubic meters capacity are determined. The results of the study of the temperature changes of the stored product, depending on the ambi- ent temperature are presented. The anguish and the correlation coefficients between these values are shown. As a result, the equations of temperature changes of oil and petroleum products in the tank are derived. Ключевые слова: выбросы, температурные колебания, хранение нефти

Index UDK: УДК 621.642.8

Keywords: emissions, temperature changes, storage of oil

Bibliography:
1. Ljubin E.A., Korshak A.A. Kriterial’nye uravnenija massootdachi pri operacijah s neftjami v vertikal’nyh cilindricheskih rezervuarah. Jelektronnyj nauchnyj zhurnal Neftegazovoe delo, 2010, no. 2, p. 13.
2. Ustrojstvo dlja povyshenija jekspluatacionnyh svojstv vertikal’nyh stal’nyh rezervuarov. V.O. Nekrasov, R.E. Levitin, I.V. Tyrylgin, Ju.D. Zemenkov. Patent RF no. 2012125478/05, 2013.
3. Kalinina V.N., Pankin V.F. Matematicheskaja statistika. M.: Vysshaja shkola, 1998, p. 336.