Extended Search

- in all fields
- in the title
- in key words
- in the abstract
- in the bibliography

Authors: Alexander N. KULIKOV graduated from Ufa State Petroleum Technological University in 1980. He is Ph.D., Head of Production Chemistry Laboratory, Scientific Educational Center of Gubkin Russian State University (National Research University) of Oil and Gas. Hi is author of over 50 scientific publications. E-mail: ANK-_1@mail.ru
Lyubov A. MAGADOVA graduated from Gubkin Moscow Institute of Petrochemical and Gas Industry in 1975. She is Ph.D., Professor of the Department of Oil and Gas Processing of Gubkin Russian State University (National Research University) of Oil and Gas. She is author of over 160 scientific publications. E-mail: magadova0108@himeko.ru
Kira A. POTESHKINA graduated from Gubkin Russian State University of Oil and Gas in 2012. She is leading engineer of the Production Chemistry Laboratory, Scietific Educational Center of Gubkin Russian State University (National Research University) of Oil and Gas. She is author of over 20 scientific publications. E-mail: poteshkina.kira@yandex.ru
Dmitriy Ju. ELISEEV graduated from Almetyevsk Petroleum Institute in 1998. He is Ph.D., Нead divisional manager of the Research and Education Center of the Department of Chemical Engineering for Oil and Gas Industry of Gubkin Russian State University (National Research University) of Oil and Gas. He is author 50 published scientific papers and three patents.
E-mail: eliseev.d@gubkin.ru
Mikhail A. SILIN graduated from Gubkin Moscow Institute of Petrochemical and Gas Industry in 1978. He is Doctor of Chemical Sciences, Vice-Rector of Iinnovations and Commercialization of Gubkin Russian State University (National Research University) of Oil and Gas, Head of the Department of Chemical Engineering for Oil and Gas Industry. He is an author of over 160 scientific publications. E-mail: silin.m@gubkin.ru

Abstract: The article presents ways to improve water inflow control technologies in production wells and repair and insulation works in injectors. These consist in cost reduction by eliminating the pre-lifting pump from the well. Such work on water shut control in producing wells is recommended to be carried out simultaneously with preparation for the current repair. An integrated technology including water shut off works, killing and acid stimulation of wells is offered. “IMR” is proposed as a plugging composition. The expediency of insulation works in injection wells to eliminate behind-casing flow using diverter technology is shown. It is recommended to temporarily isolate the productive layer by such compositions. The technology of temporary producing formation isolation with guar gel and other reagents is offered

Index UDK: 622.276.72

Keywords: low-waste water control technology, killing of a well, residual resistance factor, rain-technology, temporary plugging productive formation, mutual neutralization

1. Kulikov A.N., Nigmatullina P.G. The question of optimizing the choice on the objects of water shut off works in water-oil deposits of Western Siberia. Interval, 2008. no. 6, р. 36-40.
2. Kulikov A.N., Dvorkin V.I. Hydrodynamic features of the development of water-oil deposits and its impact on the efficiency of technical measures. Electronic Journal „Investigated in Russia”, 2005, no. 84, р. 879-888.

Analytical and discrete methods of research of failure intensity in gas transport

Authors: Vladimir N. RUSEV graduated from Lomonosov Moscow State University specializing in probability theory and mathematical statistics in 1997. He is senior lecturer of the Department of Higher Mathematics of Gubkin Russian State University of Oil and Gas (National Research University). The focus of his academic interests is information theory, applied mathematical statistics and theory of reliability. He is author of 15 scientific publications including 3 teaching aids. E-mail: vnrusev@yandex.ru
Alexandr V. SKORIKOV graduated from Rostov State University in 1971. He is Candidate of Physical and Mathematical Sciences, associate professor of the Department of Higher Mathematics of Gubkin Russian State University (National Research University) of Oil and Gas. His scientific interests are fractional derivatives and integrals, operators of potential type and functional spaces, theory of reliability. He has published over 30 works including 5 teaching aids. E-mail: skorikov.a@gubkin.ru

Abstract: Reliability indicators of restorable systems and their components, depending on the statistical characteristics estimations based on real operational data, are studied. It is assumed that the objects entire life cycle is described by the law of WeibullGnedenko distribution. The research technique of reliability indicators of restorable systems and their components is presented. It takes into account the dependence of these indicators on time and is based both on analytical and discrete methods. The advantages of the considered discrete method include its universality, simplicity of algorithms and calculations. This work is focused on further realization of mathematical models and methods as unique informational and analytical software. The so-called moments problem relevant for the solution of reliability problems has been analyzed. Examples of processing of real statistical data on failures of technologically active elements in gas supply system are considered

Index UDK: 519.218.4:622.691.4

Keywords: reliability indicators, failure rate, failure intensity, renewal equation, distribution of Weibull-Gnedenko, finite element method, moments problem

1. Grigoriev L., Kucheryavy V., Rusev V., Sedyh I. Formation of estimates of reliability indicators for active elements in gas transport systems on the basis of refusals statistics. Journal of Polish Safety and Reliability Association, Summer Safety and Reliability Seminars. Vol. 5, no. 1-2, 2014.
2. Rossiyskaya gazovaya entsiklopediya/Pod red. R. Vyakhireva. M.: Bol’shaya Rossiyskaya entsiklopediya, 2004 (slovarnaya stat’ya Nadezhnost’ sistem gazosnabzheniya” — M.G. Sukharev) (In Russian).
3. Polovko A.M., Gurov S.V. Osnovy teorii nadezhnosti. 2-e izd., pererab. i dop. SPb.: BKhV-Peterburg, 2006, 704 p. (In Russian).
4. Sukharev M.G. Modeli nadezhnosti markovskogo tipa s prilozheniyami k neftegazovomu delu. Uchebnoe posobie. M.: Izdatel’skiy tsentr RGU nefti i gaza imeni I.M. Gubkina, 2012, 131 p. (In Russian).
5. Rusev V.N., Sкоriкоv А.V. Аnаliz elеmеntоv sistеm gаzоsnаbzhеniya s pоmоshch’yu mеtоdа prоizvоdyashchih funкtsiy mоmеntоv. Trudy RGU nefti i gaza imеni I.М. Gubкinа [Proceeding of Gubkin Russian State University of Oil and Gaz], 2016, no. 1 (282), p. 78-88 (In Russian).
6. Bahvalov N.S., Zhidkov N.P., Kobelkov G.M. Chislennye metody. M.: Binom. Laboratoriya znaniy, 2003, 602 p. (In Russian).
7. Strang G., Fix G. An Analysys of the Finite Element Method. Prentice-Hall, INC. Englewood Cliffs, N.J. 1973. (Russ. ed.: Strang G., Fix G. Teoriya metoda konechnyh elementov. M.: Mir, 1977, 351 p.).
8. Strelyaev Y.M., Klimenko M.I. Primenenie metoda konechnyh elementov k resheniyu integral’nyh uravneniy Volterra vtorogo roda. Visnik ZNU. Fiziко-mаtеmаtichni nаuкi, 2011, no. 2, p. 131-135 (In Russian).
9. Russ. ed.: Cox D.R., Smith W.L. Teoriya vosstanovleniya. М: Sоvеtsкое rаdio, 1967, 292 p.
10. Grigor’ev L.I., Mikova E.S., Rusev V.N. Osobennosti postroeniy monitoringovikh system i otsenok pokazateley proizvodstvennykh protsessov dlya avtomatizirovannogo dispetcherskogo upravlenia v neftegazovom komplexe. Avtomatizatsiya, telemehanizatsiya i svyaz’ v neftyanoy promyshlennosti, 2014, no. 9, p. 7–12 (In Russian).
11. Rеvаzоv А.М., Lеоnоvich I.А. Rаzrаbоtка sstеariеv rаzvitiya аvariynyh situаtsiy nа коm-prеssоrnyh stаntsiyah маgistrаl’nyh gаzоprоvоdоv. Trudy RGU nefti i gaza imеni I.М. Gubкinа [Proceeding of Gubkin Russian State University of Oil and Gaz], 2015, no. 4 (281), p. 78-88 (In Russian).

Results of experimental study of processes of fatigue fracture in recovered welded joints of offshore oil and gas installations
Technical sciences

Authors: Ivan V. STAROKON graduated from Gubkin Russian State University of Oil and Gas in 2001. He is Candidate of Technical Sciences, Head of the Department of Automated Design of Oil and Gas Industry Structures of Gubkin Russian State University (National Research University) of Oil and Gas. He is sate expert of the for Industrial Safety of the Federal Service for Ecological, Technological and Nuclear Supervision of the Russian Federation. He is author of more than 80 scientific publications.
E-mail: starokon79@mail.ru

Abstract: The study of fatigue processes occurring in the reconstructed welded joints, is an urgent task, allowing to define the terms of safe operation of offshore oil and gas installations. At the present time estimation of the resource of the recovered welded joints is not possible, because existing theories only allow us to calculate the resource for new joints. In this connection research facilities were developed to study "K" and "T" shaped welds used in the offshore oil and gas installations. During the experiment fracturing was initiated in the new welded joint, and then the joint was repaired and destroyed again. Based on these experiments, mathematical relationships were derived to describe the process of fatigue failure in the recovered welds in offshore oil and gas installations. These depend on the number of cycles and amplitude values of stresses. Factors causing their premature fatigue failure were analyzed and recommendations for assessing the resource of the recovered welds were proposed

Index UDK: 622.242.422:622.276.04:622.279.04

Keywords: offshore oil and gas structures, fatigue cracks, restored welds, resource evaluation

1. Borodavkin P.P. Morskie neftegazovye sooruzhenija: Uchebnik dlja vuzov. Chast’ 1. Konstruirovanie. M.: OOO „Nedra-Biznescentr”, 2006, 555 p.
2. Gubajdulin R.G., Gubajdulin M.R., Tin’gaev A.K. Opredelenie ostatochnogo resursa opornogo bloka morskoj stacionarnoj platformy. Akademicheskij vestnik UralNIIproekt RAASN, 2012, no. 1, p. 80–85.
3. Kogaev V.P., Serensen S.V. i dr. Nesushhaja sposobnost’ i raschety detalej mashin na prochnost’: Rukovodstvo i spravochnoe posobie. M.: Mashinostroenie, 1975, 488 p.
4. Klykov N.A. Raschet harakteristik soprotivlenija ustalosti svarnyh soedinenij. M.: Mashinostroenie, 1984, 160 p.
5. Starokon’ I.V. Osnovy teorii i praktiki obrazovanija ustalostnyh treshhin na morskih neftegazovyh sooruzhenijah. Sovremennye problemy nauki i obrazovanija, 2012, no. 4.
6. Steklov O.I. Prochnost’ svarnyh konstrukcij v agressivnyh sredah M.: Mashinostroenie, 1976, 200 p.
7. Trufjakov V.I. Ustalost’ svarnyh soedinenij. Kiev: Naukova dumka, 1973, 216 p.

ΙΙΙ and ΙV groups oils (API) as basis for protective liquids for tanks-accumulators of hot water supply in energy companies
Technical sciences

Authors: Igor R. TATUR (b. 1956) graduated from Gubkin Moscow Institute of Petrochemical and Gas Industry in 1979. He is PhD, Associate Professor of the Dept. of Chemistry and Technology of Lubricants and Chemmotology of Gubkin Russia State University (National Research University) of Oil and Gas. He is author of more than 120 publications. E-mail: igtatur@yandex.ru
Dmitry N. SHERONOV (b. 1986) graduated from Gubkin Russian State University of Oil and Gas in 2008. He is engineer of the Department of Chemistry and Technology of Lubricants and Chemmotology of Gubkin Russia State University (National Research University) of Oil and Gas. He is author of 25 publications. E-mail: r75opposite@mail.ru
Vladimir G. SPIRKIN (b. 1937) graduated from the Military Rocket Forces Academy named after Peter the Great in 1959. He is D.Sc., Professor of of Chemistry and Technology of Lubricants and Chemmotology of Gubkin Russia State University (National Research University) of Oil and Gas. He is author more than 350 publications, 10 books and monographs, 35 patents.
Аleksey V. LEONTYEV (b. 1988) graduated from Gubkin Russian State University of Oil and Gas in 2013. He is post-graduate student of the Department of Chemistry and Technology of Lubricants and Chemmotology of Gubkin Russia State University (National Research University) of Oil and Gas. He is Research Fellow in OOO United Research and Development Center (OOO „RN-CIR”). He is author of 10 publications. E-mail:leontievaleksey@gmail.com

Abstract: The article considers the possibility of using ΙΙΙ and ΙV group oils of (API) as a basis for the protective liquids for tanks-accumulators of hot water supply in energy companies. The influence of this basis on the thermo-oxidative ability of protective liquids was estimated by the relative change of dynamic viscosity of the compositions after oxidation at the temperature of 80 to 90 ° C and the shear rate of 15-100 s-1. It is found that the protective liquids based on (isoparaffin oil VHVI-4) have the maximum thermal oxidative stability. The influence of the resinous compounds of industrial oil I-20A on the destruction of polyisobutylene in protective liquid is examined. It is shown that the thermooxidative stability of the protective liquid on mixed basis consisting of industrial oils I-20A and PAOM-10 is between those of the protective fluids based on mineral oil and synthetic oi

Index UDK: 665.7

Keywords: protective fluids; industrial, isoparaffin and polyalphaolefin oils, thermal stability, resinous compounds, antioxidant properties

1. Tatur I.R., Sheronov D.N., Spirkin V.G., Pigoleva I.V. Uvelichenie sroka sluzhby germetiziruyushhej zhidkosti dlya bakov-akkumulyatorov goryachego vodosnabzheniya energeticheskix predpriyatij. Zashhita okruzhayushhej sredy v neftegazovom komplekse, 2014, no. 8, p. 25-29.
2. Sheronov D.N., Tatur I.R., Spirkin V.G. i dr. Kompleksnaya ocenka ekspluatacionnyx svojstv germetiziruyushhix zhidkostej dlya bakov-akkumulyatorov sistem goryachego vodosnabzheniya. Energetik, 2014, no. 11, p. 43-46.
3. Cvetkov O.N. Poli-α-olefinovye masla. ximiya, texnologiya i primenenie. M.: Texnika, Tuma grupp, 2006, 192 p.
4. Naumova T.I., Tyshhenko V.A., Surovskaya G.V., Grigorev V.V. Stabilnost poli-α-olefinovyx masel i sposoby eyo povysheniya. Ximiya i texnologiya topliv i masel, 2011, no. 5, p. 44-46.
5. Spirkin V.G., Tatur I.R., Shishkin YU.L., Sheronov D.N. Issledovanie termookislitelnoj stabilnosti industrialnyx masel. Tezisy dokladov ix vserossijskoj nauchno-texnicheskoj konferencii „aktualnye problemy razvitiya neftegazovogo kompleksa rossii”. M.: Rgu nefti i gaza imeni I.M. Gubkina, 2012, p. 226.
6. Chertkov YA.B., Spirkin V.G. Sernistye i kislorodnye soedineniya neftyanyx distillyatov. M.: Izdatelstvo „Ximiya”, 1971, 312 p.

Using Nefras in the fight against ARPD in the Irelyakh field
Chemical sciences

Authors: Maria S. IVANOVA graduated from Gubkin Russian State University of Oil and Gas (Department of Chemical and Environmental Engineering) in 2010; she is Candidate of Chemical Sciences, lecturer of the Department of Mining and petroleum Engineering of Mirny Polytechnic Institute (branch) of North-Eastern Federal University. E-mail: ims.06@mail.ru
Kirill O. TOMSKY graduated from Gubkin Russian State University of Oil and Gas (Department of Mechanical Engineering) in 2009. He is Candidate of Engineering Sciences, lecturer of the Department of General Professional Disciplines of Mirny Polytechnic Institute (branch) of North-Eastern Federal University. E-mail: kirilltom@mail.ru

Abstract: Preventing asphalt-resinous and paraffin deposits (ARPD) in Irelyakh gas and oil field is one of the main problems. Gas condensate, which was used as a solvent in the field, could not completely clear paraffin deposits. This article shows the possibility of using gasoline Nefras solvent C2-80 / 120 as a solvent of asphalt-resinous and paraffin deposits in Irelyakh oil and gas field. Experimental studies of the solvent power of Nefras in the conditions of Irelyakh field were carried out and its effectiveness at different temperatures was determined. Kinetic studies of ARPD dissolving model reactions in the solvent at different temperatures showed that the use of the solvent to remove deposits on the oil fields would be effective

Index UDK: 571.56

Keywords: Irelyakh gas and oil field, well, flow rate, paraffin, methods of dealing with paraffin, hydrocarbon, geophysical studies, reservoir and bottomhole pressure

1. Glushhenko V.N., Silin M.A., Ptashko O.A., Denisova A.V. Neftepromyslovaja hi- mija: Oslozhnenija v sisteme plast-skvazhina-UPPN: Uchebnoe posobie. M.: MAKS Press, 2008, 325 р.
2. Bajmuhametov M.K. Sovershenstvovanie tehnologij bor’by s ASPO v neftepromyslovyh sistemah na mestorozhdenijah Bashkortostana: Dis. kand. tehn. nauk. Ufa, 2005, 79 p.
3. Otchet ZAO „Ireljahneft’” za 2011 g., 267 p.
4. Tropin Je.Ju., Raznicin V.V., Bul’ba V.A., Vishnjakov A.N. Analiz jeffektivnosti rabot po ochistke skvazhin ot ASPO s primeneniem original’noj tehnologii OOO „Firma „Kaskad”. Sbornik nauchnyh trudov po rezul’tatam NIOKR za 2002 god OAO NK"Rosneft’„, 2003, 226 p.

Analysis of technologies for production of liquefied natural gas in the arctic climate
Chemical sciences

Authors: Igor V. MESHCHERIN graduated Leningrad Institute of Civil Engineering, Ph.D., docent of the Gas chemistry Department of Gubkin Russian State University (National Research University) of Oil and Gas. Specialist in LNG processes. He is the author of more than 100 scientific publications. E-mail: mescherin@bk.ru
Anton N. NASTIN graduated Gubkin University, engineer processing of gas and gas condensate. Master chair of chemistry, speciality helium production technology and liquefied natural gas of Gubkin Russian State University (National Research University) of Oil and Gas. E-mail: anton-nastin@mail.ru

Abstract: Transportation of natural gas process by piping does not allow to be guided under the rapidly changing conditions of the market of hydrocarbons. In this connection, it took the development of new ways to transport gas. Production of liquefied natural gas helped to solve many problems, so in most countries of the world, as well as in Russia, there is an active development of this sector, with the development of new and existing techniques. It should be noted that most of the projects being developed in Russia, are in the arctic climate. In this article the basic technology of liquefied natural gas, the analysis of their usefulness in the arctic climate, a comparison of economic indicators, ceteris paribus

Index UDK: 66.078:66.011

Keywords: liquefied natural gas, technologies, arctic climate

1. Fedorova E.B. Sovremennoe sostoyanie i razvitie mirovoy industrii szhizhennogo prirodnogo gaza: tekhnologii i oborudovanie [Current status and development of the world industry of liquefied natural gas: technology and equipment]. M.: RGU nefti i gaza imeni I.M. Gubkina, 2011, 159 p.
2. Golubeva I.A., Klyuev V.M., Bakanev I.A., Dubrovina E.P. Features of technology of liquefaction of natural gas in the arctic climate. Gazovaya promyshlennost’, 2016, no. 1, p.73-78 (in Russian).
3. Lazarev L.Ya. Szhizhennyy prirodnyy gaz — toplivo i energonositel’ [Liquefied natural gas — fuel and energy]. M.: NPKF „EKIP”, 2006, 205 p.
4. Meshcherin I.V, Zhuravlev D.V. Comparative analysis of the natural gas liquefaction processes. Gazovaya promyshlennost’, 2008, no. 1 (614), p. 90-93 (in Russian).
5. Meshcherin I.V., Kim I.A., Chukova N.A., Chernov A.N. Morskaya transportirovka gaza [Sea transportation of gas]. M.: VNIIGAZ, 2009. 427 p.
6. Meshcherin I.V. Al’ternativnye metody transporta gaza na rynki i ikh diversifikatsiya [Alternative methods of transport of gas to the markets and their diversification]. M.: Gazprom VNIIGAZ, 2011, 280 p.
7. Rachevskiy B. S. Szhizhennye uglevodorodnye gazy [Liquefied petroleum gas]. M.: Izd. „NEFT’ I GAZ”, 2009, 640 p.
8. Vovk V.S., Nikitin B.A., Grechko A.G., Udalov D.A. Krupnomasshtabnoe proizvodstvo szhizhennogo prirodnogo gaza: Ucheb. Posobie dlya vuzov [Large-scale production of liquefied natural gas: Textbook for High Schools]. M.: Izdatelskiy dom Nedra, 2011, 243 p.
9. Podgotovlena kontseptsiya SPG-zavoda „NOVATEKa” na Yamale (Prepared concept of the LNG plant „Novatek” in Yamal) Available at: http://www.interfax.ru/business/498675 (accessed 25 March 2016).

Authors: Vagif U. KERIMOV was born in 1949, graduated from Azerbaijan Institute of Oil and Chemistry (Baku). Doctor of geological and mineralogical sciences, professor, head of the Dept. of Theory of Oil and Gas Exploration and Prospecting of Gubkin Russian State University (National Research University) of Oil and Gas. He has published over 150 works. E-mail: vagif.kerimov@mail.ru
Vladislav N. KHOSHTARIA is Head of the Department for Offshore Geological Exploration (OOO „Gazpromgeologorazvedka”), Candidate of Geological-Mineralogical Sciences. E-mail: v.khoshtariya@grr.gazprom.ru
Aleksandr V. BONDAREV is Associate Professor at the Department of Prospecting and Exploration of Oil and Gas of Gubkin Russian State University (National Research University) of Oil and Gas, Candidate of Geological-Mineralogical Sciences.
E-mail: jcomtess@yandex.ru
Egor A. SIZIKOV — Research Assistant of the Department of Prospecting and Exploration of Oil and Gas of Gubkin Russian State University (National Research University) of Oil and Gas. He has published over 3 works. Е-mail: sizikovea@gmail.com

Abstract: The article describes the results of modeling of the North Sakhalin Basin of hydrocarbon generation in different tectonic elements and stratigraphic complexes.

Index UDK: 550.8

Keywords: North-Sakhalin basin, Okhotsk Sea, basin modeling, HC generation zone.

1. Kerimov V.Y., Lavrenova E.A., Sinyavskaya O.S., Sizikov E.A. Estimation of hydrocarbon potential of generative-accumulative hydrocarbon system of the sea of Okhotsk. Proceedings of Gubkin Russian State University of Oil and Gas, 2015, no. 3/280, p. 18-29.
2. Kerimov V.Y., Sinyavskaya O.S., Sizikov E.A., Makarova A.Y. The conditions of the formation and the searching of hydrocarbon deposits in the turbidite reservoirson the Okhotsk offshore. Oil, gas and business, 2015, no. 2, p. 32-37.
3. Kerimov V.Y., Bondarev A.V., Sinyavskaya O.S., Sizikov E.A., Makarova A.Y. The conditions of formation and evolution of hydrocarbon systems in Sakhalin Shelf, the Sea of Okhotsk. Neftyanoe khozyaystvo [Oil Industry], 2015, no. 8, p. 22-27.
4. Kerimov V.Y. i dr. Sedimentologo-facial’noe modelirovanie pri poiskah, razvedke i dobyche skoplenij uglevodorodov.
M-vo obrazovaniya i nauki Rossijskoj Federacii, Rossijskij gos. unstityt nefti i gaza im. I. M. Gubkina, Moskva, 2010.
5. Guliyev I.S., Kerimov V.Y., Osipov A.V. Hydrocarbon potential of great depths. Oil, gas and business, 2011, no. 5, p. 9-16.
6. Kerimov V.Y., Mustaev R.N., Serikova U.S. Proektirovanie poiskovo-razvedochnyh rabot na neft’ i gaz. Uchebnoe posobie, 2015, Izdatel’stvo INFRA-M, Moskva.
7. Kerimov V.Y., Mustaev R.N., Senin B.V., Lavrenova E.A. Basin modeling tasks at dif- ferent stages of geological exploration. Neftyanoe khozyaystvo [Oil Industry], 2015, no. 4, p. 26-29.
8. Kerimov V.Y., Tomas Hantshel, Sokolov K., Sidorova M.S. Primenenie tekhnologii bassejnovogo modelirovaniya — programmnogo paketa Petromod v uchebnom processe RGU nefti i gaza im. I.M. Gubkina. Neft’, gaz i biznes, 2011, no. 4, p. 38-47.

Aspects of Geology and Oil and Gas Potential of Song Hong Trough (the Northern shelf of Vietnam)

Authors: Elena A. LEONOVA graduated from Gubkin Russian State University of Oil and Gas in 1996, she is Candidate of Geological and Mineralogical Sciences, assistant professor of the Department of Geology of Gubkin Russian State University (National Research University) of Oil and Gas. She specializes in the field of geology and lithology of oil and gas fields. She is author of more than 30 scientific publications. E-mail: leonovae@gubkin.ru

Abstract: The article is devoted to the geology and oil and gas presence within Song Hong trough (the Northern shelf of Vietnam). The available geological and geophysical data allow to estimate oil and gas potential of the region highly enough. The article proves the important role of the tectonic factor in the formation of the reservoir space and traps and provides recommendations on priority objects for exploration

Index UDK: 551.35553.98

Keywords: Oil and gas potential, shelf of Vietnam, geology, tectonics

1. Gavrilov V.P., Leonova E.A. Tektonicheskoe stroenie i osobennosti neftegazonosnosti Shonghongskogo progiba (severnyj shel’f V’etnama). Geologija, geofizika i razrabotka neftjanyh i gazovyh mestorozhdenij, 2015, no. 10, p. 10-17.
2. Gavrilov V.P., Leonova E.A., Polovinkin O.M., Mihajlenko S.P., Tumanov S.V. Problema zarazhenija uglekislym gazom mestorozhdenij uglevodorodov bassejna Shonghong (severnyj shel’f V’etnama). Gazovaja promyshlennost’, 2015, no. 2 (718), p. 40-43.
3. Gavrilov V.P., Leonova E.A. Generacionno-akkumuljacionnyj uglevodorodnyj potencial Shonghongskogo progiba (severnyj shel’f V’etnama). Geologija nefti i gaza, 2015, no. 4, p. 34-44.
4. Gavrilov V.P., Leonova E.A., Rybal’chenko V.V. Grjazevoj vulkanizm i neftegazonosnost’ Shonghongskogo progiba (severnyj shel’f V’etnama). Trudy Rossijskogo gosudarstvennogo universiteta nefti i gaza imeni I.M.Gubkina, 2011, no. 4/265, p. 28-37.

Metal Content in High-Molecular-Weight Components of Early Oil (object of study - Orenburg Oil-Gas-Condensate Field)

Authors: Nataliya A. SKIBITSKAYA graduated from Gubkin Moscow Institute of Petrochemical and Gas Industry in 1960. She is Candidate of Geological and Mineralogical Sciences, Head of Laboratory at Oil And Gas Research Institute, Russian Academy of Sciences. She is specialist in petrophysics, geochemistry and formation physics. She is author of over 100 scientific publications and five patents. E-mail: skibitchka@mail.ru
Oleg K. NAVROTSKY graduated from Saratov State University in 1960. He is Doctor of Geological and Mineralogical Sciences, leading research fellow at Nizhnevolzhsky Institute of Geology and Geophisics. He is specialist in organic matter geochemistry and author of over 120 scientific publications. E-mail: oknavr01@gmail.com
Irina O. BURKHANOVA graduated from Master Course at Gubkin Russian State University of Oil and Gas at the Department of Geophysical Information Systems in 2009. She is Candidate of Geological and Mineralogical Sciences, senior research fellow at Oil And Gas Research Institute, Russian Academy of Sciences. Her scientific interests are comprehensive well logging data interpretation for complex carbonate reservoirs involving lithological, petrographical, petrophysical and geochemical information. She is author of 30 scientific publications. E-mail: burhanova_irina@mail.ru
Mikhail N. BOLSHAKOV graduated from Gubkin Russian State University of Oil and Gas specializing in Information and Measurement Tools and Technologies in 2002. He is Candidate of Geological and Mineralogical Sciences, senior research fellow at Oil And Gas Research Institute, Russian Academy of Sciences. His scientific interests are 3D geological and geophysical simulation, unconventional hydrocarbon reserves evaluation. He is author of 30 scientific publications and a patent.
E-mail: rgu2006@mail.ru
Leonid A. ZEKEL graduated from M. V. Lomonosov Moscow Institute of Fine Chemical Technology. He is Candidate of Chemical Sciences, leading research fellow at A.V. Topchiev Inst are in the sphere of chemistry and chemical technology of high-molecular oil components and heterogeneous catalysis. He has published over 150 publications. E-mail: zekel@bk.ru

Abstract: Distribution of microelement in certain high-molecular components of early oil of Orenburg Oil-Gas-Condensate Field, namely in asphaltenes, tars and waxes is shown. The studied high-molecular-weight components (HMWC) contain high concentration of rare and rare-earth, nonferrous and precious metals. The current and emerging engineering methods allow to produce and converse HMWC. It means, that HMWC of source rocks is a new valuable source of raw materials for petroleum refining. It could provide high profitability for immature tight oil production and refining projects for gas-condensate, oil-gas-condensate and oil fields

Index UDK: 550.4:553.982

Keywords: Early stages of oil generation, tight oil, high-molecular-weight components, asphaltenes, tars, waxes, Orenburg Oil-Gas-Condensate Field, metal content

1. Banerjee D.K. Oil Sands, Heavy Oil & Bitumen — From Recovery to Refinery. Penn Well, XVII, 2012, р. 185.
2. Gribkov V.V. Zakonomernosti razmeshcheniya, formirovanie, poiski, razvedka i osvoenie promyshlenno vanadienosnykh neftey. Dokt, Diss. [Distribution, formation, prospecting, exploration and development of commercial vanadium-rich oil deposits. Doct. Diss.]. Leningrad, 1989, 57 p.
3. Nukenov D.N., Punanova S.A., Agafonova Z.G. Metally v neftyakh, ikh kontsentratsiya i metody izvlecheniya [Metals in crude oils, their concentration and extraction methods]. Moscow, 2001, 77 p.
4. Sukhanov A.A., Yakutseni V.P., Petrova Yu.E. Otsenka perspektiv promyshlennogo osvoeniya metallonosnogo potentsiala neftey i vozmozhnye puti ego osushchestvleniya [Metalliferous potential of oils — assessment of development prospects and possible ways of implementation]. Neftegazovaya geologiya. Teoriya i praktika, 2012, vol. 7, no. 4. Available at: http://www.ngtp.ru/rub/9/56_2012.pdf.
5. Dmitrievskiy A.N., Skibitskaya N.A., Yakovleva O.P., Kuz’min V.A., Zekel’ L.A., Priby- lov A.A. Uvelichenie resursnogo potentsiala gazokondensatnykh mestorozhdeniy za schet vysokomolekulyarnogo syr’ya („matrichnoy nefti”) [Increase of resource potential of gas-condensate fields by high molecular raw material („matrix oil”)]. Trudy konferentsii „Fundamental’nye problemy geologii i geokhimii nefti i gaza i razvitiya neftegazovogo kompleksa Rossii” [Proc. of the conference „The fundamental problems of geology and geochemistry of oil and gas and development of oil and gas complex of Russia”]. Moscow, Publishing center „GEOS”, 2007, p. 360-377.
6. Skibitskaya N.A., Yakovleva O.P., Grigor’ev G.A., Domanova E.G., Ingerova T.V., Kuz’min V.A. Novye predstavleniya o porodoobrazuyushchem karbonatnom veshchestve zalezhey uglevodorodov [New ideas about the rockforming carbonate substance of hydrocarbon deposits]. Geologiya nefti i gaza, 1997, no. 12, p. 20–25.
Dmitrievskii A.N., Skibitskaya N.A., Domanova E.G., Pugoa T.A., Zekel L.A., Krasnobae- va N.V., Navrotskii O.K. Composition of insoluble kerogen-like organic polymer in the carbonate rocks of Orenburg gas-condensate deposit. Solid Fuel Chemistry, 2011, vol. 45, no. 3, p. 61-70.
8. Van Krevelen D.W., Schuyer J. Coal science. Elsevier publishing company. (Russ. ed.: V.I. Kasatoshkina. Nauka ob ugle. Moscow, Gostoptekhizdat, 1960, 303 p.)
9. Voytkevich G.V., Kokin A.V., Miroshnikov A.E., Prokhorov V.G. Spravochnik po geokhimii [Handbook of Geochemistry]. Moscow, Nedra Press, 1990, 480 p.

Specific features and criteria of using rock physics to model effective thermal conductivity of carbonate and terrigenous rocks

Authors: Tagir R. YALAEV is 3rd year PhD student of Moscow Institute of Physics and Technology. He is specialist in the field of applied physics and mathematics. E-mail: tagirjala@mail.ru
Irina O. BAYUK graduated from Moscow Aviation Institute in 1981. She is Doctor of Physical and Mathematical Sciences, leading research fellow of The Schmidt Institute of Physics of the Earth of the Russian Academy of Sciences. She is specialist in the field of mathematical modelling, petrophysics, seismic and geophysics. She is author of more than 70 scientific publications.
E-mail: ibayuk@yandex.ru

Abstract: Effective medium theory (EMT) in the general singular approach was used to develop a mathematical model of effective thermal conductivity of carbonate rock mostly consisting of limestone. The model was created with the use of thermal conductivity of a sample successively saturated with two fluids with contrasting thermal conductivity. The developed model was tested on experimental data of thermal conductivity of fluid-saturated samples. Air, brine and oil were used as saturating fluids. Experimental data and theoretical prediction of thermal conductivity were compared for different fluid saturations to test the applicability of the model for each sample. For instance, thermal conductivity of oil saturated sample was predicted from the data of thermal conductivity of dry and water-saturated samples. It is shown that the developed EMT-based model could be used to solve the fluid-saturation problem. A comparison with other collections of different rock types was performed. A new criterion of choosing the EMT-model was suggested

Index UDK: 550.8

Keywords: effective medium theory, rock physics, thermal conductivity, fluid saturation, carbonate rock, terrigenous rock

1. Bayuk I.O., Postnikova O.V., Ryzhkov V.I., Ivanov I.S. Matematicheskoye modelirovaniye anizotropnikh effektivnikh uprugikh svoistv karbonatnikh kollektorov slozhnogo stroeniya [Mathematical modelling of effective elastic properties of anisotropic carbonate rocks with complex structure]. Tekhnologii seismorazvedki [Seismic Technologies], 2012, no. 3, p. 42–55 (in Russian).
2. Bayuk I., Chesnokov E., Ammerman M. Why anisotropy is important for location of microearthquake events in shale? Expanded Abstracts of SEG 79th Annual, 2009, p. 1632–1635.
Bayuk I., Popov Yu., Parshin A. A new powerful tool for interpreting and predicting in reservoir geophysics: theoretical modeling as applied to laboratory measurements of thermal properties. Proceedings of the International Symposium of the Society of Core Analysts (Austin, Texas, USA, September 18–21, 2011), Dublin: SCA, Paper SCA2011-39. P. 1/1—1/12.
4. Popov Yu.A. Teoreticheskiye modeli dlya opredeleniya teplovich svoistv gornikh porod na osnove podvizhnikh istochnikov teplovoy energii [Theoretical models for determination of thermal properties based on mobile heat sources]. Izvestiya vuzov. Geologiya I razvedka, 1983, no. 9, p. 97–103 (in Russian).
5. Yalaev T.R., Bayuk I.O., Gorobtsov D.N., Popov E.Yu. Experimantal’niy analiz primenimosti sovremennikh podhodov k teoreticheskomu modelirovaniyu teploprovodnosti osadochnikh porod [Experimental analysis of applicability of modern techniques for theoretical modelling of thermal conductivity of rocks]. Izvestiya vuzov. Geologiya I razvedka, 2013, no. 2, p. 63–68 (in Russian).
6. Yalaev T.R. Razrabotka teoreticheskikh podhodov k otsenke teploprovodnosti fluidona-sischennikh gornikh porod s uchetom ikh microstructuri [Development of theoretical approaches to the evaluation of the thermal conductivity of fluid-saturated rocks based on their microstructure]. MSc’s thesis, Moscow, 2013, MIPT, p. 45-51 (in Russian).