Extended Search

- in all fields
- in the title
- in key words
- in the abstract
- in the bibliography
Issue
Name
Authors
Category
2015/1
Evaluation of oil and gas potential of the Crimea Peninsular and adjacent Azov and Black sea areas based on hydrocarbon system modeling
Geosciences

Authors: Vagif U. KERIMOV was born in 1949, graduated from Azizbekov Azebaijan Institute of Oil and Petrochemistry. Doctor of geological and mineralogical sciences, professor, head of the Dept. of Theory of Oil and Gas Exploration and Prospecting of Gubkin Russian State University of Oil and Gas, published over 150 works. E-mail: vagif.kerimov@mail.ru
Elena A. LAVRENOVA Ph.D., Research Fellow Department of theoretical foundations of prospecting and exploration of oil and gas Gubkin Russian State University of Oil and Gas, published over 30 works. E-mail: lavrenovaelena@mail.ru
Rustam N. MUSTAEV Ph.D., Research Fellow Department of theoretical foundations of prospecting and exploration of oil and gas Gubkin Russian State University of Oil and Gas. Author of 27 scientific publications and 2 monographs. Has been studying the Caspian-Black Sea region. E-mail: r.mustaev@mail.ru
Ulyana S. SERIKOVA Ph.D., Research Fellow Department of theoretical foundations of prospecting and exploration of oil and gas Gubkin Russian State University of Oil and Gas. Author of 30 scientific publications and 3 monographs. Research interests in the Caspian region. E-mail: lubava45@gmail.com

Abstract: Basin modeling to estimate the oil and gas potential of the Azov and Black seas is described. The conclusions made are fundamental and allow to essentially increase the resources of hydrocarbons in the region under consideration. These also permit to identify the main areas for exploration and prospecting on theterritory of the Crimea Peninsular and adjacent Azov and Black sea areas. The analysis and modeling of the basin identified the possible petroleum charges which can fill traps with oil. Potential source rock intervals are expected in the transient formations (Paleozoic) and sedimentary cover (Chalk). The study allowed to determine the pattern of occurrence of hydrocarbon accumulations and propects of the oil and gas potential of the western part of the sea area

Index UDK: 550.8 (479.24)

Keywords: Azov sea, the Crimea, hydrocarbon generation and accumulation systems, transient formation, numerical modeling, of basins, source rock intervals, geological risks

Bibliography:
1. Bazhenova O.K., Fadeeva N.P., Sen-Zhermes M.L. Biomarkery organicheskogo veshhestva porod i neftej majkopskoj serii Kavkazsko-Skifskogo regiona. Geohimija. 2002, no. 9, pp. 993-1008.
2. Kerimov V.Ju., Lavrenova E.A., Krugljakova M.V., Gorbunov A.A. Perspektivy neftegazo-nosnosti poluostrova Krym i zapadnogo poberezh’ja Azovskogo morja. Neftjanoe hozjajstvo, 2014, no. 9, pp. 66-70.
3. Lavrenova E.A. Rezul’taty bassejnovogo modelirovanija vostochnoj chasti Azovskogo morja. Geologija nefti i gaza, 2009, no. 4, pp. 47-54.
4. Levitan L.F., Alekseev A.S., Badulina N.V. i dr. Geohimija pogranichnyh senoman-turonskih otlozhenij Gornogo Kryma i Severo-Zapadnogo Kavkaza. Geohimija, 2010, no. 6, pp. 570-591.
5. Afanasenkov A.P., Nikishin A.M., Obuhov A.N. Geologicheskoe stroenie i uglevodorodnyj potencial Vostochno-Chernomorskogo regiona. M.: Nauchnyj mir, 2007, 172 p.
6. Distanova L.R. Osobennosti neftegazoobrazovanija v bassejnah vostochnogo Paratetisa (jeocenovaja jepoha nakoplenija). Materialy vos’moj mezhdunarodnoj konferencii «Novye idei v geologii i geohimii nefti i gaza. Neftegazonosnye sistemy osadochnyh bassejnov». M.: GEOS, 2005, рр. 131-133.

2015/1
Prospects of oil and gas exploration in area of fore folds of western flank of Southern Urals
Geosciences

Authors: Alexandra S. MONAKOVA graduated from Gubkin Russian State University of Oil and Gas in 2011. Assistant of “Theoretical fundamentals of prospecting and exploration of oil and gas” department, Gubkin Russian State University of Oil and Gas. Author of more than 10 scientific publications. E-mail: a.monakova@mail.ru
Alexander V. OSIPOV graduated from Gubkin Russian State University of Oil and Gas in 2010. Candidate of Geological and Mineralogical Sciences, assistant professor of the Department Theoretical fundamentals of prospecting and exploration of oil and gas of Gubkin Russian State University of Oil and Gas. He is author of more than 20 scientific publications. E-mail: alexander.v.osipov@gmail.com

Abstract: The article discusses the results of geochemical studies of Paleozoic sediments and basin modeling results on the territory of Belsky depression. Conclusions on the migration routes of hydrocarbons from Belsky depression are made

Index UDK: 550.8

Keywords: Pre-Ural deflection, Belsky depression, fore folds of the Urals, oil, gas

Bibliography:
1. Varencov M.I. i dr. Tektonicheskoe rajonirovanie i zakonomernosti razmeshhenija zon neftegazonakoplenija na territorii kraevyh progibov: V kn. Principy neftegazogeologicheskogo rajonirovanija v svjazi s prognozom neftegazonosnosti nedr. M.: Nedra, 1976, р. 58-71.
2. Kamaletdinov M.A. «Pokrovnye struktury Urala». M., Nauka, 1974.
3. Kerimov V.Ju., Osipov A.V., Lavrenova E.A. Perspektivy neftegazonosnosti glubokopogruzhennyh gorizontov v predelah jugo-vostochnoj chasti volgo-ural’skoj neftegazonosnoj provincii. Neftjanoe hozjajstvo, 2014, no. 4, p. 33-35.
4. Kerimov V.Ju., Karnauhov S.M., Gorbunov S.A., Lavrenova E.A., Osipov A.V. Prognoz neftegazonosnosti juzhnoj chasti Predural’skogo progiba po rezul’tatam modelirovanija generacionno-akkumuljacionnyh uglevodorodnyh system. Geologija nefti i gaza, 2013, no. 6, p. 21-28.
5. Melamud E.L. Tektonika i perspektivy neftegazonosnosti Orenburgskogo Priural’ja. M., Nauka, 1981, p. 90.
6. Mizens G.A. Ob jetapah formirovanija Predural’skogo progiba. Geotektonika, 1997, no. 5, p. 33-46.
7. Ruzhencev S.V., Hvorova I.V. Srednepaleozojskie olistostromy v Sakmarskoj zone Juzhnogo Urala. Litologija i poleznye iskopaemye, 1973, no. 6, p. 21–29.
8.
Shatskij N.S. Ocherki tektoniki Volgo-Ural’skoj neftenosnoj oblasti i smezhnoj chasti zapadnogo sklona Juzhnogo Urala. Materialy k poznaniju geol. stroenija SSSR, nov. ser., 1945, vyp. 2 (6).
9. Shhekotova I.A. Karbonatnye formacii Juzhnogo Priural’ja. V kn: Tektonika i neftegazonosnost’. M., Nauka, 1990.

2015/1
Optimization of susbsea pipeline route at cluster development of the Barents and Kara seas from Novay Zemlya
Geosciences

Authors: Yaroslav O. EFIMOV was born in 1989. He graduated from Gubkin Russian State University of Oil and Gas with MS degree in “Offshore engineering”. Since 2011 he is a PhD student as the department of “Offshore oil and gas field development”. E-mail: trudyrgung@gubkin.ru
Anatoly B. ZOLOTUKHIN was born in 1946. He graduated from Gubkin Institute of Oil and gas, Lomonosov Moscow State University in 1977, PhD degree from Gubkin Russian State University of Oil and Gas in 1972. Rectorat Counsellor, professor at oil and gas field development department, research director of Arctic oil and gas technologies Institute. Adjunct professor at University of Stavanger, Norway. From September 2014 — Chaired professor at Northern Arctic Federal University, Arkhangelsk. E-mail: trudyrgung@gubkin.ru
Ove T. GUDMESTAD born in 1947. He holds a M.Sc. degree in Applied Mathematics from the University of Tromsø in 1973 and a Ph.D. in Hydrodynamics from the University of Bergen in 1985. He spent two years as student and visiting scientist at Massachussetts (MIT) in Boston, USA. Professor at University of Stavanger, honorary professor at Gubkin Russian State University of Oil and Gas. E-mail: trudyrgung@gubkin.ru
Konstantin A. KORNISHIN was born in 1988. He graduated from Gubkin Russian State University of Oil and Gas with MS degree in “Offshore engineering”. Since 2011 he is a PhD student as the department of “Offshore oil and gas field development”. E-mail: trudyrgung@gubkin.ru

Abstract: The paper anticipates a new concept that proposes to use the Novay Zemlya archipelago as a cluster base for development of the whole region of the eastern Barents and western Kara seas. In this case the so called «unitization principle» can be implemented that might improve economics of field development due to less overall investments in common infrastructure. It is proposed to build an LNG plant on the archipelago that will be capable to treat gas from several fields, a pipeline system and a port for LNG takers. The pipeline system should be optimized in order to meet production levels from the fields as well as the capacity of the LNG plant. The paper introduces an approach to the problem of pipeline route optimization which is based on multi criteria principle. The total cost of construction and maintenance of the pipeline along a certain route is determined as a function of several parameters (water depth, presence of ice/icebergs, soil conditions, slope, etc.) and has to be minimized in this model. The problem of the optimum pipeline route is solved with the means of modified algorithms from the graph theory

Index UDK: 517.977.58

Keywords: Barents, Kara, shelf, Arctic, Novaya Zemlya, development, optimization, pipeline route

Bibliography:
1. Abramov C. Atlas Arcticheskih aisbergov. Spb.: FGBU “Arkticheskij i Antarkticheskij nauchno-issledovatel’skij institut”, 1996, 164 p.
2. Atlas Arktiki. М.: GYGK, 1985, 204 p.
3. Borodavkin P.P. Berezin V.L. Sooruzhenie magistral’nyh truboprovodov. 2-e izd., pererab. i dop. M.: Nedra; 1974, 320 p.
4. Borodavkin P.P., Berezin, V.L., Ruderman S.Ju. Vybor optimal’nyh trass magistral’nyh truboprovodov. M.: Nedra, 1974, 320 p.
5. ISO 19906. Oil and Gas industry. Offshore structures. ISO, 2012.
6. Zubakin G.K. Krupnomasshtabnaja izmenchivost’ sostojanija ledjanogo pokrova morej Severo-Evropejskogo bassejna. L.: Gidrometeoizdat, 1984, 160 p.
7. ArcGIS HelpCenter 10.1 [Web resource]. — Available at: http://resources.arcgis.com (accessed 10.09.2014).
8. Grapth theory. Publications. [Web resource]. — Available at: http://www.graphtheory.com/ (accessed 10.09.2014).
9. Izmenchivost’ prirodnyh uslovij v shel’fovoj zone Barenceva i Karskogo morej. Pod red. A.I. Danilova, E.U. Mironova, V.A. Spichkina. SPb.: AANII, 2004, 432 p.
10. Institute of marine research. Bergen, Norway. [Web resource] — Available at: http://www.imr.no/nb-no (accessed 10.09.2014).
11. Kontorovich A.Je., Kontorovich V.A. Geologija i resursy uglevodorodov shel’fov Arkticheskih morej Rossii. [Web resource]. — Available at http://arhsc.ru (accessed 10.09.2014).
12. The International Bathymetric Chart of the Arctic Ocean (IBCAO), [Web resource]. — Available at: http://www.ngdc.noaa.gov (accessed 10.09.2014).
13. Puente I.Dzh. Osvoenie shel’fovyh mestorozhdenij v uslovijah holodnogo klimata. Norvezhskij tehnologicheskij institut, Trondheim, Norway, 2013.
14. Ryerson Ch. Assessment of Superstructure Ice Protection as Applied to Offshore Oil Operations Safety//Ice Protection Technologies, Safety Enhancements, and Development Need. — 2009.
15. Ryerson Ch. Ice protection of offshore platforms//U.S. Army Engineer Research and Development Center, Cold Regions Research and Engineering Laboratory. Cold Regions Science and Technology, 2011, p. 97–110.
16.
Sechin I.I. Novaja neftjanaja jera. CERA Week 2013. Houston, USA.
17. Sherpa Konsult [Web resource] — Available at: http://www.arctic-europe.com/ (accessed 10.09.2014).
18. Farré A.B., Stephenson S., Efimov Y.O. et. al, Commercial Arctic shipping through the Northeast Passage re-examined: Routes, resources, governance, technology, and infrastructure, Polar Geography (v pechati).

2015/1
Methodology of combining layers into single production zone of complex parameter
Geosciences

Authors: Larisa N. NAZAROVA graduated from Moscow Institute of Petrochemical and Gas Industry named of I.M. Gubkin in 1979, Candidate of Technical Sciences, associate Professor of the Department of development and exploitation of oil fields of Gubkin Russian State University of Oil and Gas. Specialist in the field of development and design of the oil fields. She is author of more than 50 scientific publications. E-mail: Nazarova-ln@irmu.ru

Abstract: Combining layers into a single production zone remains one of the most important tasks in the development of oil fields. Conditions close to filter can be created in the layers with different permeability and porosity, which will allow to merge thses or to justify the impossibility of combining them into one production zone. Hydroconductivity of layers is proposed to be used as a criterion for combining layers into one production zone of

Index UDK: 622.276

Keywords: hydraulic conductivity, flow capacity, production zone

Bibliography:
1.Ashirov K.B., Surguchev M.L., Gubanov A.I., Kovalev V.S., Shabanov V.A. O kriterijah sovmestimosti i porjadke vybora ob’ektov dlja sovmestnoj razrabotki. Permskoe knizhnoe izdatel’stvo, 1965, 12 p.
2.Baturin Ju.E. Vydelenie jekspluatacionnyh ob’ektov na mnogoplastovom mestorozhdenii. Geologija nefti i gaza, 1979, no. 1.
3.Bojko V.S. Razrabotka i jekspluatacija neftjanyh mestorozhdenij. M.: Nedra, 1990, 427 p.
4.Bykov N.E., Bajmuhametov K.S., D’jakonov V.P., Karganov V.S., Moiseenko A.P. Analiz praktiki i metodicheskie osnovy kompleksnogo vydelenija jekspluatacionnyh ob’ektov. M.: VNIIOJeNG, 1989, v. 11.
5.Geologija i razrabotka krupnejshih i unikal’nyh neftjanyh i neftegazovyh mestorozhdenij Rossii: v 2-h tomah/Pod red. V.E. Gavury. M.: OAO “VNIIOJeNG”, 1996.
6.Kanalin V.G., Dement’ev L.F. Metodika i praktika vydelenija jekspluatacionnyh ob’ektov na mnogoplastovyh neftjanyh mestorozhdenijah. M.: Nedra, 1982, 224 p.
7.Dijashev R.N., Muharskij Je.D., Nikolaev V.A. Dinamika razrabotki mnogoplastovoj zalezhi i vydelenie ob’ektov jekspluatacii. Neftjanoe hozjajstvo, 1979, no. 3.
8.Eremin N.A., Ponomarenko E.M. Metodika opredelenija shodstva neftesoderzhashhih plastov v zadache vydelenija.
9.Maksimov M.I. Geologicheskie osnovy razrabotki neftjanyh mestorozhdenij. M.: Nedra, 1965.
10.Cholovskij I.P. Geologo-promyslovyj analiz pri razrabotke neftjanyh mestorozhdenij. M.: Nedra, 1977.
11. Shhelkachev V.N. Vazhnejshie principy nefterazrabotki. 75 let opyta. M.: FGUP Izd-vo “Neft’ i gaz” RGU nefti i gaza im. I.M. Gubkina, 2004.

2015/1
Possibilities of high-performance computing (HPC) technologies for oil and gas fields development and operation in context of extreme scale data flows
Geosciences

Authors: Boris A. NIKITIN graduated from the oilfield Department of Gubkin Moscow Institute of Petrochemical and Gas Industry in 1964. He is Doctor of Technical Sciences, full professor, head of the Department of Offshore Oil and Gas fields Development of Gubkin Russian State University of Oil and Gas. He is author of more than 250 scientific papers. E-mail: oversea@gubkin.ru
Oleg V. ZAKHAROV graduated from the Department of Oil Technology of Samara State Technical University in 2010. He is postgraduate student of the Department of Offshore Oil and Gas fields Development of Gubkin Russian State University of Oil and Gas. His research interests are oil and gas fields simulations. He is author of 2 scientific publications, patent for geomechanical software MLGeomechanics. E-mail: oleg_zv@list.ru
Igor V. ZAKHAROV graduated from the Department of Oil Technology of Samara State Technical University in 2010. He is postgraduate student of the Department of Offshore Oil and Gas fields Development of Gubkin Russian State University of Oil and Gas. His research interests are subsea production systems. He is author of 1 scientific publication. E-mail: z_iv26@mail.ru

Abstract: The current fuel and energy complex development trend is characterized by agile and rapid innovation of information technologies for different oil and gas field lifecycle. Technological advances in computation speed and data extraction have encouraged the use of high-performance (supercomputer) computation technologies in the upstream business. The use of such technologies allows to boost competitiveness, technological and software self-sufficiency, as well as operational activities efficiency of the upstream and field service companies. Data package handling with concurrent processing and interpretation, as well as parallel (simultaneous) linked problem solving can only be efficient when high-performance (supercomputer) technologies with appropriate software are used. The article presents the main principles of supercomputer operation, computation capacity evolution and evaluation of software packages as a result of computation capacity advances. Special focus in the article is given to the new high-performance software technologies for hydrodynamic simulation, geomechanical and seismic modelling and its visualization, as well as for upstream subsea operations modelling as the most information-intensive business segments requiring the HPC software. Such technologies have been implemented by all leading international upstream operators and field service companies because of its effectiveness and opportunities. The article examines the first Russian project on the use of import-substituting HPC integrated hydrodynamic and geomechanical modeling technologies. The use of HPC technologies and entry of new software developers provides an opportunity for the Russian upstream and field service companies to significantly diminish their dependence on traditional software vendors and technologies, to gain clear competitive advantages and to open new markets and means of market entry. Taking into consideration very limited information on the subject, the article summarizes and gives analysis of the fragmented information on the most current development trends for upstream and field service companies, including the Russian ones

Index UDK: 532.5.032

Keywords: offshore fields, high-performance computing, supercomputer, extreme scale computing, big data, grid network, software, flow simulation, seismic survey, geomechanical modeling, subsea production system

Bibliography:
1. Vjahirev R.I., Nikitin B.A., Mirzoev D.A. Obustrojstvo i osvoenie morskih neftegazovyh mestorozhdenij. Izd. 2-e. M.: Izd. Akademii gornyh nauk, 2001, p. 17-18.
2. Osnovy razrabotki shel’fovykh neftegazovykh mestorozhdeniy i stroitel’stvo morskikh sooruzheniy v Arktike: Uchebnoe posobie. A.B. Zolotukhin, O.T. Gudmestad, A.I. Ermakov, R.A. Yakobsen, I.T. Mishchenko, V.S. Vovk, S. Losets, K.N. Shkinek. M.: GUP Izd-vo “Neft’ i gaz”, 2000, 212 p.
3. http://www.shell.com/global/aboutshell/media/speeches-and-webcasts/2009/brinded-amster-dam-08062009.html
4. http://www.total.com/en/media/news/press-releases/total-becomes-global-leader-computing-power?xtmc
5. http://www.conocophillips.com/what-we-do/innovating/taking-technology-to-the-next-level/ Pages/default.aspx
6. http://www.chevron.com/documents/pdf/chevron2013annualreportsupplement.pdf
7. http://www.aramcoservices.com/AramcoServicesCompany/media/Hero-Areas/2013AnnualRe-view_ENG.pdf
8. http://www.bp.com/en/global/corporate/about-bp/bp-and-technology/our-approach/our-people/ david-eyton/supercomputers-looking-for-oil.html
9. http://www.statoil.com/no/InvestorCentre/AnnualReport/AnnualReport2013
10. http://www.hydro.com/en/Investor-relations/Reporting/Annual-report-2013/
11. http://www.petrobras.com.br/en/society-and-environment/sustainability-report/
12. http://www.cnpc.com.cn/enpetrochina/ndbg/201404/8322800c88fe47f3a4a2b3f859c4e974/fi- les/6e20b1a7a7ac4ebcb2f6a589f86344ed.pdf
13. http://www.denodo.com/en/resources/documentation/solution_briefs/oil_and_gas_compani-es.pdf
14. http://www.nature.com/news/2008/080903/full/455016a.html
15. High Performance Computers and Export Control Policy: Issued for Congress, High-Performance Computing Act 1991.
16. http://www.msu.ru/lomonosov/science/computer.html
17. The International System of Units (SI) 8th edition 2006. URL: http://www.bipm.org/utils/ common/pdf/si_brochure_8_en.pdf
18. http://www.hdfgroup.org/HDF5/PHDF5/
19. Ali H.Dogru. Giga-cell simulation improves recovery from giant fields. World oil October 2010, vol. 231, no. 10, 5 p.
20. Ipatov A.I., Kremenetskiy M.I. Geofizicheskiy i gidrodinamicheskiy kontrol’ razrabotki mestorozhdeniy uglevodorodov. Izd. 2-e. M.: NITs “Regulyarnaya i khaoticheskaya dinamika”; Institut komp’yuternykh issledovaniy, 2010, 746 p.
21. Mirzoev D.A. Osnovy neftepromyslovogo dela: V 2 t. T. I: Obustroystvo i ekspluatatsiya morskikh neftegazovykh mestorozhdeniy. M.: Izdatel’stvo OOO “Den’ Serebra”, 2009, 285 p.
22. Adamyants P.P., Guseynov Ch.S., Ivanets V.K. Proektirovanie obustroystva morskikh neftegazovykh mestorozhdeniy. M.: OOO “TsentrLitNefteGaz”, 2005, p. 476-477.
23. http://www.statoil.com/en/technologyinnovation/fielddevelopment/aboutsubsea/pages/hav-bunnsanlegg.aspx
24. Tore Halvorsen. FMC Technologies are changing the development of offshore fields. Ru-senergy: exploration and production 2013, no. 10, 25 p.
25. Kuznetsov I.V., Turchaninov V.Yu. Tendentsii razvitiya informatsionnogo obespecheniya geologo-tekhnologicheskogo monitoringa bureniya neftegazovykh skvazhin. Neftyanoe khozyaystvo [Oil Industry], 2012, no. 9, 105 p.
26. Mel’nikov I.G., Mugalev I.I. Elementy energeticheskoy bezopasnosti v sisteme upravleniya zhiznennym tsiklom neftegazovykh mestorozhdeniy. Neftyanoe khozyaystvo [Oil Industry], 2012, no. 6, 3 p.

2015/1
Small-scale production of LNG under conditions of commercial gas treatment
Geosciences

Authors: Dmitriy A. OZHERELYEV graduated from Omsk State Technical University, majoring in “Chemical technology of organic substances” in 2005. A specialist in the study of production processes gas and gas condensate.E-mail: ojerelev.da@noyabrsk-dobycha.gazprom.ru
Svetlana V. DEINEKO graduated from the Moscow Institute of Petrochemical and Gas Industry named after IM Gubkin specialty “Applied Mathematics” in 1977. Associate Professor of “Design and operation of oil and gas pipelines”, State University of Oil and Gas named after Gubkin. A specialist in the field of oil and gas transportation. Has 138 publications. E-mail: dsv@gubkin.ru

Abstract: This paper investigated the field of use of liquefied natural gas. A comparative analysis of the performance of small-capacity liquefaction plants was done in order to introduce field treatment of natural gas into the technological process. A model of the process plant was built to produce LNG as a fuel for utility vehicles

Index UDK: 665.725

Keywords: small scale production of LNG, motor fuel – LNG, gas field, utility vehicle

Bibliography:
1. Bеkirov T.M., Lanchakov G.A. Рrocessing technology of gas and condensate. M.: Nedra- Вusinesscenters, 1999, 596 p.
2. Griсenko A.I., Istomin V.A., Kul’kov A.I. et al. Collection and preparation of the fishery on the northern gas fields in Russia. M.: Nedra, 1999, 473 p.

2015/1
On methods of detecting leaks and illegal tapping of trunk lines
Geosciences

Authors: Roman A. SHESTAKOV graduated from Gubkin Russian State University of Oil and Gas in 2013, first class degree. Postgraduate student of the «design and operation of gas and oil pipelines» department of the Gubkin Russian State University of Oil and Gas. Specialist in the field of design and operation of systems of pipeline transport of oil and gas. Member of international scientific conferences. Has 5 publications. E-mail: dur187@mail.ru

Abstract: The article considers the existing methods of detecting leaks and illegal tapping of trunk pipelines, as well as their classification. The author proposes a relevant classification of methods of leak and illegal tapping detection in oil pipelines. The existing methods are also classified basing on the proposed classification

Index UDK: 622.691.4

Keywords: trunk pipeline, classification, method, leak, illegal tapping

Bibliography:
1. Goliyanov A.A. Analysis of the methods of leak detection on pipelines. Transport and storage of petroleum products, 2002, no. 10, p. 5-14.
2. Weinstock S.M., Novoselov B.C., Prokhorov A.D., Shammazov A.M. Pipeline transport of oil. Ed. by C.M. Weinstock: Textbook. for high schools: 2 T. M.: OOO „Nedra-business Center”, 2004, v. 2, 621 p.
3. Kutukov C.E. The Problem of increasing the sensitivity, reliability and performance of systems leak detection in pipelines. Oil and gas business, 2004, no. 2, p. 29-45.
4. Kingsley E. Abhulimen, Alfred A. Susu. Liquid pipeline leak detection system: model development and numerical simulation. Chemical Engineering Department, Nigeria, Lagos: University of Lagos, 2002, 51 p.
5. Lurie M.C., Makarov P.F. Hydraulic locating leaks of petroleum products in the pipeline. Transport and storage of petroleum products, 1998, no. 12, p. 65-69.
6. Michael Gorny. Monitoring acoustic noise in steel pipelines. Proceedings of IPC2008 7th International Pipeline Conference. September 29 −3 October. Alberta: Calgary, 2008, р. 123-135.
7. Mamonova T.E. Modified method hydraulic locations for leak detection in pipelines the dissertation on competition of a scientific degree of candidate of technical Sciences. M: National Research Tomsk Polytechnic University, 2012, 148 p.
8. Azmetov K.A., Wekstein M.G., Gumerov A.G., Gumerov R.S. Emergency repair of trunk pipelines. [Electronic resource]. Integrated Internet portal dedicated to oil and gas „All about oil”. URL: http://neft-i-gaz.ru/litera/index001obtitul.htm (date of access: 06.05.2014).
9. Zverev F.S. Improvement of technologies for the detection of leaks of oil from pipeline the dissertation on competition of a scientific degree of candidate of technical Sciences. M: Gubkin Russian State University of Oil and Gas, 2010, 173 p.
10. Pervukhin P.A. Methods and devices for the detection of oil spills. Internet-journal „Techno-logy technosphere safety”, 2009, no. 6. URL: http://ipb.mos.ru/ttb. (date of access: 12.07.2014).
11. Gerhard Geiger. Principles of Leak Detection. Fundamentals of Leak Detection. Oil & Gas. Oklahoma: Krohne, 2003, 46 p.
12. Operation of the main pipelines: a Training manual. 2nd ed. Under the General editorship of J.D. Semenkov. Tyumen: TSOGU, 2001, 623 p.
13. Electronic reference. [Electronic resource]. Chemical encyclopedia. URL: http://www.chem-port.ru/ data/chemipedia/article_5858.html (date of access: 12.07.2014).
14. Jun Zhang, Enea Di Mauro. Implementing a Reliable Leak Detection System on a Crude Oil Pipeline. Advances in Pipeline Technology. Dubai: UAE, 1998, 12 p.
15. Goliyanov A.A., Shammazov A.M. safety and environmental protection of pipelines. „Transport and storage of petroleum products”. Ufa.: Publishing house of the Ufa state petroleum techno-logical University, 2002, vol. 10-11, p. 15-18.
16. The fundamentals of the method of eddy currents. [Electronic resource]. Non-destructive testing Devices and diagnostics systems. URL: http://www.defectoscope.ru/?page=literature&lit=tok (date of access: 26.07.14).
17. Mishkin G.B. Classification systems leak detection on pipelines of oil, gas and petroleum products. Young scientist, 2010, no. 11(22), vol. I, p. 56-58.

2015/1
Study of hydrocracking residue of vacuum gasoil and refined products for the production of high quality base oils
Technical sciences

Authors: Leonid N. BAGDASАROV graduated from Tashkent automobile and road University. He is Candidate of Technical Sciences, Associate professor of the Department of Chemistry and Technology of Lubricants and Chemmotology of Gubkin Russian State University of Oil and Gas. Specialist in the field of chemmotology of lubricants. He is author of more than 200 scientific publications. E-mail: lebage63@mail.ru
Valeria S. RINDA graduated from Gubkin Russian State University of Oil and Gas in 2006. She is Ph’D student of the Department of Chemistry and Technology of Lubricants and Chemmotology of Gubkin Russian State University of Oil and Gas. She is specialist in the sector of production of lubricants and analysis of petroleum and petroleum products. E-mail: eklerik@mail.ru
Stephan V. LOPATA graduated from Gubkin Russian State University of Oil and Gas in 2013. He is Ph’D student and occupies the position of engineer of the Department of Chemistry and Technology of Lubricants and Chemmotology of Gubkin Russian State University of Oil and Gas. He is specialist in the sector of production and applicationof lubricantsand additives.E-mail: stepkawow@yahoo.com
Nelya Y. RAZYAPOVA graduated from Gubkin Russian State University of Oil and Gas in 2013. She is Ph’D student and occupies the position of engineer of the Department of Chemistry and Technology of Lubricants and Chemmotology of Gubkin Russian State University of Oil and Gas. She is specialist in the sector of analysis lubricants. E-mail: nel.14@mail.ru

Abstract: We have studied hydrocracking residue with chemical composition and physical and chemical characteristics meeting the requirements of raw materials for hydrocracking oils. We have selected the most appropriate scheme of separation of hydrocracking residue into vacuum distillates. The quality of the oil meets the API requirements to the base oils of group 3. Ключевые слова: гидрогенизационные процессы, остаток гидрокрекинга, базовые масла, лабораторные исследования, качество сырья и продуктов

Index UDK: 665.6

Keywords: hydrogenation processes, hydrocracking residue, base oil, laboratory tests, quality of raw materials and products

Bibliography:
1. Kapustin V.M. The main problems in the development of industrial hydrocatalytic refining processes of Russia. Trudy Nauchno-teknologicheskogo simpoziuma “Neftepererabotka: katalizatory i gidroprocessy”. Sbornik tezisov dokladov (20-23 maya 2014, Pushkin, Sankt-Peterburg). Novosibirsk, 2014, p. 23. (In Russian).
2. Kapustin V.M., Gureev A.A. Tekhnologiya pererabotki nefti. Chast 2. Destruktivnye protsessi. M.: KolosS, Khimiya, 2007, p. 334.
3. Gidrokreking i gidrootchistka. Available at http://www.tehnoinfa.ru/pererabotkaneftiigaza/ 37.html (accessed 06 Sept 2014).
4. Vanina N.V., Smirnova L.N. Economic aspects of the production and use of environmentally safe base hydrocarbon oil. Vestnik Samarskogo gosudarstvennogo universitet, 2014, no. 1 (11), pp. 122-127.
5. Klassivikatsiya API. Available at: http://otusholding.com/base-oil-clasiffication.php (accessed 06 Sept 2014).

2015/1
Using poly-alpha-olefin as base of low-viscosity hydraulic oils
Technical sciences

Authors: Lilia A. RAZUVAN graduated from Gubkin Russian State University of Oil and Gas in 2014. Engineer of the 25-th State Scientific Survey Institute of Chemmotology of Military Service of Russian Federation.E-mail: Lile4ka095@mail.ru
Yury E. RASKIN graduated from Sergo Ordzhonikidze Moscow Aviation Institute in 1966. Candidate of Technical Sciences, leading researcher of the 25-th State Scientific Survey Institute of Chemmotology of Military Service of Russian Federation. E-mail: yuzy-35@mail.ru
Anastasia Y. KILYAKOVA graduated from Gubkin Russian State University of Oil and Gas in 2000. Candidate of Technical Sciences, associate Professor of chemistry and technology of lubricants and Chemmotology of Gubkin Russian State of Oil and Gas. E-mail: anakil@yandex.ru

Abstract: To improve the low temperature properties of hydraulic oils, expand their operating temperature range and increase the thermal stability of the oils the possibility of using poly-alpha-olefin as the base of hydraulic oils was investiga-ted. The purpose of this study is to develop the basis of hydraulic oils of MG-15 and MG-B-22-B class on the base of poly-alflpha-olefins. We used the method of determining the dynamic and kinematic viscosity calculation in compliance with the National State Standard-33-2000. The viscosity of the commodity hyd-raulic oils in the temperature range of application was compared with the that of the Russian poly-alpha-olefin PAO-2, PAO-4 and PAO-6. The optimum ratio of PAO 4 and PAO-2 for the base oils of MG-22-B and the ratio of PAO-2, PAO-4 with the addition of PES-7 etil-stannic liquid for the base of MG-15-B oils were determined. The results of these studies support the use of the mixture of poly-alpha-olefins as the base of hydraulic oils of MG-15 and MG-B-22-B classes

Index UDK: 665.6

Keywords: hydraulic oils, poly-alpha-olefins

Bibliography:
1. Oils MGE-4, MGE-10A. Specifications TU 38.401-58-337-2003.
2. Multigrade hydraulic oil. Specifications TU 38 101479-86.
3.
Oil spindle. Specifications TU 38 1011232-89.
4.
Hydraulic oil. Specifications TU 38 1011258-89.
5.
Oils for hydrodynamic and hydrostatic transmissions. Specifications TU 38 1011282-89.
6.
Hydraulic oil. Classification and identification. GOST 17479.3-85.
7.
Base polyalphaolefin oils. Specifications TU 0253-004-54409843-2004.
8. Tsvetkov O. Synthesis and properties of PAO lubricants. Science and Technology of hydrocarbons, 2003.
9. A report on exploratory work. “Determining the possibility of creating a unified hydraulic oils class MG-15 and MG-B-22-B with improved performance characteristics PAO” 25 Defense Research Institute, 2005.
10. Report on the research paper “Development of the project technical requirements for advanced unified hydraulic oils of MG-15 and MG-B-22-B for hydraulic drives of various types of military ground vehicles”, Phase 2, R & D no. 2.06.04, code “Wagga 06”, 25 Research Institute of the RF Ministry of Defense.

2015/1
Perspective of using esters as a national production as bases of oils for the aircraft equipment
Technical sciences

Authors: Boris P. TONKONOGOV graduated from Gubkin Russian State University of Oil and Gas in 1973. Doctor of Chemical Sciences, Dean of the Faculty of Chemical Engineering and the Environment (since 1999), Head of the Department of Chemistry and Technology of lubricants and Chemmotology (since 2007). He is the author of about 100 scientific and educational works. E-mail: masla@gubkin.ru
Ksenia A. POPOVA graduated from Gubkin Russian State University of Oil and Gas in 2013, postgraduate student of chairs of chemistry and technology of lubricants and himmotology. E-mail: proskochenko@mail.ru
Aida F. HURUMOVA Head of the Center of lubricants and fluids in FSUE “Scientific-Research Institute of Standardization and Unification”, Candidate of Technical Sciences. She is the author of over 50 scientific papers and 17 patents for inventions. E-mail: nio-180@inbox.ru

Abstract: To ensure reliable operation of heat-stressed gas-turbine engines (GTE) high-quality lubricants with good performance properties are required. Russian aviation uses foreign-made lubricants for GTE. There are no competitive analogues in Russia, so it important to study and to develop such lubricants. According to publications the most suitable lubricant compositions meeting the requirements for gas turbine engines operable up to 240 °C are the derivatives of esters (neopentyl polyol esters, mainly of pentaerythritol and/or trimethylol propane and mixtures of individual acids of synthetic C5-C9 combined in a specific ratio). In this regard, the aim of this work is to study synthetic lubricants based on esters derived from polyhydric alcohols (polyols) and synthetic fatty acids (SFA). The analysis of the state-of-art in the production of esters and SFA С5-С9 in Russia is presented in this review. The dependence of the properties on the structure of esters is considered, the technological level of works of receiving esters of polyols and SFA is analyzed. The most perspective esters − pentaerythritol and trimethylol propane from the point of view of the increased thermo-oxidizing stabi- lity are chosen. The results of the research expand the knowledge of the dependence of the properties on the structure of esters, the technologies of synthesis of esters of polyols and the importance of the development of the production of esters

Index UDK: 665.773.3

Keywords: esters, diesters, alcohols, fatty acids, dioctyl sebacate, thermo-stable dioctyl sebacate thermostable, gas turbine engines

Bibliography:
1. Icikson T.M. i dr. Vlijanie katalizatora na sposob poluchenija i svojstvа jefirov pentajeritrita [Effect of the catalyst on the method of preparation and properties of pentaerythritol ester]. Himija i tehnologija topliv i masel [Chemistry and Technology of Fuels and Oils], 1975, no. 8, p. 10–12.
2. Gordon Fay H., Holt David Gary Lawton,Leta Daniel P., Krevalis Martin Anthony, Szobota John S, Sherwood-Williams Lavonde Deni, Aldrich Haven S. Schlosberg, Richard Henry. Polyol ester compositions with unconverted hydroxyl groups. Patent USA no. US5744434 (A), 1998-04-28.
3. Schaefer Thomas, Carr Dale D., Wisotsky Max J., Berlowitz Paul J. Ashcraft JR Thomas L. Technical pentaerythritol esters as lubricant base stock. Patent USA no. US5503761 (A), 1996-04-02.
4. Gash Virgil W. Esters of tetrahydroxy dineoalkyl ethers. Patent USA no. US3681440 (A), 1972-08-01.
5. Degeorge Nicholas, Carr Dale D. Synthetic lubricant base stock of monopentaerythritol and trimethylolpropane esters. Patent USA no. US4826633 (A), 1989-05-02.
6. Thomas L. Ashcraft, Jr., Paul J. Berlowitz,Max J. Wisotsky, Dale D. Carr, Thomas G. Schae-fer. Technical pentaerythritol esters as lubricant base stock. Patent USA no. 5503761, 1996-02-04.
7. Kagan L.H. i dr. Izuchenie svojstv smesej slozhnyh jefirov neopentilpoliolov. [Studying the properties of mixtures of neopentyl polyol esters]. Sb. „Trudy VNIINP”, 1978, pp.
62–66.
8.
Krylov O.V., Matyshak V.A. Promezhutochnye soedinenija i mehanizmy geterogennyh kataliticheskih reakcij. Prostejshie reakcii uglevodorodov, spirtov, kislot [Intermediates and mechanisms of heterogeneous catalytic reactions. The simplest reaction of hydrocarbons, alcohols, acids]. Uspehi himii [Achievements of chemistry], 1995, no. 1, p. 66.
9. Hurumova A.F, Janovskij L.S., Skibin V.A., Gorjachev V.V., Nikolaev A.V., Miheichev P.A., Kovba L.V., Kashtan M.I., Poljakov S.Ju., Sereda V.A., Vatagin A.I., Petrov P.G., Stoljarov I.Je., Rapinchuk A.G., Jakovlev N.N. Smazochnoe maslo dlja reduktorov letatel’nyh apparatov [Lubricating oil for gearboxes aircrafts]. Patent RF, no. 2322481, 2008.
10. Jernst Uve, Gubish Ditmar, Bjushken Vil’frid. Sposob poluchenija slozhnyh efirov karbonovyh kislot [A method of producing carboxylic acid esters]. Patent RF, no. 2283299, 2006.
11. Knebel’ Joahim. Sposob poluchenija efirov (met)akrilovoj kisloty [A method for producing (meth)acrylic acid]. Patent RF, no. 2515985, 2014.
12. Mamarasulova Z.V., Gromova V.V. Osnova sinteticheskogo smazochnogo masla. Patent RF, no. 2361904, 2009.
13. Lakeev S.N., Karchevskij S.G., Majdanova I.O., Aleksashev V.I. Issledovanie okislenija vysshih al’fa-olefinov s cel’ju poluchenija sinteticheskih zhirnyh kislot [Investigation of oxidation higher alpha-olefins to produce synthetic fatty acids]. Material mezhregional’noj nauchno-prakticheskoj konferencii „Innovacionnye processy v oblasti obrazovanija, nauki i proizvodstva”. [Innovative processes in the field of education, science and industry]. Nizhnekamsk, 2004.
14. Dinces A.I., Druzhinina A.P. Sinteticheskie smazochnye masla [Synthetic lubricating oils]. Moscow, 1958, 350 p.
15. Brunshtejn B.A. i dr. Proizvodstvo vysshih spirtov — komponentov plastifikatorov [Production of higher alcohols  components of plasticizers]. Moscow, 1970, 30 p.
16. Loktev S.M Neftepererabotka i neftehimija [Refining and Petrochemicals]. Moscow, 1980, 31 p.
17. Mamarasulova Z.V. Razrabotka tehnologicheskih osnov processa termicheskoj eterifikacii neopentilpoliolov i optimizacija struktury slozhnyh jefirov kak bazovyh aviacionnyh masel [Development of technological bases of process heat esterification neopentyl polyol and optimization of the structure of esters as base aircraft’s oils]. St. Petersburg, 2012, 128 p.
18. Janovskij L.S., Dubovkin N.F., Galimov F.M. i dr. Inzhenernye osnovy aviacionnoj him-motologii [Engineering bases of an aviation himmotologiya]. Kazan, 2005, 714 p.
19. Gunderson R.S., Hart A.V. Sinteticheskie smazochnye materialy i zhidkosti [The synthetic lubricant fluid]. Moscow, 1965, 1984 p.
20. Marketingovoe issledovanie rynka sinteticheskih zhirnyh kislot [Market research in synthetic fatty acids]. Moscow, 2011.
21. Bingnan Huang, John T. Gupton, Keith C. Hansen, et al. Synthetic communications, 1996, no. 26 (1), pp. 165–178.
22.
Gorge W. Kabalka, Narayana Chatla, Prakash P. Wadgaonkar et al. Synthetic communications, 1990, pp. 1617–1623.
23.
Schlosberg R.H., Chu J.W., Knudsen G.A., Suciu E.N. and Aldrich H.S. High stability esters for synthetic lubricant applications. Lubrication Engineering, 2001, pp. 21–26.
24.
Vakakura M., Sato G. Journal of the Japanese Petroleum Institute, 1981, no. 24 (6), pp. 383–392.
25.
Gajfutdinova Je.K., Beresnev V.V., Petuhov A.A. Perspektivnye himicheskie tehnologii i materialy [Perspective chemical technologies and materials]. Sb. statej Mezhd. nauchno-tehnicheskoj konferencii [Proc. of the Int. Scientific and Technical Conference]. Perm, 1998, p. 142 (In Russian).