Extended Search

- in all fields
- in the title
- in key words
- in the abstract
- in the bibliography
Issue
Name
Authors
Category
2017/1
Research of thermal oxidation and mechanical stability of low molecular weight polyisobuty-lenes in petroleum base and synthetic oils
Technical sciences

Authors: Igor R. TATUR (b. 1956) graduated from Gubkin Moscow Institute of Petrochemical and Gas Industry in 1979. He is PhD, Associate Professor of the Dept. of сhemistry and technology of lubricants and chemmotology of Gubkin Russia State University (National Research University) of Oil and Gas. He is author of 98 articles, 25 patents, 2 tutorial and 1 monograph.
E-mail: igtatur@yandex.ru
Ekaterina S. SEVAST’YANOVA graduated from the Gubkin Russia State Oil and Gas University in 2014. She is PROACT Field Engineer II in Schlumberger Ltd. E-mail: kateseva@gmail.com
Аleksey V. LEONTYEV (b. 1988) graduated from Gubkin Russian State University of Oil and Gas in 2013. He is post-graduate student of the Department of Chemistry and Technology of Lubricants and Chemmotology of Gubkin Russia State University (National Research University) of Oil and Gas. He is Research Fellow in OOO United Research and Development Center (OOO „RN-CIR”). He is author of more than 15 publications. E-mail: leontievaleksey@gmail.com
Vladimir G. SPIRKIN (b. 1937) graduated from the Military Rocket Forces Academy named after Peter the Great in 1959. He is D.Sc., Professor of the Dept. of Chemistry and Technology of Lubricants and Chemmotology of Gubkin Russia State University (National Research University) of Oil and Gas. He is author more than 350 publications, 10 books and monographs, 35 patents.
E-mail: vgspirkin@mail.ru
Boris P. HOLODOV (b. 1945) graduated from Gubkin Moscow Institute of Petrochemical and Gas Industry in 1968. He is Doctor of Technical Sciences, Assistant Professor the Dept. of Chemistry and Technology of Lubricants and Chemmotology of Gubkin Russia State University (National Research University) of Oil and Gas. He is author of more than 40 publications.
E-mail: b.kholodov@mail.ru

Abstract: Termal oxidation and mechanical stability of polyisobutylenes (PIB) with molecular weights of 30 000 and 60 000 in petroleum base (industrial and isoparaffin) and synthetic (polyalphaolifin) oils is investigated. Thermaloxidative stability of PIB solutions was studied using PAPOK-R at the STO Gazprom 2-2.4-134-2007 and PIB solutions stability to mechanical stress was measured by ultrasonic treatment using UZDN-2T. It is found that PIB with molecular weights of 30 000 and 60 000 in the I-20A industrial oil in concentrations of 3,5-9,0 % by weight have high thermal oxidation stability. PIB in PAO-10 oil show minimum thermal oxidation stability. Аn anomaly of viscosity and thermal oxidation stability of the 20A oil and PAO-10 oil mixture containing PIB with molecular weight of 30 000 and 60 000 at concentration of 9 % by weight with PAO concentration of 10 — 30-40 % by weight is revealed. Sonicated PIB solutions stability depending on the composition of the base oil are arranged in series: oil-20A < PAO-10 oil < oil VHVI-4

Index UDK: 665.7.038.64

Keywords: viscosity modifier, condensed oils, polyisobutylene, polymers, thermal oxidation stability, mechanical stability of polymers, polialfaolifin and iso paraffin oils, sonication

Bibliography:
1. Rudnik L.R. Prisadki k smazochnym materialam. Svojstva i primenenie. Рod red. A.M. Danilova. Рer. s angl. yaz. 2-go izd. SPb.: COP „Professiya”, 2013, 928 p.
2. Kaplan S.Z., Radzevenchuk S.Z. Vyazkostnye prisadki i zagushchennye masla. L.: Himiya, 1982, 136 p.
3. Sheronov D.N., Tatur I.R., Nigaard R.R., Mel’nikov D.P., Spirkin V.G. Issledovanie kinetiki termookislitel’noj destrukcii vysokomolekulyarnogo poliizobutilena v neftyanyh i sinteticheskih maslah. Tekhnologii nefti i gaza, 2015, no. 2 (97), p. 29–33.
4. Shibryaev S.B. Litievye smazki na smeshannoj osnove. M.: Izdatel’stvo „Neft’ i gaz”, 2005, p. 52–63.
5. Tatur I.R., SHeronov D. N., Spirkin V.G., Leont’ev A.V. Primenenie masel ΙΙΙ i ΙV grupp (po API) v kachestve bazovoj osnovy zashchitnyh zhidkostej dlya bakov-akkumulyatorov goryachego vodosnabzheniya ehnergeticheskih predpriyatij. Trudy RGU nefti i gaza imeni I.M. Gubkina, 2016, no. 3 (284), p. 126–136.
6. Barabojm N.K. Mekhanohimiya vysokomolekulyarnyh soedinenij. M.: Himiya, 1978, 293 p.

2017/1
Study of stabilizing and dispersing ability of humic-clay complexes toward oil pollution of aquaous media
Chemical sciences

Authors: Natalia Yu. GRECHISCHEVA graduated from MSU named after M.V. Lomonosov in 1992. She is Candidate of chemical Sciences. Associate Professor of the Department of industrial ecology of Gubkin Russian State University (National Research University) of Oil and Gas. She is specialist in the chemistry of humic substances and their application in environmental technologies. She is author of over 60 scientific publications. E-mail: yanat2@mail.ru
Vladimir A. HOLODOV graduated from MSU named after M.V. Lomonosov in 1998. He is Candidate of biological Sciences. Leading researcher of the laboratory of biology and biochemistry soil of Dokuchaev Soil Institute. He is specialist in the field of light fractions of soil organic matter, interaction of humic substances with minerals and pesticides. He is author of over 50 publications.
E-mail: vkholod@mail.ru
Irina V. PERMINOVA graduated from MSU named after M.V. Lomonosov in 1982. She is Doctor of chemical Sciences, Professor, leading researcher of the Department of medici- nal chemistry and fine organic synthesis, faculty of the chemistry of Moscow state University named after M.V. Lomonosov. She has been working in the field of humic substances research for over twenty-five years. She is author of over 270 publications. E-mail: iperm@org.chem.msu.ru
Aksana M. PARFENOVA graduated from MSU named after M.V. Lomonosov in 1969. She has been Researcher at the Department of colloid chemistry at the faculty of chemistry, of Moscow state University named after M.V. Lomonosov since 1973. She is specialist in the field of colloid chemistry and author of more than 110 publications. E-mail: parf@colloid.chem.msu.ru
Mihail S. KOTELEV graduated from Gubkin Russian State University of Oil and Gas in 2010. He is Candidate of chemical Sciences. Junior researcher of the Department of physical and colloid chemistry of Gubkin Russian State University (National Research University) of Oil and Gas. The focus of his research is the use of extremophilic and autotrophic microorganisms in biotechnology. He is author of 16 scientific works. E-mail: kain@inbox.ru

Abstract: The prospects of using humic-clay complexes (HCC) as stabilizing agents for natural water-oil emulsions, the formation of which contributes to the natural process of self-purification of aqueous systems are shown. The most effective is the use of organo stabilizers with surface modified by coal humic substances. Evaluation of the effectiveness of the dispersing ability of these complexes also allows to consider the possibility of using them as natural dispersants. The use of such humic-clay complexes does not pose the risk of secondary pollution in cotrast to the use of molecular surfactants

Index UDK: 547.992.2

Keywords: humic-clay complexes, humic substances, stabilizer, stabilization of emulsions of oil, natural dispersant

Bibliography:
1. Mericidi I.A., Ivanovskij V.A., Prohorov A.N. Tehnika i tehnologii lokalizacii i likvidacii razlivov nefti i nefteproduktov (Equipment and technologies of localization and liquidation of oil spills and oil products). Saint Petersburg, 2008, 824 p. (in Russian).
2. Fingas M. Oil spill science and technology. U.S.: Elsevier, 2011, 567 p.
3. Barron M.G., Carls M.G., Short J.W., Rice S.D. Photoenhanced toxicity of aqueous phase and chemically dispersed weathered Alaska north slope crude oil to pacific herring eggs and larvae. Environ. Tox. Chem., 2003, v. 22, p. 650–660.
4. Kirby M.F., Lyons B.P., Barry J., Law R.J. The toxicological impacts of oil and chemically dispersed oil: UV mediated phototoxicity and implications for environmental effects, statutory testing and response strategies. Mar. Pollut. Bull., 2007, p. 464–488.
5. Sun J., Zheng X. A review of oil-suspended particulate matter aggregation — a natural process of cleansing spilled oil in the aquatic environment. J. Environ. Monit., 2009, v. 11, p. 1801–1809.
6. Muschenheim D.K., Lee K. Removal of oil from the sea surface through particulate interactions: review and prospectus. Spill Sci. Technol. Bull., 2002, v. 8, no. 1, p. 9–18.
7. Owens E.H., Taylor E., Humphrey B. The persistence and character of stranded oil on coarse-sediment beaches: review. Mar. Pollut. Bull., 2008, v. 56, p. 14–26.
8. Owens E.H., Lee K. Interaction of oil and mineral fines on shorelines: review and assessment. Mar. Pollut. Bull., 2003, v. 47, p. 397–405.
9. Vignati E., Piazza R., Lockhart T.P. Pickering emulsions: interfacial tension, colloidal layer morphology, and trapped-particle motion. Langmuir, 2003, v. 19, no. 17, p. 6650–6656.
10. Lee K. Oil-particle interactions in aquatic environments: influence on the transport, fate, effect and remediation of oil spills. Spill Sci. Technol. Bull., 2002, v. 8, no. 1, p. 3–8.
11. Torres L.G., Iturbe R., Snowden M.J., Chowdhry B.Z., Leharne S.A. Can Pickering emulsion formation aid the removal of creosote DNAPL from porous media? Chemosphere, 2008, v. 71, is. 1, p. 123–132.
12. Torres L.G., Iturbe R., Snowden M.J., Chowdhry B.Z., Leharne S.A. Preparation of o/w emulsions stabilized by solid particles and their characterization by oscillatory rheology Colloids and Surfaces A.: Physicochem. Eng. Asp., 2007, v. 302, is. 1-3, p. 439–448.
13. Mao Z., Xu H., Wang D. Molecular mimetic self-assembly of colloidal particles. Adv. Functional Materials, 2010, v. 20, is. 7, p. 1053–1074.
14. Lee K., Stoffyn-Egli P., Tremblay G.H., Owens E.H., Sergy G.A., Guenette C.C., Prin- ce R.C. Oil-mineral aggregate formation on oiled beaches: Natural attenuation and sediment relocation. Spill Sci. Technol. Bull., 2003, v. 8, no. 3, p. 285–296.
15. Zhang H., Khatibi M., Zheng Y., Lee K., Li Z., Mullin J.V. Investigation of OMA formation and the effect of minerals. Mar. Poll. Bull., 2010, v. 60, no. 11, p. 1433–1441.
16. Khelifa A., Stoffyn-Egli P., Hill P.S., Lee K. Characteristics of oil droplets stabilized by mineral particles: the effect of oil types and temperature. Spill Sci. Technol. Bull., 2002, v. 8, no. 1, p. 19–30.
17. Venkataraman P., Jingjian T., Etham F. Attachment of a hydrophobically modified biopo-lymer at the oil-water interface in the treatment of oil spills. ACS Appl. Mater. Interfaces, 2013, v. 5, p. 3572–3580.
18. Perminova I.V. Grechishcheva N.Yu., Petrosyan V.S. Relationships between structure and binding affinity of humic substances for polycyclic aromatic hydrocarbons: relevance of molecular descriptors. Environ. Sci. Technol., 1999, v. 33, pp. 3781–3787.
19. Orlov D.S. Himija pochv (Chemistry of soils). Moscow, 1992, 259 p. (in Russian).
20. Kovalevskij D.V., Permin A.B., Perminova I.V., Petrosjan V.S. The choice of conditions of registration for quantitative 13C NMR spectra of humic acids. Vestnik Moskovskogo Universiteta. Cerija 2. Himija. [The Moscow University Herald. Series 2]. Chemistry, 2000, T. 41, no. 1, p. 39–42 (in Russian).
21. Grechishheva N.Yu., Holodov V.A., Vahrushkina I.A., Perminova I.V., Meshcheriakov S.V. Using a model organo-mineral complexes on the basis of humic acids and kaolinite to study the sorption processes of PAHs aquatic and soil environments. Zashhita okruzhajushhej sredy v neftega-zovom komplekse [Environmental protection in oil and gas complex], 2012, no. 5, p. 21–25 (in Russian).
22. Balcke G.U., Kulikova N.A., Hesse S., Perminova I.V., Frimmel F.H. Adsorption of humic substances onto kaolin clay related to their structural features. Soil Sci. Soc. Am. J., 2002, v. 66, p. 1805–1812.
23. Kholodov V.A., Milanovskiy E.Y., Konstantinov A.I., Tyugai Z.N., Yaroslavtseva N.V., Perminova I.V. Irreversible sorption of humic substances causes a decrease in wettability of clay surfaces as measured by a sessile drop contact angle method. J. Soils Sediments, 2017. doi: 10.1007/ s11368-016-1639-3
24. Lee K., Stoffyn-Egli P., Wood P.A., Lunel T. Formation and structure of oil-mineral fines aggregates in coastal environments. Proceedings of the 21st AMOP technical seminar. Ottawa, ON: Environment Canada, 1998, p. 911–921.
25. Lee K., Stoffyn-Egli P. Characterization of oil-mineral aggregates. Proceedings of interna-tional oil spill conference. Washington, DC: American Petroleum Institute, 2001, p. 991–996.
26. Swirling flask dispersant effectiveness test, revised standard dispersant toxicity test, and bio-remediation agent effectiveness. Protection of environment. The Code of Federal Regulations of the United States of America. EPA, Washington, 2010, T. 40, part 300, Appendix C., 534 p.

2016/4
Siljan Ring Structure: Hydrocarbon Origin and Potential
Geosciences

Authors: Alexander S. BUZILOV graduated from Gubkin Russian State University of Oil and Gas. He is PhD student of the Department of Lithology of Gubkin Russian State University (National Research University) of Oil and Gas. He is author of 8 published works. E-mail: 79268863127@yandex.ru
Alexander V. POSTNIKOV graduated from Gubkin Russian State University of Oil and Gas in 1971. He is Doctor of Geology and Mineralogy, professor and Head of the Department of Lithology of Gubkin Russian State University (National Research University) of Oil and Gas. He is author of more than 100 published works, including 4 monographs. E-mail: apostnikov@mtu-net.ru

Abstract: The problems concerning the origin and hydrocarbon potential of the Siljan ring structure are discussed. Reservoirs discovered in the sedimentary section and basement using the core of three wells are shown. The control factors for deve- lopment and distribution of reservoirs within the sedimentary section and basement are presented

Index UDK: 553.982.23:550.812

Keywords: Siljan ring structure, reservoir rocks, core analysi

Bibliography:
1. Moshovich E.V. Principial’no novoe napravlenie neftegazopoiskovyh rabot — izuchenie astroblemnyh lovushek UV. Geologija nefti i gaza, 1991, no. 5, p. 8–11.
2. Gorbatschev R. The Transscandinavin Igneous Belt (TIB) in Sweden: a review of its character and evolution. Geological Survey of Finland, 2004, sp. 37, p. 9-13.
3. Grieve R.A.F. The record of impact on Earth: Implications for a major Cretaceous/Tertiary impact event. In Geological implications of impact of large asteroids and comets on the Earth, edited by L.T. Silver and P.H. Schultz. Geological Society of America, 1982, GSA Special Paper 190, p. 25-37.
4. Grieve R.A.F. The formation of large impact structures and constraints on the nature of Siljan. In Deep drilling in crystalline bedrock. Springer Verlag, 1988, Vol. 1: The deep gas drilling in the Siljan inpact structure, Sweden and astroblemes, edited by A. Boden and K.G. Eriksson, p. 328-348.
5. Harbe Muhamad, Christopher Juhlin, Oliver Lehnert, Guido Meinhold, Magnus Andersson, Maria Garcia Juanatey, Alireza Malehmir. Analysis of borehole geophysical data from the Mora area of the Siljan Ring impact structure, central Sweden. Journal of Applied Geophysics, 2015, Vol. 115, p. 183–196.
6. Lehnert O., Meinhold G., Bergstrom S.M., Calner M., Ebbestad J.O.R., Egenhoff S., Frisk A.M., Hannah J.L., Hogstrom A.E.S., Huff W.D., Juhlin C., Maletz J., Stein H.J., Sturkell E., Vandenbroucke T.R.A. New Ordovician—Silurian drill cores from the Siljan impact structure in central Sweden: an integral part of the Swedish Deep Drilling Program. Geol. Fören. Stockh. Förh, 2012, Vol. 134, p. 87–98.

2016/4
Geochemical Criteria for Zoning Khadum and Baltpashine Suites of Central and East Caucauses
Geosciences

Authors: Vagif Yu. KERIMOV was born in 1949, graduated from Azizbekov Azebaijan Institute of Oil and Petrochemistry. Doctor of geological and mineralogical sciences, professor, head of the Department Theoretical fundamentals of prospecting and exploration of oil and gas of Gubkin Russian State University (National Research University) of Oil and Gas published over 160 works. E-mail: vagif.kerimov@mail.ru
Rustam N. MUSTAEV was born in 1987, graduated from the Orenburg State University majoring in „Geology of oil and gas”, Сandidate of Geological and Mineralogical Sciences, Associate professor of the Department Theoretical fundamentals of prospecting and exploration of oil and gas of Gubkin Russian State University (National Research University) of Oil and Gas. Author of 40 scientific publications and two monographs. Has been studying the Caspian-Black Sea region.
E-mail: r.mustaev@mail.ru
Stanislav S. DMITRYEVSKY was born in 1992, graduated from Department of Geology and Geophysics of the Gubkin Russian State University of Oil and Gas, Engineer I cat. Department of theoretical foundations of prospecting and exploration of oil and gas Gubkin Russian State University (National Research University) of Oil and Gas. E-mail: trudyrgung@gubkin.ru
Nurdin Sh. YANDARBIYEV was born in 1955, graduated from the Geological Faculty of Moscow State University with a degree in „Geology and exploration of oil and gas fields” Candidate of Geological and Mineralogical Sciences, Associate Professor, Department of Geology and Geochemistry of Combustible Minerals Geological Faculty of MSU M.V. Lomonosov.
E-mail: yandarbiev@mail.ru

Abstract: Geochemical criteria for zoning Khadum and Baltpashine Suites of the Central and East Pre-Caucasian region are analyzed. It is concluded that most of Khadum and Baltpashine deposits of the region occur both at the foot and inside the petroleum bearing area. The Khadum deposits in the lowest parts of the Tersk-Caspian foredeep may possibly be part of the low zone of condensate and gasgeneration

Index UDK: 550.8 (479.24)

Keywords: Khadum suite of Pre-Caucasian region, zoning, saturation, geochemical parameters

Bibliography:
1. Guliev I.S., Kerimov V.Ju. Sverhglubokie uglevodorodnye sistemy i tehnologii ih prognoza. Teoreticheskie osnovy i tehnologii poiskov i razvedki nefti i gaza, 2012, no. 1, p. 24.
2. Kerimov V.Ju., Mustaev R.N., Dmitrievskij S.S., Jandarbiev N.Sh., Kozlova E.V. Perspektivy poiskov skoplenij uglevodorodov v slancevyh nizkopronicaemyh tolshhah hadumskoj svity Predkavkaz’ja. Neftjanoe hozjajstvo, 2015, no. 10, p. 50-53.
3. Kerimov V.Ju., Averbuh B.M., Mil’nichuk V.S. Tektonika severnogo Kaspija i perspektivy neftegazonosnosti. Otechestvennaja geologija, 1990, no. 7, p. 23.
4. Kerimov V.Ju., Rachinskij M.Z., Karnauhov S.M., Mustaev R.N. Geotemperaturnoe pole Juzhno-Kaspijskogo bassejna. Otechestvennaja geologija, 2012, no. 3, p. 18-24.
5. Kerimov V.Ju., Halilov Je.A., Mehtiev N.Ju. Paleogeograficheskie uslovija formirovanija Juzhno-Kaspijskoj vpadiny v pliocenovuju jepohu v svjazi s ee neftegazonosnost’ju. Geologija nefti i gaza, 1992, no. 10, p. 5.
6. Kerimov V.Ju., Serikova U.S., Mustaev R.N., Guliev I.S. Neftegazonosnost’ glubokoza-legajushhih otlozhenij Juzhno-Kaspijskoj vpadiny. Neftjanoe hozjajstvo, 2014, no. 5, p. 50-54.
7. Kerimov V.Ju., Mustaev R.N., Senin B.V., Lavrenova E.A. Zadachi bassejnovogo mo- delirovanija na raznyh jetapah geologorazvedochnyh rabot. Neftjanoe hozjajstvo, 2015, no. 4, p. 26-29.
8. Kerimov V.Ju. Modelirovanie neftegazovyh geosistem i osadochnyh bassejnov. Teoreticheskie osnovy i tehnologii poiskov i razvedki nefti i gaza, 2012, no. 1, p. 41.
9. Kerimov V.Ju., Shilov G.Ja., Mustaev R.N., Dmitrievskij S.S. Termobaricheskie uslovija formirovanija skoplenij uglevodorodov v slancevyh nizkopronicaemyh kollektorah hadumskoj svity Predkavkaz’ja. Neftjanoe hozjajstvo, 2016, no. 2, p. 8-11.
10. Kerimov V.Ju., Jandarbiev N.Sh., Mustaev R.N., Dmitrievskij S.S. Ocenka generacionnogo potenciala i geologicheskih resursov uglevodorodov slancevyh nizkopronicaemyh tolshh majkopskoj svity. Trudy RGU nefti i gaza imeni I.M. Gubkina, 2016, no. 1 (282), p. 16-26.
11. Prishhepa O.M., Aver’janova O.Ju., Il’inskij A.A., Morariu D. Neft’ i gaz nizkopronicaemyh slancevyh tolshh — rezerv syr’evoj bazy uglevodorodov Rossii. Trudy VNIGRI. SPb.: FGUP „VNIGRI”, 2014.
12. Kerimov V.Y., Osipov A.V., Mustaev R.N., Monakova A.S. Modeling of petroleum systems in regions with complex geological structure. Sbornik „16th Science and Applied Research Conference on Oil and Gas Geological Exploration and Development”, GEOMODEL 2014.

2016/4
Application of field-geoological methods to improve the accuracy of interwell space structure
Geosciences

Authors: Alexander V. LOBUSEV graduated from Gubkin Moscow Institute of Petrochemical and Gas Industry 1980. He is Dean of the Faculty of Geology and Geophysics, professor. Doctor of Geological and Mineral Sciences. He published over 80 works in the field of petroleum geology. E-mail: nauka_RGU@mail.ru
Sergey N. KUZNETSOV graduated from Gubkin Russian State University of Oil and Gas. He is postgraduate student of the Department of Field Geology of Gubkin Russian State University (National Research University) of Oil and Gas.
E-mail: serkolar@mail.ru

Abstract: There results of the analysis of the indicator fluid injection into the formation are presented. It was found that low-amplitude disturbances are not displayed in seismic profiles. In this regard the results of the injected into the reservoir agent, which distributed in a certain direction, describing the heterogeneity of interwell space were studied

Index UDK: 553.982

Keywords: seismic profiles; tectonic faults; geological model; fluid indicator

Bibliography:
1. Vypolnenie sejsmorazvedochnyh rabot po metodike 3D na uchastke Kechimovskogo mestorozhdenija. Obrabotka i interpretacija materialov 3D. Chast’ 2. Bugul’ma: OOO „TNG-GRUPP”, 2006.’
2. Lobusev A.V., Lobusev M.A., Strahov P.N. Metodika kompleksnoj interpretacii sejsmorazvedki 3D i burenija s cel’ju postroenija geologicheskih modelej zalezhej uglevodorodov. M.: Izdatel’skij centr RGU nefti i gaza imeni I.M. Gubkina, 2012, р. 110.
3. Provedenie rabot po trassernym issledovanijam skvazhin na mestorozhdenijah TPP „Pokachevneftegaz”. Tjumen’: OOO „Tjumen’geofizika”, 2010.
4. Sokolovskij Je.V., Solov’ev G.B., Trenchikov Ju.I. Indikatornye metody izuchenija neftegazonosnyh plastov. M.: Nedra, 1986, p. 157.

2016/4
Considering features of geological structure of carbonate massifs to forecast hydrocarbon deposits of Сaspian cavity
Geosciences

Authors: Oleg S. OBRYADCHIKOV graduated from Gubkin Russian State University of Oil and Gas in 1960. He is Candidate of Geological and Mineralogical Sciences, assistant professor of the Department of Geology of Gubkin Russian State University (National Research University) of Oil and Gas. His scientific interests are related with issues of national and international regional geology, geological modeling in oil and gas industry, salt dome tectonics. He is author of more than 80 scientific publications and co-author of two monographs. E-mail: osobr19@yandex.ru
Lyubov F. GORUNOVA graduated from Gubkin Russian State University of Oil and Gas in 1960. He is Candidate of Geological and Mineralogical Sciences, assistant professor of the Department of Geology of Gubkin Russian State University (National Research University) of Oil and Gas. Her scientific interests are related with issues of the geological structure and prospects of petroleum complexes of the Caspian cavity sediments and areas of connection with outlying structures — Scythian and Turan plates. She is author of more than 20 scientific publications and one textbook. E-mail: luba-gor@mail.ru

Abstract: The article deals with features of geological structure of atoll-like carbonate massifs in the subsalt complex of the Caspian cavity. These are sizable ranging from 8-5 km (Royal) to 16-29 km (Karachaganak) and 10-70 km (Kashagan). The height of the massifs reaches 700-1600m and their amplitude is 900- 1000 m. They differ in terms of formation of the base, the growth dynamics and surface morphology. The uniformity of the formation with the knowledge of the of the internal structure laws allows to build predictive models even relying solely on materials of seismic exploration. This is of great effect for the search, exploration, and development of hydrocarbon deposits

Index UDK: 550.8

Keywords: carbonates, massif, аt Caspian cavity, seismic exploration, oil and gas prospects

Bibliography:
1. Krylov N.A., Avrov V.P. Features of the structure of the lower productive horizons at Tengiz field. Collection of scientific articles „The geological basis for the creation of the at Caspian oil and gas complex”. M.: Nauka, 1990, р. 52-59.
2. Geological and geophysical models of Paleozoic reef and petrogas of the at Caspian cavity. Ed. By U.S. Kononov. M.: Nedra, 1986, 149 p.
3. Geology and petrogas of Karachaganak field. Ed. By U.S. Kononov. Saratov: Published by Saratov university, 1988, 172 p.
4. Maksimov S.S., Obryadchikov O.S. About deep structure and petrogas potential of the South Emba district. Geology of oil and gas, 1984, no. 9, p. 8-12.
5. Marchenko O.N. At Ural oil and gas complex (history of creation and development). Subsoil of Volga and at Caspian, vol. 62, Saratov: NV NIIGG, 2010, p. 50-60.
6. Kalnov U.N., Obryadchikov O.S. Model of geological structure verhnedevon-Bashkir complex Karasulskoy Monocline. Geology of oil and gas, 1997, no. 5, p. 8-12.
7. Medvedev P.V., Morozovsky A.M., Bogdanova T.V. and others. Condition of study, basic geological results and prospects of oil and gas carry subsalt deposits of the Volgograd part of at Caspian cavity. Collection of articles „Questions of geology and petrogas of lower Volga”. Volgograd: DOAO „Volgograd NIPI oil”, 1998, p. 175-194.
8. Obryadchikov O.S. The hypothesis of the formation of the Kama-Kinel system uncompensated deflections and features of the geological structure of the western and northern frames of the at Caspian cavity. Works of ONGK, vol. 4 „Caspian region: geological structure and petrogas”. On the basis of the Second International geological Conference „AtyrauGeo 2013”, Atyrau, april 2013. Almaty, „Color Media”, 2014, p. 188-194.
9. Babasheva M.N. Characteristics of types of formation fluids of deep hydrocarbon deposits of the at Caspian cavity. Workd of ONGC, vol. 3, Atyrau, LLP „Ak Zhaiyk”, 2013, 107 p.
10. Obryadchikov O.S. Features of the geological structure, petrogas and the prospects of finding new unique hydrocarbon deposits in the at Caspian cavity. Works of ONGK, vol. 4 „Caspian region: geological structure and petrogas”. On the basis of the Second International geological Conference „AtyrauGeo 2013”, Atyrau, april 2013. Almaty, „Color Media”, 2014, p. 150-155.
11. Obryadchikov O.S. Features of Geological and structural modeling reef massifes (in Karachaganak example). In Vol. „Problems of basin, geological and hydrodynamic modeling: abstracts of scientific-practical South Russian conference (Volgograd, 3-5 october 2006. Volgograd: „LUKOIL-VolgogradNIPImorneft” 2006, 103 p.

2016/4
Strategy for oil and gas prospecting and exploration on Russian shelf
Geosciences

Authors: Uliana S. SERICOVA graduated from Gubkin Russian State University of Oil and Gas in 2011. Candidate of technical Sciences, Professor of the Department theoretical basics of prospecting and exploration of oil and gas of Gubkin Russian State University (National Research University) of Oil and Gas. The author of over 30 scientific publications. E-mail: lubava45@gmail.com

Abstract: Digital model of a basin, where the accumulated geological information is consistently systematized and analyzed, contributes to the efficiency and safety of prospecting, exploration and development of offshore oil and gas fields at any stage of oil and gas exploration. Corroboration assessment of the resource potential depends directly on the correct choice of the geological model. The correctness of the model, in turn, depends on the completeness and quality of the geological information used, which are determined by the state of knowledge of the site and surrounding areas and the correct interpretation of this information. An important criterion affecting the reliability of the geological models of promising sites and areas and the quantitative prediction of their resource potential is the degree of the development of the area. A special role in evaluating promising new areas is given to stratigraphic-prospect wells, which provide data both for the calibration of seismic parameters of the section and construction of its reliable stratification, as well as characteristics of petroleum-geological properties of the sedimentary cover. The lack of these wells significantly reduces the quality of geological models of promising new fields on the Shelf and, consequently, the reliability of its potential assessment

Index UDK: 553.041

Keywords: basin modeling, search strategy, offshore Russia, forecast evaluation, geological model, drilling, offshore, Arctic

Bibliography:
1. Bogojavlenskij V.I. Arktika i Mirovoj okean: sovremennoe sosto-janie, perspektivy i problemy osvoenija resursov uglevodorodov. Monografija. M.: VJeO, 2014, р. 11-175.
2. Bogojavlenskij V.I., Bogojavlenskij I.V. Na poroge arkticheskoj jepopei. Osvoenie morskih mestorozhdenij nefti i gaza v Arktike i drugih akvatorijah Rossii. Neft’ Rossii, 2015, no. 4, p. 25-30.
3. Bogojavlenskij V.I. Dostizhenija i problemy geologorazvedki i TJeK Rossii. Burenie i neft’, 2013, no. 3, p. 3–7.
4. Bogojavlenskij V.I., Bogojavlenskij I.V. Gorizonty severnogo shel’fa. Osnovnye rezul’taty, perspektivy i problemy osvoenija resursov nefti i gaza Arktiki. Offshore [Russia], fevral’ 2016, p. 24-27.
5. Dzhafarov I.S., Kerimov V.Ju., Shilov G.Ja. Shel’f, ego izuchenie i znachenie dlja poiskov i razvedki skoplenij nefti i gaza. Spb.: Nedra, 2005.
6. Kerimov V.Ju., Shilov G.Ja., Serikova U.S. Strategija i taktika osvoenija uglevodorodnyh resursov na shel’fe RF. Neft’, gaz i biznes, 2014, no. 7, p. 28–34.
7. Kerimov V.Ju. i dr. Sedimentologo-facial’noe modelirovanie pri poiskah, razvedke i dobyche skoplenij uglevodorodov. Rossijskij gos. un-t nefti i gaza im. I.M. Gubkina. M., 2010.
8. Kerimov V.Ju., Mustaev R.N., Serikova U.S. Proektirovanie poiskovo-razvedochnyh rabot na neft’ i gaz Uchebnoe posobie. M., 2015.
9. Kerimov V.Ju., Mustaev R.N., Senin B.V., Lavrenova E.A. Zadachi bassejnovogo mo- delirovanija na raznyh jetapah geologorazvedochnyh rabot. Neftjanoe hozjajstvo, 2015, no. 4, p. 26–29.
10. Kerimov V.Ju., Tomas Hantshel, Sokolov K., Sidorova M.S. Primenenie tehnologii bassejnovogo modelirovanija — programmnogo paketa Retromod v uchebnom processe RGU nefti i gaza im. I.M. Gubkina. Neft’, gaz i biznes, 2011, no. 4, p. 38–47.
11. Kerimov V.Ju., Mustaev R.N., Tolstov A.B. Metodologija proektirovanija v neftegazovoj otrasli i upravlenie proektami Uchebnoe posobie. M., 2016. Ser. Magistratura.
12. Kerimov V.Ju. Modelirovanie neftegazovyh geosistem i osadochnyh bassejnov. Teoreticheskie osnovy i tehnologii poiskov i razvedki nefti i gaza, 2012, no. 1, p. 41.
13. Laverov N.P., Dmitrievskij A.N., Bogojavlenskij V.I. Fundamental’nye aspekty osvoenija neftegazovyh resursov Arkticheskogo shel’fa Rossii. Arktika: jekologija i jekonomika, 2011, no. 1, p. 26–37.
14. Senin B.V. Kljuch k kladovym rossijskogo shel’fa. Jekonomika i TEK segodnja, 2010, no. 12, p. 49–51.
15. Serikova U.S. Stanovlenie i razvitie nauchnyh znanij i tehniki osvoenija neftegazovyh resursov Kaspijskogo regiona Neft’, gaz i biznes, 2013, no. 8, p. 34–39.
16. Serikova U.S. Sostojanie syr’evoj bazy neftegazovogo kompleksa Kaspijskogo regiona i prognoz dobychi uglevodorodov. Neft’, gaz i biznes, 2013, no. 7, p. 34–41.
17. Serikova U.S. Zul’fugarova N.I. Istorija stanovlenija i osnovnye jetapy razvitija neftegazovoj promyshlennosti v Kaspijskom regione. Istorija i pedagogika estestvoznanija, 2013, no. 2, p. 15–21.
18. Serikova U.S. Mirovaja istorija osvoenija resursov nefti i gaza v morskih akvatorijah. Neft’, gaz i biznes, 2015, no. 9, p. 13–16.
19. Serikova U.S. Osobennosti sovremennogo jetapa razvitija morskoj neftegazovoj otrasli v Rossii i za rubezhom. Transport i hranenie nefteproduktov i uglevodorodnogo syr’ja, 2015, no. 4, p. 38–42.
20. Senin B., Lavrenova E.A., Keromov V., Serikova U.S. Numeric basin modeling at different stages of oil and gas prospecting. V sbornike: 16th Sci-ence and Applied Research Conference on Oil and Gas Geological Exploration and Development, GEOMODEL, 2014.

2016/4
Modeling elastic properties of Surgut crest neocomian clinoform complex
Geosciences

Authors: Yulia S. SINYAKINA graduated from Gubkin Russian State University of Oil and Gas in 2012. Postgraduate student of the Department of Geophysical Information Systems of Gubkin Russian State University (National Research University) of Oil and Gas. Research interests: the study of complex clastic reservoirs of oil and gas, modeling of rocks elastic properties. She is author of 2 scientific publications. E-mail: Y.Sinyakina@mail.ru
Tatiana F. SOKOLOVA graduated from Moscow Institute of Petrochemical and Gas Industry in 1971. Candidate of Geological and Mineralogical Sciences, assistant professor of the Department of Geophysical Information Systems of Gubkin Russian State University (National Research University) of Oil and Gas. She is an expert in the integrated well log analysis of complicated clastic, carbonate and volcanic reservoirs. Tatiana F. Sokolova is author of more than 60 scientific publications.
E-mail: trudyrgung@gubkin.ru
Elena O. MALYSHEVA Candidate of Geological and Mineralogical Sciences, 25 years of experience in lithological and facies studies clastic and carbonate sediments by well data and outcrops, 12 years of experience in complex seismic interpretation, including using inversion techniques. E-mail: trudyrgung@gubkin.ru

Abstract: The results of modelling of elastic properties of formation of one of the fields in Western Siberia are presented. The modeling was performed in order to analyze the possibilities of seismic inversion methods to predict reservoirs in the interwell space. The impact of porosity, clay content and saturation changes on the elastic characteristics of formation was studied in order to determine quantitative criteria to identify reservoir rocks in the studied sediments

Index UDK: 550.8

Keywords: Well log data analysis, Rock Physics modeling (well logging data), seismic inversion

Bibliography:
1. Latyshova M.G., Martynov V.G., Sokolova T.F. Prakticheskoe rukovodstvo po interpretacii dannyh GIS: Uch. posobie dlja vuzov. M.: OOO „Nedra-Biznescentr”, 2007, p. 327.
2. Sokolova T.F., Popravko A.A. Problemy modelirovanija uprugih svojstv porod po dannym geofizicheskih issledovanij skvazhin dlja celej sejsmicheskih inversij. Zbirnik naukovih prac’ Ukr DGRI, 2012, no. 4, p. 139-157.
3. Mavko G., Mukerji T., and Dvorkin J. The Rock Physics Handbook, Second Edition. — Cambridge University Press, 2009. — 511 p.
4. Sams M., Focht T. An effective inclusion-based rock physics model for a sand—shale sequence. First Break, vol. 31, no. 3, march 2013, p. 61-71.
5. Hilterman Fred Dzh. Interpretacija amplitud v sejsmorazvedke: Per. s angl. F.Dzh. Hilterman. Tver’: GERS, 2010, p. 251.
6. Daudina D.A., Korjakova K.A. Prognoz kollektorov neokomskogo kompleksa Zapadnoj Sibiri c ispol’zovaniem akusticheskoj inversii i sikvens-stratigrafii. Tezisy 5-j mezhdunarodnoj geologo-geofizicheskoj konferencii „Sankt-Peterburg 2012. Nauki o Zemle: novye gori-zonty v osvoenii nedr”, g. Sankt-Peterburg, 2-5 aprelja 2012 g., p. 1-4.
7. Zadorina E.A. Issledovanie parametrov geostatisticheskoj inversii dlja prognoza kollektorskih svojstv po dannym sejsmorazvedki. Diss. kand. tehn. nauk. M., 2015, p. 117.
8. Kozlov E.A. Modeli sredy v razvedochnoj sejsmologii. Tver’: GERS, 2006, p. 480.
9. Sejsmostratigrafija kak instrument geologicheskoj interpretacii sejsmicheskih dannyh klassicheskie primery. E.O. Malysheva, V.V. Bykov, D.A. Daudina, M.L. Evdokimova, T.F. Sokolova. Tezisy 5-j mezhdunarodnoj geologo-geofizicheskoj konferencii „Sankt-Peterburg 2012. Nauki o Zemle: novye gorizonty v osvoenii nedr”, g. Sankt-Peterburg, 2-5 aprelja 2012 g., p. 1-4.
10. Syngaevskij P.E., Hafizov S.F., Shimanskij V.V. Glubokovodnye konusy vynosa i turbidity. Modeli, ciklostratigrafija i primenenie rasshirennogo kompleksa GIS. M.-Izhevsk: Institut kom-p’juternyh issledovanij, 2015, p. 480.
11. Filippova K.E., Kljazhnikov D.V. Rezul’taty primenenija deterministicheskoj akusti-cheskoj inversii dlja utochnenija stratigraficheskoj modeli plastov gruppy JuV1-JuV2. Tezisy mezhdunarodnoj geologo-geofizicheskoj konferencii „Tjumen’ - 2009. K jeffektivnosti cherez sotrudnichestvo”, g. Tjumen’, 2-5 marta 2009 g., p. 1-4.
12. Avseth P., Mukerji T., Mavko G. Quantitative Seismic Interpretation. Applying Rock Physics Tools to Reduce Interpretation Risk. — Cambridge University Press, 2010. — 359 p.
13. Juhasz I. Assessment of the Distribution of Shale, Porosity and Hydrocarbon Saturation in Shaly Sands. 10th European Formation Evaluation Symposium, 1986.
14. Odegaard E., Avseth P. Interpretation of elastic inversion results using rock physics templates. EAGE Annual Meeting Extended Abstracts, 2003.

2016/4
Fracture reorientation in horizontal wells with multistage hydraulic fracturing
Geosciences

Authors: Regina D. KANEVSKAYA graduated from Gubkin Russian State University of Oil and Gas in 1983. She is Professor, Head of the Department of Applied Mathematics and Computer Modeling of Gubkin Russian State University (National Research University) of Oil and Gas. She is author more than 100 scientific works, including 3 monographs. She has prepared 6 Ph.D students. E-mail: pmkm2014@yandex.ru
Andrei A. PIMENOV graduated from Gubkin Russain State University of Oil and Gas in 2012. He completed graduate studies at the Department of Applied Mathematics and Computer Modeling at Gubkin State University of Oil and Gas 2012-2015. He is leading engineer of the Dept. of Oilfields Development at OOO „BashNIPIneft”. E-mail: Andrej_pimenov@mail.ru

Abstract: geomechanical problem of determining the stress-strain state of the formation with hydraulic fractures is described. An algorithm for solving this problem based on the displacement discontinuity method, allowing to consider in detail both the hydraulic fracture, and natural fractures in the formation is proposed. The stress-strain state is calculated for the reservoir in the vicinity of horizontal well borehole with multistage hydraulic fracturing. The conditions when the reorientation of cracks multistage hydraulic fracturing is possible are determined. Hydrodynamic simulations allowing to estimate the production of horizontal wells with multi-stage fracturing with different wellbore and fracture system configuration are performed

Index UDK: 51.72; 622.276.66

Keywords: geomechanical model, multistage hydraulic fracturing, hydraulic fracture reorientation, stress-strain state of reservoir, displacement discontinuity method

Bibliography:
1. http://www.eia.gov/todayinenergy/detail.php?id=25372 (Accessed 01.09.2016).
2. Barenblatt G.I. On certain problems of the theory of elasticity arising in the studies of the mechanism of the hydraulic fracturing of the oil-bearing strata. Prikladnaya Matematika i Mekhanika [Applied Mathematics and Mechanics (PMM)], 1956, vol. 20, no. 4, p. 475–486 (in Russian).
3. Zheltov Yu., Christianovich S. About hydraulic fracturing oil layer. Izvestiya USSR. Ac. Sci. Techn. Sci., 1955, no. 5, p. 3–41 (in Russian).
4. Perkins T.K., Kern L.R. Widths of hydraulic fractures. J. Petrol. Technol, 1961, vol. 13, no. 9, p. 937–949.
5. Hubbert M.K., Willis D.G. Mechanics of Hydraulic Fracturing. Transactions of Society of Petroleum Engineers of AIME, 1957, vol. 210, p. 153–168.
6. Terzaghi, K. The shearing resistance of saturated soils. Proc. Int. Conf. Soil Mech. Found. Eng. 1st, 1936, p. 54–55.
7. Biot M.A. General Theory of Three Dimensional Consolidation. Journal of Applied Physics, 1941, vol. 12, no. 2, p. 155–161.
8. Biot M.A. Mechanics of Deformation and Acoustic Propagation. Journal of Applied Physics, 1962, vol. 33, no. 4, p. 1482–1498.
9. Nikolaevskii V.N. Sobranie trudov. Geomehanika. T. 1. Razrushenie i dilatansiya. Neft i gaz. T. 1 [Complete works. Geomechanics Vol. 1: Destruction and dilatancy. Oil and Gas. Vol. 1], Moscow.: IKI, 2010, 640 p.
10. De Boer R. Theory of porous media. Highlights in historical development and current state. Berlin: Springer, 2000, 634 p.
11. Crouch S.L., Starfield A.M. Metody granichnyh elementov v mehanike tverdogo tela. Moscow.: MIR, 1987, 328 p.
12. Banerjee P.K., Butterfield R. Metody granichnyh elementov v prikladnyh naukah. Moscow.: MIR, 1984, 494 p.
13. Economides M.J., Nolte K.G. Reservoir Stimulation. Third Edition. Wiley, 2000, 856 p.
14. Maltsev V.V., Asmandiyarov R.N., Baikov V.A., Usmanov T.S., Davletbaev A.Y. Testing of auto hydraulic-fracturing growth of the linear oilfield development system of Priobskoye oil field. Neftyanoe khozyaystvo-Oil Industry, 2012, no. 5, p. 70–73 (Russian).

2016/4
Geodynamic safety of “Chusova-Berezniki-Solikamsk” gas pipelines
Geosciences

Authors: Mikhail M. ZADERIGOLOVA graduated from the Dnepropetrovsk Mining Institute in the 1962. He is Candidate of Technical Sciences, Chief Specialist LLC „GEOTEK”. Аuthor of over 130 scientific papers and patents in the field of geodynamic safety of large-scale projects. E-mail: geotec.mz@mail.ru
Alexey S. LOPATIN graduated from Gubkin Moscow Institute of Petrochemical and Gas Industry in 1979. He is Doctor of Technical Sciences, professor, Head of Dept. of Termodynamics and Heat Engines of Gubkin Russian State University (National Research University) of Oil and Gas. Аuthor of over 350 papers in the field of diagnostics, energy saving in the transport of gas, energy efficiency. E-mail: Lopatin.a@gubkin.ru
Sergey P. SUSLIKOV graduated from Krasnodar Polytechnic Institute in 1983. He is Director General of OOO „Gazprom Transgaz Chaykovskiy”. Аuthor of more than 20 papers in the field of improving the reliability and efficiency of the gas mains.
E-mail: 24310@ptg.gazprom.ru

Abstract: Methods and technology for the control and monitoring of the upper part of the geological section and its surface used in the industry allow only to record events that have already occurred and are unable to predict large-scale sinkholes near the pipeline. Thus, the evaluation of the technical condition of the „Chusovoy-Berezniki-Solikamsk” pipeline is largely limited to determining a stress-strain state of the pipe without taking into account the external effects of the soil. One of the feasible solutions to the problem might be to include the radio wave methods, which have been successfully applied at a number of facilities of PJSC „Gazprom”

Index UDK: 621.6

Keywords: risk, accident, gas pipeline, dangerous geological processes, geodynamic safety, diagnostics of soils, radio-wave method, geotechnical monitoring

Bibliography:
1. Radiovolnovaja sistema monitoringa opasnyh geologicheskih processov na gazoprovode s. Dzaurikau — g. Chinval. O.E. Aksjutin, S.V. Alimov, M.Ju. Mitrohin, A.N. Kolotovskij, A.V. Zavgorodnev, A.Ju. Astanin, M.M. Zaderigolova. Gazovaja promyshlennost’, 2015, no. 3, p. 28-32.
2. Zaderigolova M.M., Lopatin A.S., Seredenok V.A. Monitoring opasnyh geologicheskih processov dlja obespechenija bezopasnosti gazotransportnyh sistem. Neft’, gaz i biznes, 2015, no. 3, p. 41-43.
3. Zaderigolova M.M., Lopatin A.S. Primenenie radiovolnovogo metoda kontrolja dlja obespechenija bezopasnosti gazotransportnyh sistem. M.: Izd. centr RGU nefti i gaza imeni I.M. Gubkina, 2014, 72 p.
4. Zaderigolova M.M. Sposob monitoringa lokalnyh neodnorodnostej i geodinamicheskih zon verhnej chasti geologicheskogo razreza VCHR. Patent RF № 2363965 ot 10.08.2009 g.
5. Zaderigolova M.M. Radiovolnovyj metod v inzhenernoj geologii i geojekologii. M.: Izd-vo MGU, 1998, 320 p.
6. Zaderigolova M.M. Obespechenie geodinamicheskoj bezopasnosti gazotransportnyh sistem radiovolnovymi metodami. M.: Nauchnyj mir, 2009, 398 p.