Extended Search

- in all fields
- in the title
- in key words
- in the abstract
- in the bibliography
Issue
Name
Authors
Category
2015/4
Х-ray tomography for study of oil and gas reservoir systems
Geosciences

Authors: Andrey A. ABROSIMOV graduated from Gubkin Russian State University of Oil and Gas in 2013. He is postgraduate student of the Department of Geophysical Information Systems of Gubkin Russian State University of Oil and Gas. He specializes in the field of petrophysics of oil and gas reservoirs. He is author of 6 scientific publications and 2 patents.
E-mail: Andreich.gis@gmail.com

Abstract: The article discusses the effect of lithological and petrophysical heterogeneity and pore space structure on reservoir properties (RP) of rocks and, in particular, we studied the effect on reservoirs using X-ray computed tomography (CT). The study of the internal structure of reservoir systems of magmatic and sedimentary rocks shows the influence of lithology on their morphology. The clastic and crystalline differences pertaining to both porous and complex type collectors are considered among sedimentary rocks. The influence of lithological and petrophysical heterogeneity of the studied sample and its size on the values of the parameters of reservoir properties and, porosity in particular, is shown. The functional dependence of the transfer of the values of thin section for a microobject to its reservoir value is suggested

Index UDK: УДК 552.086

Keywords: tomography, heterogeneity, scale factor, porosity

Bibliography:
1. Hanin A.A. Porody-kollektory nefti i gaza i ih izuchenie. M.: Nedra, 1969, 368 p.
2. Gimatudinov Sh.K., Shirkovskij A.I. Fizika neftjanogo i gazovogo plasta. M.: Nedra, 1982, 311 p.
3. Mihajlov N.N. Fizika neftjanogo i gazovogo plasta. M.: MAKS Press, 2008, 448 p.
4. Kotjahov F.I. Fizika neftjanyh i gazovyh kollektorov. M.: Nedra, 1977, 287 p.
5. Amiks D., Bass D., Uajting R. Fizika neftjanogo plasta. M.: Gostoptehizdat, 1962, 572 p.
6. Proshljakov B.K., Ga’janova T.I., Pimenov Ju.G. Kollektorskie svojstva osadochnyh porod na bol’shih glubinah. M.: Nedra, 1987, 200 p.
7. Gudok N.S., Bogdanovich N.N., Martynov V.G. Opredelenie fizicheskih svojstv neftesoderzhashhih porod (uchebnoe posobie). M.: Nedra, 2007, 592 p.
8. Malinin V.F., Kosolapov A.F. Sposob opredelenija struktury porovogo prostranstva gornyh porod. AS № 697884 (SSSR). Opubl. v B.I., 1965.
9. Kulikova N.G. Sposob nasyshhenija parovogo prostranstva estestvennyh pli iskusstvennyh obrazcov gornyh porod. AS № 922425 (SSSR). Opubl. v B.I., 1966.
10. Bagrinceva K.I. Uslovija formirovanija i svojstva karbonatnyh kollektorov nefti i gaza. M.: RGGU, 1999 (II), 285 p.
11. Dobrynin V.M. Deformacii i izmenenija fizicheskih svojstv kollektorov nefti i gaza. M.: Nedra, 1970, 150 p.
12. Bagrinceva K.I. Treshhinovatost’ osadochnyh porod. M.: Nedra, 1982, 256 p.
13. Dzeban’ I.P. Akusticheskij metod vydelenija kollektorov s vtorichnoj poristost’ju. M.: Nedra, 1981, 160 p.
14. Sidorchuk A.I., Ryskal’ O.E. Prognozirovanie i ocenka treshhinnoj poristosti po kompleksu novyh metodov GIS. NTV „Karotazhnik”, 2003, no. 113, p. 141-151.
15. Smehov E.M. Treshhinovatost’ gornyh porod i treshhinnye kollektory. L.: Gosudarstvennoe nauchno-tehnicheskoe izdatel’stvo neftjanoj i gorno-toplivnoj literatury. 1962. — 254 p.
16. Belonovskaja L.G., Gmid L.P. Rol’ treshhinovatosti v formirovanii jomkostno-fil’tracionnogo prostranstva slozhnyh kollektorov. Neftegazovaja geologija. Teorija i praktika, 2007, no. 2, p. 30–48.
17.
Chernyshev S.I. Treshhiny gornyh porod. M.: Nauka, 1983, 240 p.
18. Viktorin V.D. Vlijanie osobennostej karbonatnyh kollektorov na jeffektivnost’ razrabotki neftjanyh zalezhej. M.: Nedra, 1988, 149 p.
19. Dmitrievskij A.N. Sistemnyj litologo-geneticheskij analiz neftegazonosnyh osadochnyh bassejnov. M.: Nedra, 1983, 230 p.
20. Terent’ev V.F., Kolmakov A.G., Kurganova Ju.A. Teorija i praktika povyshenija nadezhnosti i rabotosposobnosti konstrukcionnyh metallicheskih materialov: uchebnoe posobie. Ul’janovsk: UlGTU, 2010, 268 p.
21. Protod’jakonov M.M., Chirkov S.E. Treshhinovatost’ i prochnost’ gornyh porod v massive. M.: Nauka, 1964, 69 p.

2015/4
Рrospective of oil-and-gas content of the verkhnepaleozoysky complex of East Ustyurt (republic of Uzbekistan)
Geosciences

Authors: Vadim V. MASLOV graduated from Gubkin Russian State University of Oil and Gas in 1995. He is Candidate of Geological and Mineralogical Sciences, associate professor of the Department of Geology of Gubkin Russian State University of Oil and Gas. His research interests are related to the investigation of the geological structure and petroleum potential of the Upper Paleozoic complex deposits in the Ustyurt region, as well as oil and gas potential shelves of marginal seas. He is author of more than 10 scientific publications and co-author of 1 monograph. E-mail: maslov.v@gubkin.ru
Pavel V. GAVRILOV graduated from Gubkin Russian State University of Oil and Gas in 2014. He works as leading expert in „Gazprom International”. E-mail: trydyrgung@gubkin.ru

Abstract: The article considers new geological and geochemical data of oil and gas potetial of the Upper Paleozoic complex of the Eastern Ustyurt.

Index UDK: УДК 550.3

Keywords: pper Paleozoic sediments, Eastern Ustyurt, gas-liquid chromatography, hydrocarbon potential

Bibliography:
1. Geology and prospects of oil-and-gas content Upper Paleozoic deposits of the Ustyurt region. V.P. Gavrilov, N.B. Gulyaev, N.B. Gibshman, S.M. Karnaukhov, V.V. Maslov, V.V. Ogorodnikov, V.V. Rybalchenko. M.: Nedra, 2014, р. 247.
2. Gafarov N.A., Gulev V.L., Karnaukhov S.M., etc. A new view on prospects of oil-and-gas content of the East Ustyurt. M: Nedra, 2010, 261 р.

2015/4
Lithofacies characteristic of miocene deposits within middle part of Song Hong basin (northern shelf of Vietnam) with prospects for oil and gas potential
Geosciences

Authors: Elena A. LEONOVA graduated from Gubkin Russian State University of Oil and Gas in 1996, she is Candidate of Geological and Mineralogical Sciences, assistant professor of the Department of Geology of Gubkin Russian State University of Oil and Gas. She specializes in the field of geology and lithology of the oil and gas fields. She is author of more than 30 scientific publications. E-mail: leonovae@gubkin.ru

Abstract: Lithofacies characteristic of the Miocene deposits of the middle part of the Song Hong basin (Northern shelf of Vietnam) is considered. The description of typical sections is given. High oil and gas potential of the Miocene complex is proved. Recommendations for further exploration works are provides

Index UDK: УДК 550.8

Keywords: oil and gas potential, lithofacies characteristics, Northern shelf of Vietnam

Bibliography:
1. Geolgical construction and oil and gas potential of northern offshore part of Vietnam (Song Hong trough). V.P. Gavrilov, V.L. Gulev, S.M. Karnaukhov and others: in two parts. Moscow: Nedra, 2014. Р 1. 182 р., Р. 2. 167 р.
2. Gavrilov V.P., Leonova E.A., Rybalchenko V.V. Mud volcanism and oil and gas potential of Song Hong trough (Northern shelf of Vietnam). Proceedings of the Russian state University of oil and gas named after I. M. Gubkin, 2011, no. 4 (265), p. 28-37 (in Russian).
3. The problem of carbon dioxide contamination of Songhong basin deposits (Northern shelf of Vietnam). V.P. Gavrilov, E.A. Leonova, S.P. Mikhailenko and others. Gas industry, 2015, no. 02 (718), p. 40-43.

2015/4
Using horizontal wells to predict approximate basic indicators of gas and gas condensate fields development
Geosciences

Authors: Zagid S. ALIEV (born 1935) graduated from Azibekov Azerbaijani Industrial Institute in 1957. He is Professor of the Department of Gas and Gas Condensate Field Development and Operation. He has worked as the head and executive of projects of development of oil and gas fields of Russia, Iran, Iraq, Vietnam, Kazakhstan, Algeria, Germany, etc., and also author of normative documents of JSC Gazprom such as instructions, manuals, standards for enterprises. He is author of 365 publications, including 35 monographs and 30 specialzed brochures. E-mail: rgkm@gubkin.ru

Elena M. KOTLYAROVA graduated from Gubkin Russian State University of Oil and Gas in 1988. She is Candidate of Technical Sciences, associate professor of the Department of Gas and Gas Condensate Field Development and Operation. She is expert in the field of development and operation of gas and gas-condensate fields and UGS. She is author of more than 30 publications, including 1 monograph. E-mail: kotlyarova_gubkin@mail.ru

Abstract: The use of horizontal wells for approximate prediction of major indicators of gas and gas condensate fields development is proposed. This is necessary for the design of planned horizontal wells which depend on the nature of flow characteristics changes and can ensure maximum oil recovery and long-term trouble-free operation

Index UDK: УДК 551

Keywords: planned horizontal well, average flow coefficients, approximate prediction of development indicators, profile of pay zone tapping, multilateral horizontal well, construction of horizontal wells

Bibliography:
1. Aliev Z.S., etc. Impractical and impossible to study the horizontal gas wells in the stationary mode filtering. Gas industry, 2014, no. 1.
2. Aliev Z.S., etc. Theoretical and technological basis for the use of horizontal wells for the development of gas and gas condensate fields. M.: Nedra, 2014, 450 p.
3. Aliev Z.S., etc. Features of control of development of fields at their development by horizontal wells with sunflower pattern. M.: Nedra, 2014, 277 p.
4. Aliev Z.S., etc. The available theoretical bases of a method of research of horizontal gas wells on the stationary modes of a filtration. M.: Works RGU of oil and gas, 2013, no. 3.

2015/4
Вench tests of gas dispersing stages ds-100 in gas-liquid medium
Geosciences

Authors: Alexey V. DENGAEV graduated the Master’s degree from Gubkin Russian State University of oil and gas by specialty „Well operation in abnormal conditions” in 2001. He is Candidate of Technical Sciences, Associate Professor of the Department of Development and Operation of Oil Fields of Gubkin Russian State University of Oil and Gas. He specializes in the oil field exploitation. He is the author of more than 73 publications. E-mail: Nttm_smena@mail.ru
Vladimir S. VERBITSKY Graduated from Gubkin Russian State University of Oil and Gas in 2000. He is Candidate of Technical Sciences, Assistant Manager of the Department of Development and Operation of Oil Fields of Gubkin Russian State University of Oil and Gas, Associate Professor. He is specialist in the field of exploitation of oil fields. He is the author of more than 76 publications. E-mail: VSVerbitsky@gmail.com
Oleg G. ZUBKOV is Director for Development at OOO „Izhnefteplast”. He is specialist in oil production engineering. He is the author of more than 36 publications. E-mail: zubkov.og@izhnefteplast.com
Dmitry V. KOSHKIN is Head of Dept. of reliability and testing at OOO „Izhnefteplast”. He is Candidate of Technical Sciences. He is specialist in oil production engineering. He is the author of more than 19 publications. E-mail: koshkin.dv@izhnefteplast.ru

Abstract: To protect the electrical submersible pump from the harmful effect of free gas when pumping out production fluid the current research activities are focused on the study of construction and technological characteristics of mechanical disperse systems. These are typically devices for gas phase fragmentation in the oil-gas mixture in the suction pipe. One of the technical solutions can be dispersing stages integrated into the electrical submersible pump unit (ESPU). Gubkin University specialists have developed the method of testing disperse devices to determine the optimal ESPU design for specified geological conditions.

Index UDK: УДК 622.276.53

Keywords: dispersing stages, electric submersible pump, gas-liquid mixture, nonassociated gas, method of research, experimental stand

Bibliography: 1. Statistics. Oil and gas vertical, 2015, no. 6, p. 69.
2. Dengaev A.V., Drozdov A.N., Verbitsky V.S. Research the causes of „flight” as a part of the ESP gas separators. Territory Neftegaz, 2005, no. 11, p. 50-54.
3. Drozdov A.N. Development of the method of calculation of the characteristics of a submersible centrifugal pump with the operation of wells with low pressure at the entrance to the pump. Dissertation. M., 1982, 212 p.
4. Vasiliev N., Maksutov R.A., Bashkirov A.I. Experimental study of the structure of the oil and gas flow in the flowing wells. Oil Industry, 1961, no. 4, p. 41-44.
5. Dengaev A.V. Improving the efficiency of operation of wells with submersible centrifugal pumps when pumping gas-liquid mixtures. Dissertation. M., 2005, 215 p.

2015/4
Еstimation of permeability tensor by numerical simulation of fluid flow in porous media digital model
Geosciences

Authors: Sergey S. ARSENYEV-OBRAZTSOV was born in 1951. He graduated from Gubkin Moscow Institute of Petrochemical and Gas Industry in 1975. He is Candidate of Technical Sciences, Associate Professor of the Department of Applied Mathematics and Computer Modeling, director of the High Performance Computing Centre of Gubkin Russian State University of Oil and Gas. He is specialist in high performance computer simulation of complica- ted multiphysics processes. He is author of more than 50 publications. E-mail: arseniev@gubkin.ru

Abstract: On the basis of direct fluid flow simulation using a porous media digital model obtained from computer microtomography of the core sample an adaptive algorithm for the estimation of the full permeability tensor and its principle parametres is proposed. A sequential method for the estimation of parameters of the generalized nonstationary Darcy law and influence of its components on the filtration process is proposed. Applying the inverse interpolation method an algorithm for adaptation of one-parameter porous media digital model to the results of the laboratory core tests is presented.

Index UDK: УДК 519.87

Keywords: computer microtomography, porous media digital model, full permeability tensor, numerical solution of Navier-Stokes equations.

Bibliography:
1. Arsen’ev-Obrazcov S.S. Chislennoe modelirovanie mikrotechenij v poristoj srede po rezul’tatam 3D komp’juternoj tomografii. Sbornik tezisov dokladov IX Vserossijskoj nauchno-tehnicheskoj konferencii „Aktual’nye problemy razvitija neftegazovogo kompleksa Rossii”, 30 janva-rja — 1 fevralja 2012 g. M.: Izdatel’skij centr RGU nefti i gaza imeni I.M. Gubkina, 2012, chast’ II, р. 85.
2. Arsen’ev-Obrazcov S.S. Modelirovanie dvuhfaznogo techenija na komp’juternoj mikromodeli poristoj sredy, sbornik tezisov dokladov X Vserossijskoj nauchno-tehnicheskoj konferencii „Aktual’nye problemy razvitija neftegazovogo kompleksa Rossii”, 10–12 fevralja 2014 g. M.: Izdatel’skij centr RGU nefti i gaza imeni I.M. Gubkina, 2014, p. 256.
3. Flannery B.P., Deckman H.W., Roberge W.G. and D’Amico K.L. Three-Dimensional X-ray Microtomography. Science, 1987, 237 (4821), p. 1439-1444.
4. Carman P.Z. Flow of Gases through Porous Media. Butterworths, London (1956).
5. Durlofsky L.J. Numerical calculation of equivalent grid block permeability tensors for heterogeneous porous media, 1991, Water Res. Res., v. 27, p. 699-708.
6. Kirkpatrick S. Percolation and conduction. Reviews of Modern Physics 45, no. 4 (1973), p. 574-588.
7. Pan C., Hilpert M., Miller C.T. Pore-scale modeling of saturated permeabilities in random sphere packings. Phys. Rev. E: Stat. Phys., Plasmas, Fluids. 64 (2001).
8. Acharya R.C., Van Der Zee, S.E.A.T.M, Leijnse A. Porosity-permeability properties generated with a new 2-parameter 3D hydraulic pore-network model for consolidated and unconsolidated porous media. Adv. Water Res. 27, p. 707–723 (2004).
9. Lindquist, W.B.: Network flow model studies and 3D pore structure. Contemporary Mathematics, 295 (2002), p. 355-366.
10. Schena G., Favretto S. Pore space network characterization with sub-voxel definition. Transp. Porous Media. 70 (2), p. 181–190 (2007).
11. Succi S. The Lattice Boltzmann Equation: For Fluid Dynamics and Beyond. Series Numerical Mathematics and Scientific Computation. Oxford University Press, Oxford (2001).

2015/4
Scenarios of emergency situations at gas mains compressor stations
Geosciences

Authors: Alan M. REVAZOV graduated from North Caucasian Institute of Mining and Metallurgy in 1983. He is Doctor of Technical Sciences, professor of the Department of Gas and Oil Pipelines and Storage Facilities Construction and Repairs of Gubkin Russian State University of Oil and Gas. He is specialist in process safety in oil and gas industry. E-mail: alanrevazov@rambler.ru
Igor’ A. LEONOVICH graduated from Polotsk State University in 2013. He is postgraduate student of the Department of Gas and Oil Pipelines and Storage Facilities Construction and Repairs of Gubkin Russian State University of Oil and Gas.
E-mail: ned.flander@mail.ru

Abstract: We analyzed the issue of possible emergency at gas main compressor stations. Key parameters characterizing accidents at compressor stations are presented. Possible types of accidents at compressor stations and their interrelations are identified. Scenarios of emergency situations are qualified by a number of parametres.

Index UDK: УДК 622.691.4

Keywords: gas main, compressor station, accident, gas leakage, accident scenario

Bibliography:
1.STO Gazprom 2-2.3-351-2009. Metodicheskie ukazanija po provedeniju analiza riska dlja opasnyh proizvodstvennyh ob’ektov gazotransportnyh predprijatij OAO „Gazprom”. OOO „Gazprom Jekspo”, 2009.
2.Federal’nyj zakon ot 21.07.1997 g. no. 116-FZ (red. ot 31.12.2014) „O promyshlennoj bezopasnosti opasnyh proizvodstvennyh ob’ektov”. Sobranie zakonodatel’stva RF, 1997, no. 30, p. 3588.
3.RD 08-204-98. „Porjadok uvedomlenija i predstavlenija territorial’nym organam Gosgortehnadzora informacii ob avarijah, avarijnyh utechkah i opasnyh uslovijah jekspluatacii ob’ektov magistral’nogo truboprovodnogo transporta gazov i opasnyh zhidkostej”. Postanovlenie Gosgortehnadzora Rossii ot 2 aprelja 1998 g., no. 23.
4.VRD 39-1.2-054-2002 „Instrukcija po tehnicheskomu rassledovaniju i uchetu avarij i incidentov na opasnyh proizvodstvennyh ob’ektah OAO ‚Gazprom’, podkontrol’nyh Gosgortehnadzoru Rossii”. OOO „IRC Gazprom”, 2002.
5.STO Gazprom 2-3.5-454-2010. „Pravila jekspluatacii magistral’nyh gazoprovodov”. Rasporjazheniem OAO „Gazprom” ot 24 maja 2010 g. no. 130. M.: OAO „Gazprom”, 2010, p. 164.
6.Revazov A.M. Analiz chrezvychajnyh i avarijnyh situacij na ob’ektah magistral’nogo gazoprovodnogo transporta i mery po preduprezhdeniju ih vozniknovenija i snizheniju posledstvij. Upravlenie kachestvom v neftegazovom komplekse, 2010, no. 1, p. 68-72.
7.Revazov A.M., Chuhareva N.V., Mironov S.A., Tihonova T.A. Prichiny avarijnyh situacij pri dlitel’noj jekspluatacii magistral’nyh truboprovodov v uslovijah Krajnego Severa. Upravlenie kachestvom v neftegazovom komplekse, 2011, no. 2, p. 56-60.
8.Alekperova S.T., Revazov A.M. Identifikacija i ocenka vlijanija faktorov jekspluatacii, provocirujushhih avarijnost’ na magistral’nyh gazoprovodah. Upravlenie kachestvom v neftegazovom komplekse, 2015, no. 3, p. 40-42.
9.Safonov B.C., Odisharija G.Je., Shvyrjaev A.A. Teorija i praktika analiza riska v gazovoj promyshlennosti. M.: AOZT „Olita”, 1996, p. 190.
10. Struchkova G.P., Kapitonova T.A., Levin A.I. Scenarii razvitija prirodno-tehnogennyh chrezvychajnyh situacij, harakternyh dlja gazodobyvajushhih territorij Respubliki Saha (Jakutija). Izvestija Samarskogo nauchnogo centra RAN, 2013, no. 6-2.
11. Revazov A.M., Leonovich I.A. Analiz avarijnosti na kompressornyh stancijah magistral’nyh gazoprovodov. Trudy Rossijskogo gosudarstvennogo universiteta nefti i gaza im. I.M. Gubkina, 2014, no. 2 (275), p. 26-33.
12. Revazov A.M., Leonovich I.A. Razrabotka scenariev vozniknovenija avarijnyh situacij na kompressornyh stancijah magistral’nyh gazoprovodov. Upravlenie kachestvom v neftegazovom komplekse, 2015, no. 3, p. 44-47.
13. Leonovich I.A., Revazov A.M. Osnovnye principy formirovanija sistemy preduprezhdenija avarijnyh i chrezvychajnyh situacij na KS MG materialy VIII mezhdunar. nauch.-tehn. konf., Novopolock, 25–28 nojabrja 2014 g. Novopolock: PGU, 2014, p. 53-57.

2015/4
Improvement of anti-corrosion properties of protective fluids for accumulator tanks of hot water energy enterprises
Technical sciences

Authors: Аleksey V. LEONTYEV (b. 1988) graduated from the Gubkin Russia State Oil and Gas University in 2013. Post-graduate of сhemistry and technology of lubricants and сhemmotology department of the Gubkin Russia State Oil and Gas University. Research Fellowin Ltd. „United Research and Development Center” (Ltd. „RN-CIR”). Author of 4 publications and 3 patents
E-mail: Leontyev-Alexey@mail.ru
Igor G. TATUR (b. 1956) graduated from Gubkin Moscow Institute of Petrochemical and Gas Industry in 1979. He is Candidate of Technical Sciences, Assistant professor of Department of Chemistry and Technology of Lubricants and Chemmotology of Gubkin Russian State Oil and Gas. He is author of more than 85 publications, 2 books and 27 patents. E-mail: igtatur@yandex.ru.
Dmitry N. SHERONOV (b. 1986) graduated from Gubkin Russian State University of Oil and Gas in 2006. He is engineer of the Department of Chemistry and Technology of Lubricants and Chemmotology. He is author of 14 publications and 2 patents.
E-mail: r75opposite@mail.ru.
Vladimir G. SPIRKIN (b. 1937) graduated from the Military Missile Forces Academy named after Great the Peter in 1959. He is D.Sc., Professor of the Department of Chemistry and Technology of Lubricants and Chemmotology of Gubkin Russian State University of Oil and Gas. He is author of more than 350 publications, 10 books and monographs, as well as 35 patents.
E-mail: vgspirkin@mail.ru

Abstract: Protective fluids are widely used in systems of hot water supply to protect from corrosion tanks and batteries, as well as to prevent water from aeration. Modern protective fluids possess high anti-aeration properties but do not meet the increasing requirements to anti-corrosion properties. Effective way to improve anti-corrosion properties of protective fluids is to use corrosion inhibitors. This paper examines the possibility of improving anti-corrosion properties of protective fluids by adding corrosion inhibitors into their composition. Basing on the study of surface properties of protective fluids, the dependence of the sealing properties of inhibited protective fluids from adhesion of their films to the surface of a metal has been defined. The influence of corrosion inhibitors on thermo-oxidative stability of the protective fluid has been studied. The authors recommend to increase thermo-oxidative stability of inhibited protective fluids by using antioxidant additives that allow to obtain a high-performance anti-corrosion material.

Index UDK: УДК 622.244

Keywords: protective fluids, industrial oils, corrosion inhibitors, thermal stability, adhesion work

Bibliography:
1. Zashhita ot vnutrennej korrozii truboprovodov vodjanyh teplovyh setej. Ju.V. Balaban-Irmenin, V.M. Lipovskih, A.M. Rubashov. M.: Novosti teplosnabzhenija, 2008, p. 288.
2. Zimon A.D. Kolloidnaja himija, 5-e izd., pererab. i dop. M.: AGAR, 2007, p. 344.
3. Metody zashhity rezervuarnogo oborudovanija sistem teplosnabzhenija ot korrozii. I.R. Tatur, D.A. Jakovlev, A.A. Sheremetova, V.G. Spirkin, D.V. Sharafutdinova. Zashhita okruzhajushhej sredy v neftegazovom komplekse. M.: VNIIOJeNG, 2012, no. 9, p. 5-7.
4. Primenenie nevysyhajushhih germetikov dlja zashhity bakov-otstojnikov ot korrozii, soderzhashhih v nih distillernyh zhidkostej. I.R. Tatur, D.A. Jakovlev, V.A. Lazarev, M.S. Rivkin. Himicheskaja promyshlennost’, 1991, no. 7, p. 32-36.
5. Rudnik L.R. Prisadki k smazochnym materialam. Svojstva i primenenie. SPb.: Izd-vo „Professija”, 2013, p. 928.
6. Shehter Ju.N., Krejn S.Je., Teterina L.N. Maslorastvorimye poverhnostno-aktivnye veshestva. M.: Himija, 1978, 394 р.
7. Kompleksnaja ocenka jekspluatacionnyh svojstv germetizirujushhih zhidkostej dlja bakov-akkumuljatorov sistem gorjachego vodosnabzhenija. D.N. Sheronov, I.R. Tatur, V.G. Spirkin, I.V. Pigoleva, O.V. Primerova. Jenergetik, 2014, no. 11, p. 43-46.

2015/4
Peculiarities of natural gas treatment in LNG production
Technical sciences

Authors: Elena B. FEDOROVA graduated from Gubkin Moscow Institute of Petrochemical and Gas Industry in 1984. She is Candidate of Technical Sciences, associate professor of the Department of Oil and Gas Processing Equipment of Gubkin Russian State University of Oil and Gas. She is specialist in the field of processes and apparatus of oil and gas processing, and of LNG production. She author of more than 20 scientific publications. E-mail: fedorova.e@gubkin.ru
Vyacheslav B. MEL’NIKOV graduated from Gubkin Moscow Institute of Petrochemical and Gas Industry in 1970. He is Doctor of Chemical Sciences, professor of the Department of Oil and Gas Processing Equipment of Gubkin Russian State University of Oil and Gas. He is specialist in the field of collection and preparation of gas and gas condensate. He is author of more than 170 scientific publications. E-mail: v.mel@mail.ru

Abstract: Before natural gas enters the liquefaction unit at the LNG plant it should be prepared to meet the requirements for the content of hydrogen sulfide, carbon dioxide, mercaptans, mercury, water, and other impurities. For this purpose input slug catchers, acid gas removal units, dehydration units and mercury removal units are placed in the train. The article gives an overview of Russian and foreign publications on new technologies of gas purification and dehydration for LNG production. The classification and short description of processes for acid gases removal from natural gas, including absorption, adsorption and membrane processes are presented. Absorption processes include chemical absorption with amine solutions, physical absorption, and mixed solvents absorption. Characteristics of various types of molecular sieves for dehydration units are given. The existing and prospective technologies of mercury removal process by chemical adsorption are described. Particular attention is paid to the gas pre-treatment technologies for small-scale LNG production

Index UDK: УДК 661.91-404

Keywords: liquefaction of natural gas, LNG, acid gas removal, gas dehydration, mercury removal, small-scale LNG production

Bibliography:
1. Mokhatab S., Mak J.Y., Valappil J.V., Wood D.A. Handbook of Liquefied Natural Gas. Oxford: Elsevier Inc., 2014, 624 p.
2. Fedorova Е.B. State-of-the-art and development of the Global LNG Industry: technologies and equipment. М.: Gubkin Russian State University of Oil and Gas, 2011, 159 p. (in Russian).
3. Klinkenbijl J.M., Dillon M.L., Heyman E.C. Gas Pre-Treatment and their Impact on Liquefaction Processes//Proceedings of the 78th Annual Gas Processors Association (GPA) Con-vention, 1999. URL: https://www.gpaglobal.org/publications (Accessed 05.06.2015).
4. Kalat Jari H.R., Khomarloo P., Assa K. A new approach for sizing finger-type (multiple-pipe) slug catchers//Gas Processing, 2015, no. 05/06, p. 53-60.
5. Waldmann I.B., Haylock T. Removal Requirements//LNG Industry, 2014, no. 10, p. 59-62.
6. Lapidus A.L., Golubeva I.A., Zhagfarov F.G. Gazohimiya. (Gas Chemistry). М.: Gubkin Russian State University of Oil and Gas, 2013, 405 p. (in Russian).
7. Tehnologija pererabotki prirodnogo gaza i gazokondensata: Spravochnik: v 2 ch. (Natural Gas and Gas Condensate Processing Tecnology. Handbook in 2 parts). M.: Nedra-Biznescentr, 2002, ch. I, 517 p. (in Russian).
8. Ortiz-Vega D., Dowdle J., Cristancho D., Badhwar A. Accurate rate-based modelling of acid gas and mercaptan removal using hybrid solvents. Hydrocarbon Processing, 2015, no. 6, p. 53-56.
9. Burr B, Lyddon L. A comparison of physical solvents for acid gas removal. Proceedings of the 87th Annual GPA Convention. Grapevine, Texas, 2008. URL: https://www.gpaglobal.org/publications (Accessed 05.09.2015).
10. Golubeva I.A., Bakanev I.A. Zavod po proizvodstvu SPG proekta Sahalin-2 („Sahalin EHnerdzhi Investment Kompani Ltd”). Neftepererabotka i neftekhimiya, 2015, no. 6, p. 27-37.
11. Kidnay A.J., Parrish W.R., McCartney D.G. Fundamentals of natural gas processing. 2nd edition. London, New York: CRC Press. Taylor&Francis Group, 2011, 464 p.
12. Mak J., Graham C. Coping under pressure//LNG Industry, 2015, no.7/8, p. 39-44.
13. Kohl A., Nielsen R. Gas Purification. 5th edition. Houston, TX, USA.: Gulf Publishing Company, 1997. 1395 p.
14. Blachman M., McHuge T. Sour gas dehydration technology and alternatives. LRGCC 2000: conference proceedings: 50 Laurance Reid Gas Conditioning Conference. Norman, Okla.: The University, 2000.
15. Molecular Sieve Desiccant Dehydrator For Natural Gas. www2.emersonprocess.com. 06.2013. URL: http://www2.emersonprocess.com/siteadmincenter/PM%20Valve%20Automation%20 Documents/Bettis/Brochure/MolecularSieve.pdf. (Accessed 16.09.2015).
16. Farag Hassan A.A., Ezzat M.M., Amer H., Nashed A.W. Natural gas dehydration by desiccant materials. Alexandria Engineering Journal, 2011, v. 50, p. 431-439.
17. Qualls W.R., Watkins J., Radtke D. A Tale of Two Sieves. Proceedings of the International Conference GASTECH, 2011.
18. Terrigeol A. Molecular sieves in gas processing: Effects and consequences by contaminants. www.hydrocarbonprocessing.com. URL: http://www.hydrocarbonprocessing.com/Article/3137897/ Gas-Processing-or-LNG-Amines/Molecular-sieves-in-gas-processing-Effects-and-consequences-by-co-ntaminants.html. (Accessed 18.07.2015).
19. Northrop S., Sundaram N. Modified cycles, adsorbents improve gas treatment, increase mol-sieve life//Oil and Gas Journal. 08/24/2008. URL: http://www.ogj.com/articles/print/volume-106/issue-29/processing/modified-cycles-adsorbents-improve-gas-treatment-increase-mol-sieve-life.html (Acces- sed 18.07.2015).
20. Abbott J., Oppenshaw P. Mercury Removal Technology and Its Applications// Proceedings of the 81st Annual GPA Convention, Dallas, TX, USA, 2002. URL: https://www.gpaglobal.org/publi-cations (Accessed 05.09.2015).
21. Eckersley N. Advanced mercury removal technologies. www.hydrocarbonprocessing.com. URL: http://www.hydrocarbonprocessing.com/Article/2594500/Search/Advanced-mercury-removal-technologies.html?Keywords=mercury+removal&PageMove=1. (Accessed 10.09.2015).
22. Carnell P.J.H, Row V.A. Quelling quicksilver// LNG Industry, 2014, no. 5, р. 63-67.
23. Markovs J., Clarc K. Optimized Mercury Removal in Gas Plants//Proceedings of the 84th Annual GPA Convention, San-Antonio, 2005. URL: https://www.gpaglobal.org/publications (Accessed 05.09.2015).
24. Stiltner J. Mercury Removal From Natural Gas and Liquid Streams//Proceedings of the 81st Annual GPA Convention, Dallas, TX, USA, 2002. URL: https://www.gpaglobal.org/publications (Accessed 08.09.2015).
25. Ruddy T., Pennybaker K. State Of Mercury Removal Technology// Procedings of the 86th Annual GPA Convention, San-Antonio, TX, USA, 2007. URL: https://www.gpaglobal.org/publications (Accessed 05.09.2015).
26. Alper H. Disengagement of Aerosol Mercury from LNG. LNG Industry, 2014, no. 10, р. 55-58.
27. Alper H. Coalescing mercury contaminants. LNG Industry, 2015, no. 4, р. 49-52.
28. Goodghild J., Lind T., Melville A. Pretreatment System Modifications for Improving CO2 Removal in the Feedgas for 3 Gas Utility Peak-Shaving Plants. Proceedings of the International Conference LNG-17, Houston, TX, USA, 2013. URL: http://www.gastechnology.org/Training/Pages/ LNG17-conference/LNG-17-Conference.aspx (Accessed 10.09.2015).
29. Small Scale LNG. 2012-2015 Triennium Work Report// Paris : International Gas Union, June 2015, 84 p. URL: http://www.igu.org/sites/default/files/node-page-field_file/SmallScaleLNG.pdf (Ac-cessed 10.07.2015 г.).
30. Shirokova G.S., Elistratov M.V. Tehnologicheskie zadachi kompleksnoj ochistki prirodnogo gaza dlja poluchenija SPG (Technology aspects of natural gas treatment for liquefaction). Gazovaja promyshlennost’, 2011, Specvypusk „Proizvodstvo, transportirovka, hranenie i ispol’zovanie szhizhennogo prirodnogo gaza”, p. 11-15 (in Russian).
31. Zhou J., Meyer H., Leppin D. Hibrid Membrane/Absorbtion Process For Acid Gas Removal in FLNG Applications//Proceedings of the International Conference LNG-17, Houston, TX, USA, 2013. URL: http://www.gastechnology.org/Training/Pages/LNG17-conference/LNG-17-Conference. aspx (Accessed 10.09.2015).
32. Lin W., Xiong X., Gu A. Natural Gas Pressurized Process Adopting MR Refrigeration and CO2 Removal by Anti-sublimation. Proceedings of the International Conference LNG-17, Houston, TX, USA, 2013. URL: http://www.gastechnology.org/Training/Pages/LNG17-conference/LNG-17-Conference.aspx (Accessed 10.09.2015).

2015/4
Architectural solutions for managing components for distributed dispatcher decision-support systems
Technical sciences

Authors: Ayrat R. KHALIULLIN is Postgraduate student of the Dept. of Applied Mathematics and Computer Modeling of Gubkin Russian State University of Oil and Gas. E-mail: a.r.khaliullin@gmail.com
Vitaliy A. SHVECHKOV graduated from Gubkin Russian State University of Oil and Gas in 2002. He is Candidate of Technical Sciences, assistant professor of the Dept. of Design and Operation of Gas and Oil Pipelines of Gubkin Russian State University of Oil and Gas. He is author of more than 20 scientific papers. E-mail: shvechkov.v@gubkin.ru
Sergey A. SARDANASHVILI graduated from Moscow Institute of Petrochemical and Gas Industry in 1976. He is Doctor of Technical Sciences, associate professor, Head of Dept. of Design and Operation of Gas and Oil Pipelines of Gubkin Russian State University of Oil and Gas. He is specialist in the field of computer dispatcher decision-support systems for oil and gas industry and author of more than 50 scientific papers. E-mail: Sardanashvili.S@gubkin.ru

Abstract: The article deals with the problem of components managing for distributed decision-support systems; a distributed computer simulator for oil transportation systems is given as an example. The client-server interaction of components is considered. The basic functional tasks of components manager are formulated. The software architecture for the scheduling of client components is developed. Organization of computational tasks solving process is reduced to a step-by-step management of client components interaction

Index UDK: УДК 004; 681.518

Keywords: pipeline systems, programming and computing suites, computer simulators, distributed multiuser software, client-server interaction, event-based systems, service-oriented architecture, scheduling of components, organization of computational tasks solving process

Bibliography:
1. Tanenbaum E., Steen M. Raspredelennye sistemy. Printsipy i paradigmy. SРb.: Piter, 2003, 877 p. (in Russian).
2. Khaliullin A.R., Shvechkov V.A., Leonov D.G. Organizatsiya vzaimodeystviya programmnykh komponentov mnogopol’zovatel’skikh geterogennykh raspredelennykh kompleksov modelirovaniya dinamicheskikh protsessov truboprovodnykh sistem. Trudy XIV Vserossiyskogo nauchnogo seminara „Matematicheskie modeli i metody analiza i optimal’nogo sinteza razvivayushchikhsya truboprovodnykh i gidravlicheskikh system”. Belokurikha, Altayskiy kray, 8-13 sentyabrya 2014 g. Irkutsk: ISEM SO RAN, 2014, 410 p. (in Russian).
3. GOST 34.003–90. Informatsionnaya tekhnologiya. Kompleks standartov na avtomatizirovannye sistemy. Avtomatizirovannye sistemy. Terminy i opredeleniya (in Russian).
4. Meier J.D. Rukovodstvo Microsoft po proektirovaniyu arkhitektury prilozheniy. Patterns & practices/Hill D., Homer A., Taylor J., Bansode P, Wall L., Rob Boucher Jr., Bogawat A. 2-e izd. [Electronic resource] — URL: http://download.microsoft.com/documents/rus/msdn/ry_prilozheniy_ polnaya_kniga.pdf (date accessed 20.07.2015) (in Russian).
5. Leonenkov A.V. Samouchitel’ UML 2. SPb.: BKhV-Peterburg, 2007, 576 p. (in Russian).
6. Trakhtenbrot B.A., Barzdin’ Ya.M. Konechnye avtomaty. Povedenie i sintez. M.: Nauka, 1970, 400 p. (in Russian).
7. The State Machine Framework. Qt Documentation [Electronic resource] — URL: http://doc.qt.io/qt-4.8/statemachine-api.html (date accessed 13.05.2015).