Extended Search

- in all fields
- in the title
- in key words
- in the abstract
- in the bibliography
Issue
Name
Authors
Category
2016/1
Assessment of oil-displacing ability of gas under thermogas oil recovery
Geosciences

Authors: Vadim N. KHLEBNIKOV graduated from Bashkir State University in 1979. He is Doctor of Technical Sciences, Professor of the Department of Physical and Colloid Chemistry of Gubkin Russian State University (National Research University) of Oil and Gas. He is specialist in the field of enhanced oil recovery and development of hard-to-recover oil reserves. He is author of more than 200 scientific publications. E-mail: Khlebnikov_2011@mail.ru
Aleksandr S. MISHIN graduated from National Research Nuclear University «MEPhI» in 2005. He is Engineer of the Department of Physical and Colloid Chemistry of Gubkin Russian State University (National Research University) of Oil and Gas. He is specialist in the field of enhanced oil recovery and development of hard-to-recover oil reserves. He is author of more than 20 scientific publications. E-mail: aleks_mishin@mail.ru
MENG Liang graduated from Beijing Institute of Petrochemical Technology in 2009, he is Ph.D student of the Department of Physical and Colloid Chemistry of Gubkin Russian State University (National Research University) of Oil and Gas. Research interests: oil and gas production. E-mail: liangmeng@mail.ru
Natalya A. SVAROVSKAYA graduated from Тomsk State University in 1971. She is Doctor of Technical Sciences, Professor of the Department of Physical and Colloid Chemistry of Gubkin Russian State University (National Research University) of Oil and Gas. She is specialist in the field of petroleum geology and tertiary oil recovery. She is author of more than 160 scientific publications.
E-mail: na_sv2002@mail.ru

Abstract: A study was conducted to determine oil displacing ability of gas agent produced from in-situ transformation of air during thermal stimulation of light oil reservoirs. It is shown that the oil displacing characteristics of the gas agent of thermos-gas EOR method are close to those of fatty associated petroleum gas in high temperature reservoirs of light oil. It has also been found that the use of core formation models in flooding experiments (according to OST 39-195-86) does not allow to fully reveal the efficiency of miscible gas oil-displacing agents

Index UDK: УДК 622.276.6

Keywords: enhanced oil recovery, miscible displacement, thermos-gas oil recovery method, physical simulation of oil displacement

Bibliography:
1. Kuramshin R.M. Osobennosti geologicheskogo stroeniya i tehnologii razrabotki yurskih otlojenii Nijnevartovskogo svoda [Features of the geological structure and development technology of Jurassic sediments Nizhnevartovsk dome]. Moscow, RMNTK Nefteotdacha Publ., 2002, 107 p.
2. Bagautdinov A.K., Markov S.L., Belevich G.K. and et al. Geologiya i razrabotka krupneishih i unikalnih neftyanih i neftegazonosnih mestorojdenii Rossii [Geology and development of large unique oil and gas fields in Russia]. Moscow, VNIIOENG Publ., 1996, 352 p.
3. Bokserman A.A. and Yambaev M.F. The method of injection and in situ transformation of air in fields of light oil. Proc. 12 th European Symposium on improved Oil Recovery. Kazan, Russia, 2003 (in Russian).
4. Yambaev M.F. Osnovnie osobennosti termogazovogo metoda uvelicheniya nefteotdachi primenitelno k usloviyam slojnopostroennih kollektorov (na osnove chislennogo modelirovaniya). Dokt, Diss. [The main features of thermal gas EOR applied in the conditions of complex reservoirs (on the basis of numerical modeling). Doct, Diss.], Moscow, 2006, 153 p.
5. Khlebnikov V.N. and Vezhnin S.A. Perspektivi primeneniya termogazovogo metoda povisheniya nefteotdachi v usloviyah yurskih plastov mestorojdenii OAO «Tomskneft» [Prospects of application of thermo-gas method for enhanced oil recovery in the conditions of Jurassic reservoir in fields «Tomskneft»]. Trudy Obedinennogo centra issledovanii i razrabotok «Perspektivi tehnologii neftegazovoi industrii» [Proc. of the Joint research and development center «Prospects of technology in the oil and gas industry»], 2006, no. 2, p. 79-84.
6. Kumar V.K., Gutierrez C., Cantrell C. 30 Years of Successful High-Pressure Air Injection: Performance Evaluation of Buffalo Field, South Dakota. Journal of Petroleum Technology, 2011, vol. 63, no. 01, p.50-53.
7. Khlebnikov V.N., Zobov P.M., Antonov S.V., Ruzanova Yu.F. Research on thermos-gas method for oil extraction. Kinetic laws of oil autoxidation of Jurassic age reservoir. Bashkirskii Khimicheskii Zhurnal [Bashkir Chemical Journal], 2008, vol. 15, no. 4, p. 105-110 (in Russian).
8. Khlebnikov V.N., Zobov P.M., Antonov S.V., Ruzanova Yu.F., Bakulin D.A. Research on thermo-gas method for oil extraction. Influence of sodium bicarbonate on the kinetic laws of light oil autoxidation. Bashkirskii Khimicheskii Zhurnal [Bashkir Chemical Journal], 2009, vol. 16, no. 1, p. 65-71 (in Russian).
9. Khlebnikov V.N., Zobov P.M., Antonov S.V., Bakulin D.A., Gushina Yu.F. and Nisku- lov E.K. Comparison of the kinetic laws of autooxidation of oil and solid organic material in rocks of Bazhenov suite. Bashkirskii Khimicheskii Zhurnal [Bashkir Chemical Journal], 2011, vol. 18, no. 4, p. 87-92 (in Russian).
10. Khlebnikov V.N., Mishin A.S., Zobov P.M., Antonov S.V., Bakulin D.A., Bardin M.E. and Niskulov E.K. Simulation of chemical steps in thermo-gas enhanced viscous oil of reservoirs PK Cenomanian horizon. Bashkirskii Khimicheskii Zhurnal [Bashkir Chemical Journal], 2012, vol. 19, no. 3, p. 12-16 (in Russian).
11. Aizikovich O.M., Bulygin M.G., Korablev L.I. The thermal effect of oxidation reaction in the wet in-situ combustion. Neftepromyslovoe delo and transport nefte [Petroleum engineering and oil transport], 1985, no.11, p. 4-6 (in Russian).
12. Yannimaras D.V., Sufi A.H., Fassihi M.R. The Case for Air Injection into Deep Light Oil Reservoirs. Proc. 6th European IOR-Simposium. Stavanger, Norway, 1991.
13. Lake L.W. Enhanced oil recovery. Englewood Cliffs, New Jersey, Prentice Hall Publ., 1989, 449 p. (Russ. ed.: Osnovi metodov uvelicheniya nefteotdachi, 2004, 449 p. Available at: www.oil-info.ru/content/view/148/59 ).
14. Polishchuk A.M., Khlebnikov V.N. and Gubanov V.B. Using slim models for the physical simulation of oil displacement processes by miscible agents. Part 1. Methodology of experiment. Neftepromyslovoe delo  Petroleum engineering, 2014, no. 5, p. 19-24 (in Russian).
15. Khlebnikov V.N., Gubanov V.B. and Polishchuk A.M. Using slim models for the physical simulation of oil displacement processes by miscible agents. Part 2. Evaluation of the possibility of using standard flooding equipment for the implemention of slim methodology. Neftepromyslovoe delo. Petroleum engineering, 2014, no. 6, p. 32-38 (in Russian).
16. Industry Standard OST-39-195-86. Oil. The method of determining the coefficient of oil displacement by water in the laboratory. Moscow. The Ministry of Petroleum Publ., 1986, 20 p. (in Russian).
17. Yellig W.F., Metcalfe R.S. Determination and Prediction of CO2 Minimum Miscibility Pressures. Journal of Petroleum Technology, 1980, vol. 32, no. 1, pp. 160-168.

2016/1
Method of registration of influence of true producing gas oil ratio on bottom hole pressure value during liquid-gas mixture flow in well bore of horizontal wells
Geosciences

Authors: Denis A. MARAKOV сandidate of Technical Sciences, associate professor of the Department of Development and Operation of Gas and Gas-Condensate Fields. He is expert in the field of development and operation of oil and gas fields and author more than 30 publications, including 7 monographs and 5 thematic brochures in the field of the theory of development, research and operation of vertical and horizontal wells. E-mail: marakovdenis78@gmail.com

Abstract: In the operating gas and gas-condensate wells the presence of liquid in the gas flow depending on its amount can significantly affect the bottom hole pressure value. The existing approximate methods of registration of the liquid presence in the gas flow to determine the bottom hole pressure were reduced to application of averaged void fraction coefficient over the entire length of the well. It is shown that application of the proposed method can improve the accuracy of determining the down hole pressure in the presence of liquid in the gas flow

Index UDK: УДК 622.279

Keywords: horizontal well, bottom hole pressure, of the true producing gas oil ratio, flow regime, consumption gas content

Bibliography:
1. Korotaev Y.P. and etc. Instructions hydrodymanic calculations gas-condensate wells. M., 1980, 59 p.
2. Aliyev Z.S. and etc. Technological operation of gas wells. М.: Nedra, 1978, p. 261.
3. Aliyev Z.S. and etc. determination of basic parameters horizontal gas wells. Publishing Center of Gubkin Russian State Oil and Gas university, 2012, 228 p.
4. Grizenko A.I. and etc. Well survey manual. M.: Science, 1995, 523 p.
5. Mamaev V.A. and etc. Flow of liquid-gas mixture in pipes. M.: Nedra, 1978, 270 p.
6. Aliyev Z.S. and etc. Theoretical and technological basis of horizontal wells application for the development of gas and gas-condensate fields. М.: Nedra, 2014, 450 p.

2016/1
Rapid method of producing wells selectiоn for stimulation
Geosciences

Authors: Alexander N. KULIKOV graduated from Ufa State Petroleum Technological University in 1980. He is Cand. Sc., Head of the Research and Educational Center-Laborator „Production Chemistry” at Gubkin Russian State University (National Research University) of Oil and Gas. He is author of over 50 scientific publications. E-mail: ANK-_1@mail.ru
Lyubov A. MAGADOVA graduated from Gubkin Moscow Institute of Petrochemical and Gas Industry in 1975. She is Cand. Sc., Professor of the Department of Oil and Gas Proces-sing at Gubkin Russian State University (National Research University) of Oil and Gas. She is author of over 160 scientific publications. E-mail: magadova0108@himeko.ru
Mikhail A. SILIN graduated from Gubkin Moscow Institute of Petrochemical and Gas Industry in 1978. D Sc., Vice-Rector of Iinnovations and Commercialization of Gubkin Russian State University (National Research University) of Oil and Gas, Head of of the Department of Oil and Gas Processing at Gubkin Russian State University (National Research University) of Oil and Gas. He is author of over 160 scientific publications. E-mail: silin.m@gubkin.ru
Ibragim I. ABYZBAEV graduated from Bashkir State University in 1981. Нe is Cand. Sc., Professor of the Department of Oil and Gas Fields Development at Ufa State Petroleum Technical University. He is an author of over 50 scientific publications.
E-mail: shaura505@mail.ru

Abstract: The article provides an overview of existing methods of wells selection for stimulation with bottom-hole treatment technologies or formation hydraulic fracturing. Their shortcomings are presented. The principles of the new rapid methods of wells selection for stimulation are presented. The method is based on the use of the graphic correlation of the fluid rate current values and the fluid potential values of the current reservoir wells. The indicator for the fluid potential of the well is a product of the penetrated layer thickness, its average permeability and the difference between the reservoir and the bottomhole pressure, divided by the viscosity of the produced fluid. Wells with points at the graphic correlation located below the interpolating point line of direct dependence on the fluid flow rate of the fluid potential index are recognized as problem wells. Тhe problematic character of the selected wells is proved by analysis of the fluid flow rate dinamics at the second phase

Index UDK: УДК 622.276.72

Keywords: liquid rate, colmatation of layer, index of well potential for fluid, graphical correlation, interpolating straight line

Bibliography:
1. Mishenko I.T. Skvashinnaya dobycha nefti [Well petroleum recovery]. M.: Oil and gas, 2003, 216 р.
2. Interdisciplinary Scientific Information thematic collection. Newspaper and magazine information. Under. Ed. Academician Tishchenko A.S. M.: JSC „VNIIOENG”, 2004, рart 1.
3. Mukerdjy H. Proizvoditelnost skvajin [Well productivity]. M.: UKOS, 2001, 183 p.
4. Erlager R. Gidrodinamicheskie metody issledovaniya skvagin. [Hydrodynamic methods of research of wells], 2006, Izhevsk. ANO „Institute of Computer Science”, 512 p.

2016/1
Аnalysis of elements of gas supply systems by method of moment generating functions
Geosciences

Authors: Vladimir N. RUSEV graduated from Moscow State University in the field of probability theory and mathematical statistics in 1997. He is senior lecturer of the Department of Higher Mathematics of Gubkin Russian State University (National Research University) of Oil and Gas. The focus of his academic interests is information theory, applied mathematical statistics and theory of reliability. He is author of more than 10 scientific publications including 3 teaching aids. E-mail: vnrusev@yandex.ru
Alexandr V. SKORIKOV graduated from Rostov State University in 1971. He is Candidate of Physical and Mathematical Sciences, associate professor of the Department of Higher Mathematics of Gubkin Russian State University (National Research University) of Oil and Gas. His scientific interests are fractional derivatives and integrals, operators of potential type and functional spaces, theory of reliability. He has published over 30 works including 5 teaching aids. E-mail: skorikov.a@gubkin.ru

Abstract: The relationship between indicators of reliability of non-renewable and recove-rable elements and systems is studied. Technologically active elements of the gas supply system are considered from the perspective of both repairable and non-repairable elements. It is assumed that the entire life cycle of the facilities is described by the power-law distribution of Weibull-Gnedenko. Using this distribution semi-dependences have been obtained. These can be used for engineering calculations on the basis of failures statistics. An example of the processing of real operational data on failures is considered

Index UDK: УДК 519.873+622.691.4.07

Keywords: reliability, failure rate, failure flow parameter, moment-generating function, Weibull-Gnedenko distribution

Bibliography:
1. Grigor’ev L.I., Kalinin V.V., Rusev V.N., Sedykh I.A. Matematicheskoe obespechenie podsistemy otsenki i monitoringa nadezhnosti ASDU v transporte gaza. Avtomatizatsiya v promyshlennosti, 2010, no. 12, p. 11-15. (In Russian).
2. Rusev V.N. Primenenie raspredeleniya Veybulla—Gnedenko dlya opisaniya etapov zhiznennogo tsikla gazoperekachivayushchikh agregatov pri upravlenii tekhnicheskim sostoyaniem gazotransportnykh system. Promyshlennyy servis, 2013, no. 1, p. 17-22 (In Russian).
3. Polovko A.M., Gurov S.V. Osnovy teorii nadezhnosti. 2-e izd., pererab. i dop. SPb., BKhV-Peterburg, 2006, 704 p. (In Russian).
4. Krasnov M.L. Integral’nye uravneniya: Vvedenie v teoriyu, Moscow, Editorial URSS, 2010, 304 p. (In Russian).
5. Rossiyskaya gazovaya entsiklopediya. Pod red. R.I. Vyakhireva. M.: Bol’shaya Rossiyskaya entsiklopediya, 2004 (slovarnaya stat’ya „Nadezhnost’ sistem gazosnabzheniya”, M.G. Sukharev) (In Russian).
6. Lavrent’ev M.A., Shabat B.V. Metody teorii funktsiy kompleksnogo peremennogo, Moscow, Nauka, 1987, 688 p. (In Russian).
7. Sukharev M.G. Modeli nadezhnosti markovskogo tipa s prilozheniyami k neftegazovomu delu. Uchebnoe posobie, Moscow, Izdatel’skiy tsentr RGU nefti i gaza imeni I.M. Gubkina, 2012, 131 p. (In Russian).
8. Kendall M.A., Stuart A. The Advanced Theory of Statistics. Volume 1. Distribution Theory. 2 th ed. London, Charles Griffin &Company Limited, 1961. (Russ.ed.: Kendall M., Stuart A. Teoriy raspredeleniy. Moscow, Nauka, 1966, 588 p.)
9. Rusev V.N. Aktual’nost’ teoreticheskogo issledovaniya raspredeleniya Veybulla—Gnedenko dlya rascheta otsenok tekhnologicheskoy nadezhnosti neftegazovogo oborudovaniya, Avtomatizatsiya, telemekhanizatsiya i svyaz’ v neftyanoy promyshlennosti, 2013, no. 11, p. 46-49. (In Russian).
10. Gradshteyn I.S., Ryzhik I.M. Table of Integrals, Series, and Products. 7 th ed. Oxford, Elsevier Inc, 2007. (Russ.ed.: Gradshteyn I.S., Ryzhik I.M. Tablitsy integralov, summ, ryadov i proizvedeniy. SPb, BKhV-Peterburg, 2011, 1232 p.)
11. Beichelt F., Franken P. Reliability and Maintenance. Mathematical Method. Berlin, Veb Verlag Technik, 1983. (Russ. ed. Beichelt F., Franken P. Nadejnost’ i tehnicheskoe obslujivanie. Matematicheskiy podhod. Moscow, Radio i svyaz’, 1988, 392 p.)

2016/1
Geodynamic monitoring of gas pipelines with unmanned aero vehicles
Geosciences

Authors: Kerim B. HUSEYNOV graduated from Gubkin Moscow Institute of Petrochemical and Gas Industry in 1983. He is Candidate of Technical Sciences, Director General of LLC „Gazprom Transgaz Makhachkala”. Аuthor of more than 40 papers in the field of improving the reliability and efficiency of the gas mains. E-mail: gaz@dgp.gazprom.ru
Mikhail M. ZADERIGOLOVA graduated from the Dnepropetrovsk Mining Institute in the 1962. He is Candidate of Technical Sciences, Chief Specialist LLC „GEOTEK”, the author of over 130 scientific papers and patents in the field of geodynamic safety of large economic projects. E-mail: geotec.mz@mail.ru
Alexey S. LOPATIN graduated from Gubkin Moscow Institute of Petrochemical and Gas Industry in 1979. He is Doctor of Technical Sciences, professor, Head of Dept. of Termodynamics and Heat Engines of Gubkin Russian State University (National Research University) of Oil and Gas, author of over 300 papers in the field of diagnostics, energy saving in the transport of gas, energy efficiency. E-mail: Lopatin.a@gubkin.ru

Abstract: The need of monitoring is caused by the fact that some of the country gas pipelines cross areas with active dangerous geological processes. A significant step forward in ensuring geodynamic safety of gas pipelines can be made by including the radio-wave method into the monitoring system. The system created on he basis of unmanned aerial vehicles allows to make fast responsible management decisions aimed at eliminating the possibility of accidents at the earliest stages of natural and man-made processes

Index UDK: УДК 621.6

Keywords: geodynamic monitoring, dangerous geological processes, safety, gas pipeline, radio-wave method, unmanned aero vehicle

Bibliography:
1.Metody i sredstva diagnostiki linejnoj chasti magistralnyh gazoprovodov: uchebnoe posobie, 2-e izd. A.S. Lopatin, N.H. Hallyev, A.A. Filatov i dr. M.: Nedra, 2013, 188 р.
2.Osobennosti ocenki tehnicheskogo sostojanija uchastkov magistral’nyh gazoprovodov, ispytyvajushhih intensivnoe vozdejstvie neproektnyh nagruzok. K.B. Gusejnov, S.I. Egorov, A.P. Zav’jalov, A.S. Lopatin. Neft’, gaz i biznes, 2015, no. 3, p. 34–37.
3.Zaderigolova M.M., Lopatin A.S. Primenenie radiovolnovogo metoda kontrolja dlja obespechenija bezopasnosti gazotransportnyh sistem. M.: Izd. centr RGU nefti i gaza imeni I.M. Gubkina, 2014, 72 p.
4.Radiovolnovaja sistema monitoringa opasnyh geologicheskih processov na gazoprovode s. Dzaurikau – g. Chinval. O.E. Aksjutin, S.V. Alimov, M.Ju. Mitrohin, A.N. Kolotovskij, A.V. Zavgorodnev, A.Ju. Astanin, M.M. Zaderigolova. Gazovaja promyshlennost’, 2015, no. 3, p. 28–32.
5.Zaderigolova M.M., Lopatin A.S., Seredenok V.A. Monitoring opasnyh geologicheskih processov dlja obespechenija bezopasnosti gazotransportnyh sistem. Neft’, gaz i biznes, 2015, no. 3, p. 41–43.
6.Zaderigolova M.M. Obespechenie geodinamicheskoj bezopasnosti gazotransportnyh sistem radiovolnovymi metodami. M.: Nauchnyj mir, 2009, 398 p.
7.Zaderigolova M.M. Radiovolnovyj metod v inzhenernoj geologii i geojekologii. M.: Izd-vo MGU, 1998, 320 p.
8.Svod Pravil po inzhenernym izyskanijam dlja stroitel’stva SP-11-105-97, ch. VI. «Pravila proizvodstva geofizicheskih issledovanij». M.: Gosstroj RF, 2004, 51 p.

2016/1
Improving selection of hollow sucker rods through use of mathematical model of rods behavior
Technical sciences

Authors: Vladimir N. IVANOVSKI graduated from Gubkin Russian State University of Oil and Gas in 1976. Нe is Doctor of Technical Sciences, Head of the Department of Machines and Equipment of Oil and Gas Industry at Gubkin Russian State University (National Research University) of Oil and Gas. He is full member of the Academy of Natural Sciences, Honorary Worker of the fuel and energy complex. He is author of more than 200 scientific papers. E-mail: ivanovskiyvn@yandex.ru
Yuri S. DUBINOV graduated from Gubkin Russian State University of Oil and Gas in 2013. He is graduate student the Department of Machines and Equipment of Oil and Gas Industry of Gubkin Russian State University (National Research University) of Oil and Gas. He is Head of the Laboratory of the Department of Metallurgy and Non-metallic Material, author of 14 scientific publications.
E-mail: dubinovys@gmail.com
Sergey S. PEKIN graduated from Gubkin Russian State University of Oil and Gas in 1976. Нe is Associate Professor of the Department of Machines and Equipment of Oil and Gas Industry of Gubkin Russian State University (National Research University) of Oil and Gas. He is author of more than 50 scientific publications. E-mail: pekinss@gmail.com
Andrey V. BULAT graduated from Gubkin Russian State University of Oil and Gas in 2010. He is Candidate of Technical Sciences, Senior Lecturer of the Department of Machines and Equipment of Oil and Gas Industry of Gubkin Russian State University (National Research University) of Oil and Gas. He is author of 18 scientific publications. E-mail: avbulat87@gmail.com

Abstract: The new method of calculating stresses is based on the Oding dependence with the introduction of the k index characterizing the design features of sucker rods and the material these are manufactured from. The new method allowed good agreement with the results of the situation in the well. A mathematical model was developed to account for the peculiarities of operation of sucker rods in directional wells. The new calculation method in conjunction with the mathematical model increased the accuracy by 5% when compared to the method without taking into account the mathematical model

Index UDK: УДК 622.276.53

Keywords: sucker rods, hollow sucker rods, method of calculating stress, mathematical model of sucker rods operation, Oding dependence

Bibliography:
1. Oding I.A. Dopuskaemye naprjazhenija v mashinostroenii [Allowable stress in mechanical engineering]. M.: Mashgiz, 1962, 260 p. (In Russian).
2. Markovec M.P. Uchebnoe posobie po kursu prochnost’ metallov oborudovanija atomnyh jelektricheskih stancij [Textbook of exchange metals strength of nuclear power plants equipment]. M.: MJI, 1979, 94 p. (In Russian).
3. Serensen S.V., Kogaev V.P. Nesushhaja sposobnost’ i raschety detalej mashin na prochnost’ [Bearing capacity calculations and machine parts for durability]. M.: Mashgiz, 1968, 488 p. (In Russian).
4. Renev D.Y. Povyshenie effektivnosti ekspluatatsii SShNU v naklonno-napravlennykh skvazhinakh za schet utochneniya metodik rascheta i podbora shtangovykh kolonn. Ph.Diss. [Increased operational efficiency downhole sucker rod pumping unit in deviated wells by clarifying the methods of calculation and selection of rod columns. Ph.Diss.]. Мoscow, 2010.
5. Stepin P.A. Soprotivlenie materialov [Strength of materials]. М.: Integral-press, 1997, 320 p. (In Russian).
6. Gots A.N., Raschety na prochnost’ detaley DVS pri napryazheniyakh, peremennykh vo vremeni [Stress calculation engine parts at voltages variables over time]. Vladimir, 2005, 124 p. (In Russian).
7. State Standart 31825-2012. Rods for pumps, wellhead and coupling rods to them. Мoscow, Standartinform Publ., 2013, 51 p. (In Russian).
8. Ivanovskij V.N., Dubinov Ju.S., Clarification of values of the permissible stresses and methods of calculating rod columns in oil under complicated conditions. [Proceedings of the Gubkin Russian State University of Oil and Gas], 2014, no. 1, p. 65-75 (In Russian).

2016/1
Research of overall performance of valves of borehole pump installations
Technical sciences

Authors: Temir R. DOLOV graduated from Gubkin Russian State University of Oil and Gas in 2013. Нe is postgraduate student of the Department of Machines and Equipment of Oil and Gas Industry at Gubkin Russian State University (National Research University) of Oil and Gas. Specialist in the field of sucker rod pumping installations. He is author of 7 scientific publications.
E-mail: dolovtemir@yandex.ru
Aleksei V. DEGOVCOV graduated from Gubkin Moscow Institute of petrochemical and gas industry in 1982. Candidate of Engineering Sciences, Associate Professor of the Department of Machines and Equipment of Oil and Gas Industry at Gubkin Russian State University (National Research University) of Oil and Gas. A specialist in the field of pumping equipment production of oil and gas. The author of over 18 scientific publications. E-mail: degovtsov.aleksey@yandex.ru
Igor N. GERASIMOV graduated from Gubkin Russian State University of Oil and Gas in 2011. Leading engineer of the Department of Machines and Equipment of Oil and Gas Industry of Gubkin Russian State University (National Research University) of Oil and Gas. Specialist in the field of modeling processes in the development and operation of oil drilling equipment.
E-mail: gernik@yandex.ru
Konstantin I. KLIMENKO graduated from Gubkin Russian State University of Oil and Gas in 2008. Leading engineer of the Department of Machines and Equipment of Oil and Gas Industry of Gubkin Russian State University (National Research University) of Oil and Gas. Specialist in the field of modeling processes in the development and operation of oil drilling equipment. E-mail: workgr@mail.ru

Abstract: Mathematical models of the valves applied in borehole pumps are developed. Characteristics of the valves during work in different liquids are constructed. These characteristics allow to select valve knots for specific conditions of operation and to assess the durability of a valve knot

Index UDK: УДК 622.276.53

Keywords: borehole pump, valvate knot, mathematical model of the valve, hydraulic resistance

Bibliography:
1. Dolov T.R. Research of overall performance of valves of borehole pump installations. Book of abstracts 65th International Youth Conference “Oil and Gas 2011”. Moscow, 2011, р. 35 (In Russian).
2. Dolov T.R. Research of overall performance of valves of borehole pump installations. Book of abstracts 66th International Youth Conference “Oil and Gas 2012”. Moscow, 2012, p. 29 (In Russian).
3. Dolov T.R. Research of overall performance of valves of borehole pump installations. Book of abstracts 67th International Youth Conference “Oil and Gas 2013”. Moscow, 2013, p. 44 (In Russian).
4. Dolov T.R. A study of the valve assemblies of sucker rod pumps by mathematical modeling on computers. Book of abstracts 68th International Youth Conference “Oil and Gas 2014”. Moscow, 2014, p. 15 (In Russian).
5. Dolov T.R. Analysis of various designs of valve assemblies of downhole sucker-rod pumps. Book of abstracts 69th International Youth Conference “Oil and Gas 2015”. Moscow, 2015, p. 54 (In Russian).
6. Ivanovski V.N., Dolov T.R. Investigation of the efficiency of valve assemblies of downhole sucker-rod pumping systems. Equipment and technologies for oil and gas industry, 2014, no. 2, p. 29-33.
7. Ivanovski V.N., Elagina O.U., Gantimiriv B.M., Sabirov A.A., Dubinov U.S., Dolov T.R. An analysis of the various valve constructions of pairs of sucker-rod pump.
Territoriya Neftegaz, 2015, no. 9, p. 92-99.
8. Ivanovski V.N., Dubinov U.S., Dolov T.R. Accelerated testing of sucker rod fatigue for estimating endurance limits of materials and structures, teaching aid. Gubkin Russian State University of Oil and Gas, 2015, p. 29.
9. Ivanovski V.N., Babakin I.U., Dubinov U.S., Dolov T.R. Accelerated testing of valve assemblies of downhole sucker-rod pumping units on the amount of wear and tightness, textbook. Gubkin Russian State University of Oil and Gas, 2015, p. 27.
10. Molchanova A.G. Razrabotca metodov ucheta vliania svobodnogo gaza I vizkosti gidkosti na rabotu klapannih uzlov ckvaginnih shtangovih nasosov, Cand. Diss. [Development of methods taking into account the influence of free gas and fluid viscosity on the work of valve assemblies of downhole sucker-rod pumps. Cand
. Diss.]. Moscow 1989, 146 p.

2016/1
Choice of strategies of oil and gas equipment under of uncertainty and risk
Technical sciences

Authors: Yury P. STEPIN was born in 1946, graduated from Gubkin Moscow Institute of Petrochemical and Gas Industry in 1969, specializing in „Industrial Electronics”. He is Doctor of Technical Sciences, Professor of the Department of Automated Control Systems of Gubkin Russian State University (National Research University) of Oil and Gas. He is author of 130 publications including 103 scientific-papers, 23 teaching aids, 2 books and 2 patents. He has prepared 5 candidates of sciences.
E-mail: stepin.y@gubkin.ru

Abstract: The article is devoted to solving problems of multicriteria evaluation and agreed selection (Customer - Contractor) of the optimal variant of maintenance and repairs of oil and gas production facilities in the conditions of uncertainty and risks of their operation, and market interaction of the Customer and the Contractor. It is shown that the solution of the problem in this case is reduced to a multicriteria evaluation of the technical condition of the objects of maintenance and maintenance options that take into account the uncertainty and risks of operating facilities through the appropriate necessary indicators (criteria); identification of the best Bayes maintenance strategies for the Customer and the Contractor under the conditions of partial and in complete uncertainty using the theory of games with nature selection criteria; choice of coherent maintenance strategy optimal for both Customer and Contractor using the Pareto method.

Index UDK: УДК 681.5: 519.86

Keywords: multi-criteria assessment of risk, Bayes maintenance strategy, security, game and nature, convolution of criteria, harmonization solutions, Pareto method for matching solutions, partial uncertainty, complete uncertainty

Bibliography:
1. Stepin Yu.P. Metody i modeli avtomatizacii i upravleniy obslujivaniem neftegazoviyh tehnologicheskih processov i proizvodstv (na primere promyslovyh geofizicheskih i remontnyh rabot v dobyche I transporte nefti I gaza). Dokt. dissert. М.: GANG im. I.М. Gubkina, 1998, 359 р.
2. Farapontov A.V., Gotarenko A.F. Risk orientirovannye podhody k obespecheniu ekspluatacionnoy nadejnosti sosudov, rabotauschih pod davleniem. M.: NTJ Bezopasnost truda v promyhlennosti, 2010, no. 11.
3. STO GAZPROM 2-2.3-385-2009 (Porijdok provedeniy tehnicheskogo obslujivaniy i remonta truprovodnoy armatury), 2009.
4. Katulev A.N., Severtcev N.A. Issledovanie operatciy. Principy priniyatiy reheniy i obespechenie bezopasnosti. M.: Fiz-mat literature, 2000, 318 p.
5. Stepin Yu.P., Trakhtengerts E.A. Komp’yuternaya podderzhka upravleniya neftegazovymi tekhnologicheskimi protsessami i proizvodstvami. Metody i algoritmy formirovaniya upravlencheskikh resheniy. Kniga 1. Vektor TiS, 2007, 384 p. Kniga 2. MAKS Press, 2008, 528 p.
6. Vetcel E.S. Issledovanie operatciy.
М.: Sov. Radio, 1972, 552 p.
7. Kafarov V.V., Mashalkin V.P., Grun G., Noyman V. Obespechenie i metody optimizccii nadejnosti himicheskih i neftehimicheskih proizvodstv. M.: Himiy, 1987, 342 p.
8. GOST R MEK 61511. Bezopasnost funktcionirovaniy. Sistemy bezopasnosti dliy promyshlennyh processov. M.: Stavdartinform, 2012.
9. GOST R MEK 61508 Upravlenie nadejnostiy. Analz riska tehnicheskih system. – M.: Stavdartinform, 2008 g.
10. Burkov V.N., Gratcianskiy E.V., Dzubko S.I., Schepkin A.V. Modeli i mehanizmy upravleniy bezpasnotiu. V.: SINTEG, 2001, 160 p.
11. Standart DNV-RP-F116. Recommended Practice. Integrity Management of Submarine Pipeline Systems, October, 2009.
12. Makdonald D. Promyshlennaiy bezopasnost, octenivanie riska i sistemy avariiynogo ostanova.
М.: ООО “Gruppa IDT”, 2007.
13.
http://www.vm.dupland.com/sites/default/files.pdf
14. Vishniykov J.D., Radaev N.N. Obschaiy teoriy riskov. M.: Akademiy, 2008, 368 p.
15. Nejin V.P. Teoriy igr. Primery i zadachi. M.: FORUM, 2012, 128 p.
16. Suharev M.G., Lapiga A.G., Kalinina E.V. Statiaticyeskiy analiz avariynosti gazoraspredelitelnih system. Territoriy neftegaz, 2010, no. 4.
17. Andreev A.F., Zubareva V.D., Sarkisov A.S. Otcenka riskov neftegazovyh proektov. –
М.: Neft i gaz, 2003, 212 p.

2016/1
Strategic planning: modified method of pair comparisons for problems of high dimension
Technical sciences

Authors: Ilya V. SAMARIN graduated from Gubkin Russian State University of Oil and Gas in 2006. He is Candidate of Technical Sciences, assistant professor of the Department of Automation of Technological Processes of Gubkin Russian State University (National Research University) of Oil and Gas. He is a specialist in the field of automation and managment. He is author of more than 50 scientific publications. E-mail: ivs@gubkin.pro

Abstract: The main features of the application of an expert calculation method of pair comparisons to determine the relative importance of factors in problems of strategic planning of high dimension are considered. It is offered to expand the opportunities of the initial method of pair comparisons adapted for operating not more than 10-15 factors. For this purpose it is offered to apply the multicascade settlement scheme, having previously grouped initial factors into clusters. Two ways of implementation of the multicascade scheme are considered. The offered ways of integrating results of private examinations are demonstrated on a model test task. It is shown that the developed methods allow to receive the decision with a mean square mistake about 2 % that corresponds to an error of the most exact econometric mathematical models

Index UDK: УДК 519.816

Keywords: algorithm, importance, cluster, matrix, method of pair comparisons, modification, error, dimension, interface, strategic planning, test, factor, expert

Bibliography:
1. Samarin I.V., Fomin A.N. Strategic planning at the enterprise: application of a method of the analysis of hierarchies for the analysis of system of purposes. Innovations and investments, 2014, no. 6, p. 132-141.
2.
Samarin I.V. Application of a method of pair comparisons for an assessment of sizes of expenses at strategic budget planning of a complex of actions. A scientific review, 2014, no. 8, p. 821-827.
3.
Samarin I.V., Baskakov V.V., Fedoseyev S.A., Fomin A.N. Scientific and methodical tools of strategic planning at the large enterprises. M.: Advansed Solyushiz, 2014.
4. Samarin I.V., Baskakov V.V., Fedoseyev S.A., Fomin A.N. Theoretical and program and tool bases of strategic planning at the enterprises of defense industry complex in modern conditions. M.: The Ministry of Defence of the Russian Federation, the monograph, RVSN WA printing house of Peter the Great, 2015.
5. Saati T. Decision-making. Method of the analysis of hierarchies. Perev. with English. M.: Radio and communication, 1993.
6. Moiseyev N.N. Mathematical tasks of the system analysis. M.: Science, 1981.

2016/1
Applying scanning probe microscopy to study morphology of solid surfaces
Technical sciences

Authors: Daria Yu. KHANUKAEVA graduated from Moscow Institute of Physics and Technology in 1999, she is Candidate of Physico-Mathematical Sciences, Associate Professor of the Department of Higher Mathematics. She is author of more than 30 publications in the field of mechanics and mathematics. E-mail khanuk@yandex.ru
Anatoly N. FILIPPOV (b. 1960) graduated from Lomonosov Moscow State University in 1982. He is Doctor of Physico-Mathematical Sciences, рrofessor of the Department of Higher Mathematics. He is author of more than 300 publications and 3 monographs in the fields of physicochemical mechanics, colloid chemistry and mathematics. E-mail filippov.a@gubkin.ru
Vladimir I. IVANOV (b. 1961) graduated from Lomonosov Moscow State University in 1983. Нe is Candidate of Physico-Mathematical Sciences, аssociate Professor of the Department of Higher Mathematics. He is author of more than 10 publications in the fields of physicochemical, hydrodynamics, colloid chemistry and mathematics. E-mail vladimir.i-ivanov@yandex.ru
Vasily V. KALININ (b. 1952) graduated from Lomonosov Moscow State University in 1974. He is Doctor of Physico-Mathematical Sciences. Head of the Department of Higher Mathematics. He is author of more than 70 publications in the fields of physicochemical hydrodynamics, colloid chemistry and mathematics. E-mail vm@gubkin.ru

Abstract: Five different examples of the use of scanning probe microscopy to study the morphology of solid rough surfaces were studied. These demonstrated the potential of a variety of AFM techniques. All these measurements were carried out on areas of micron-scale of the parts and pieces of research objects, which are geological materials, metal samples and polymer membranes with sizes down to a few nanometers. These results are related to the micro- and nanostructures of the materials studied and allow gathering information about their properties in these scales, thus opening up opportunities for the development of new models and technologies.

Index UDK: УДК 532.546.2

Keywords: atomic force microscopy, surface morphology, roughness, porous structure, minerals, polymeric membranes.

Bibliography:
1. Khanukaeva D.Yu., Filippov A.N., Bildyukevich A.V. An AFM Study of Ultrafiltration Membranes: Peculiarities of Pore Size Distribution. Petroleum Chemistry, 2014, vol. 54, no. 7, p. 498–506.
2. Jesse S., Kalinin S.V. Band excitation in scanning probe microscopy: signs of change. J. Phys. D: Appl. Phys., 2011, vol. 44, p. 464006–464022.
3. Khanukaeva D.Yu., Kalinin S.V., Filippov A.N., Ievlev A.V., Buzilov A.S. Scanning probe microscopy of minerals microstructure. Metodologicheskie aspecty scaniruyushchei zondovoi microscopii — BelSZM XI [Proc. XI Int. Conf. „Methodological Aspects of Scanning Probe Microscopy”]. Minsk, 2014, p. 178-183 (in Russian).
4. Chen C.-Y., Garnica-Rodrigues J.I., Duke M.C., Dalla Costa R.F., Dicks A.L., Diniz da Costa J.D. Nafion/polyanilin/silica composite membranes for direct methanol fuel cell application. J. of Power Sources, 2007, vol. 166, p. 324-330.
5. Kolechko M.V., Filippov A.N., Shkirskaya S.A., Timofeev S.V., Berezina N.P. Synthesis and Diffusion Permeability of MF-4SK/Polyaniline Composite Membranes with Controlled Thickness of the Modified Layer. Colloid Journal, 2013, vol. 75, no. 3, p. 289-296.
6. Kalinin V.V., Filippov A.N., Khanukaeva D.Yu. Investigation of Membrane Morphology by Atomic Force Microscopy Under Mathematical Modeling of Diffusive Processes. Trudy RGU nefti i gaza imeni I.M. Gubkina [Proceedings of Gubkin Russian State University of Oil and Gas], 2012, no. 1 (266), p. 129-136 (in Russian).
7. Filippov A., Afonin D., Kononenko N., Shkirskaya S. Characterization of Perfluorinated Cation-Exchange Membranes MF-4SC Surface Modified with Halloysite Nanotubes. AIP Conf. Proc. AMiTaNS’15″, 2015, vol. 1684, p. 030004-1-030004-9.
8. Filippov Anatoly, Khanukaeva Daria, Afonin Denis, Skorikova Galina, Ivanov Evgeny, Vinokurov Vladimir and Lvov Yuri. Diffusive Permeability of Hybrid Cation-Exchange Membranes MF-4SC/Halloysite Nanotubes. Proc. of IEEE, 15th International Conference on Nanotechnology (IEEE-NANO) (Rome, Italy, 27-30 July 2015), 2015 IEEE, p. 208-211.
9. Khanukaeva D.Yu., Filippov A.N. Statistical Processing of Ultrafiltration Membrane Pore Size Distribution Determined by Atomic Force Microscopy. Petroleum Chemistry, 2015, vol. 55, no. 10, p. 909-917.
10. Gwyddion, http://gwyddion.net/