Extended Search

- in all fields
- in the title
- in key words
- in the abstract
- in the bibliography
Issue
Name
Authors
Category
2019/4
Estimated level of stress concentration in joints of welded pipes and fittings (welded tees) of main pipelines
Geosciences

Authors: George I. MAKAROV graduated from Bauman Moscow Higher Technical School in 1973. He is Doctor of Technical Sciences, Professor of the Department of Welding and Monitoring of Oil and Gas Facilities of Gubkin Russian State University of Oil and Gas (National Research University). He is specialist in the field of strength and fracture mechanics. He is author of more than 100 works, a monograph and a textbook. E-mail: svarka@gubkin.ru

Abstract: The article opens a series of publications on the results of a cycle of works on the estimated level of the stress-strain state of welded pipes joints of main pipelines with connecting parts of the following types: transitional and equal bore tees; concentric and eccentric transitions; elliptical plugs. The numerical solution of these types of problems was obtained by the finite element method using the free educational version of the computer program ANSYS Student. This article presents the calculating results of welded pipes with typical welded tees joints, and provides an assessment of the bearing capacity under various operating conditions.

Index UDK: 621.791; 624.042; 624.044; 624.046

Keywords: main pipeline, welded pipes, connecting parts, welded tees, stress-strain state, stress concentration, bearing capacity assessment

Bibliography:
1. Makarov G.I. Oil and gas welded structures and facilities. Calculation and design. Textbook for students of oil and gas higher education school. M.: Publishing house “Sputnik+”, 2013, 361 p. (in Russian).
2. Makarov G.I. Technical policy strategy of oil and gas pipeline transport systems modernization. Welding, 2013, no. 9, p. 44-48 (in Russian).
3. Makarov G.I. Technical Policy Strategy. The technical policy strategy in the design, construction and operation of oil and gas pipeline transport systems. Business Journal Neftegaz.RU, 2016, no. 11-12, p. 20-25 (in Russian).
4. Technical regulations of buildings and structures safety. Federal Law No. 384-ФЗ of 12.30.2009 (in Russian).
5. Makarov G.I., Antonov A.A. Welded main pipelines residual welding stresses level laser interferometry method estimation. Welding, 2018, no. 1, p. 38-42 (in Russian).
6. Makarov G.I., Kapustin O.E. Welded pipelines stress-strain state experimental estimation using electrical resistance sensors and analog-to-digital converters. Welding, 2018, no. 11, p. 3-14 (in Russian).
7. Makarov G.I., Vinokurov V.A. Elastic strip with a stationary moving crack dynamics. Applied mechanics problems ordinary differential equations theory methods. M.: “Proceedings of the Moscow Higher Technical School”, 1980, no. 336, p. 24-31 (in Russian).
8. Makarov G.I. User manual for the computer program ANSYS for welded structures finite element method calculation. M.: Publishing Center of I.M. Gubkin Oil and Gas Russian State University, 2019, 53 p. (in Russian).
9. Makarov G.I. Pipes quality regulation. Federal normative documents development principles for main pipelines pipe products properties regulating under conditions of import substitution. Business Journal Neftegaz.RU, 2015, no. 11-12, p. 14-20 (in Russian).
10. Makarov G.I. The pipe question. Standardization and technical regulation of main pipelines pipe products quality under conditions of import substitution. Business Journal Neftegaz.RU, 2015, no. 5, p. 12-17 (in Russian).
11. Makarov G.I. On the steps of the normative hierarchy. Confirmation of the correspondence of main gas pipelines large-diameter pipes to normative requirements for fracture toughness indexes. Business Journal Neftegaz.RU, 2014, no. 5, p. 18-22 (in Russian).
12. Makarov G.I. Main line for main pipelines. Prospects for welded high-strength pipes using. Business Journal Neftegaz.RU, 2013, no. 1-2, p. 64-69 (in Russian).

2019/4
Improving methods of trunk pipelines anti-terrorist security
Geosciences

Authors: Alan M. REVAZOV graduated from North Caucasian Institute of Mining and Metallurgy in 1983 (as construction engineer). He is Doctor of Engineering Sciences, Professor of the Department of Construction and Rehabilitation of Oil and Gas Pipelines and Storages of Gubkin Russian State University of Oil and Gas (National Research University). He is specialist in the field of ensuring reliability and safety of oil and gas pipelines. He is an author of more than 130 scientific publications. E-mail: alanrevazov@rambler.ru
Valeriia N. SAVUSHKINA graduated from Gubkin Russian State University of Oil and Gas (National Research University) in 2019, as Master of Petroleum Engineering, specializing in reliability and safety of oil and gas pipelines and storages. E-mail: savushkina.valeriya@yandex.ru

Abstract: The article deals with the issue of the anti-terrorist security of pipelines. The urgency of the problem is substantiated. Special attention is given to existing methods of detecting the impact of third parties on the pipeline. The analysis of these methods is provided. The authors proposed a comprehensive system for anti-terrorist security of the pipeline.

Index UDK: 699.8

Keywords: pipeline exposure protection, terrorist attacks, ensuring anti-terrorist safety of pipeline, counter-terrorism

Bibliography:
1. Vasyutinskaya S.I., Shtuber Kh. The combined system of pipelines monitoring PROVISTA using advantages of fiber technologies and the UAV at aerial photography of potentially dangerous events. Izvestiya vysshikh uchebnykh zavedeniy, geodeziya i aerofotos’mka. [Proceedings of the Higher Educational Institutions. “Geodesy and aerophotosurveying”], 2015, no. 4, p. 114-117 (in Russian).
2. Groznov D.I., Leonov A.V., Naniy O.E., Nesterov E.T. “Dunay” the system of monitoring of activity in a security zone of the pipeline. Ekspozitsiya Neft’ Gaz. [Exposition Oil&Gas], 2014, no. 4 (36), p. 51-53 (in Russian).
3. Epifantsev B.N. Complex technology of monitoring of safety of pipeline transport from terro-rist threats. Vestnik SibADI [The Russian Automobile and Highway Industry Journal], 2011, no. 2 (20), p. 28-34 (in Russian).
4. Klintsevich L.I., Kiselev G.A., Malkina V.D. The innovative system of monitoring “OMEGA” is capable “to hear” leaks from pipelines and to define distance to the place of potentially dangerous event. Ekologicheskiy vestnik Rossii [Ecological reporter of Russia], 2014, no. 56, p. 20-22 (in Russian).
5. Nesterov E.T., Marchenko K.V., Treshchikov V.N., Leonov A.V. The fiber-optical system of monitoring of extended objects (oil pipelines) on the basis of the coherent reflectometer. T-Comm: Telekommunikatsii i transport, 2014, vol. 8, no. 1, p. 25-28 (in Russian).
6. Materialy ezhegodnykh otchetov o deyatel’nosti Federal’noy sluzhby po ekologicheskomu, tekhnologicheskomu i atomnomu nadzoru (2006-2017 gg.) [Materials of annual reports on activity of Federal Environmental, Industrial and Nuclear Supervision Service of Russia (2006-2017)]. Available at: http://www.gosnadzor.ru/public/annual_reports/ (accessed 25 April 2019).
7. O promyshlennoy bezopasnosti opasnykh proizvodstvennykh ob’ektov: Federal’nyy zakon ot 21.07.1997 No. 116-FZ. [About industrial safety of hazardous production facilities: Federal law of 21.07.1997 No. 116-FZ]. Available at: http://www.consultant.ru/document/cons_doc_LAW_15234/ (accessed 29 April 2019).
8. O protivodeystvii terrorizmu: Federal’nyy zakon ot 06.03.2006 № 35-FZ (red. ot 06.07.2016) [About counteraction to terrorism: Federal law of 06.03.2006 No. 35-FZ (edition of 06.07.2016)]. Available at: http://base.garant.ru/12145408/ (accessed 29 April 2019).
9. O bezopasnosti ob’ktov toplivno-energeticheskogo kompleksa: Federal’nyy zakon ot 21 iyulya 2011 g. N 256-FZ [About safety of fuel and energy complex objects: The Federal Law of July 21, 2011 No. 256-FZ]. Available at: https://base.garant.ru/12188188/ (accessed 20 April 2019).
10. TR 205-09. Tekhnicheskie rekomendatsii po proektirovaniyu sistem antiterroristicheskoy zashchishchennosti i kompleksnoy bezopasnosti vysotnykh i unikal’nykh zdaniy (TP 205-09. Technical recommendations on the design of anti-terrorist security and integrated safety and security systems of high-rise and unique buildings). Available at: https://files.stroyinf.ru/Data1/55/55373/#i57102 (accessed 29 April 2019).
11. Vlasov S.V., Gubanok I.I., Dudov A.N. i dr. Sistema videonablyudeniya za opasnym ucha-stkom magistral’nogo gazoprovoda [The video surveillance system for the dangerous site of the main gas pipeline]. Patent RF, no. 2334163, 2008.

2019/4
Calculation of automatic speed control devices of flaw detector in main gas pipeline
Geosciences

Authors: Alexander N. KOVALENKO graduated from Bauman Moscow State Technical University, Faculty of Engineering and Lomonosov Moscow State University, Faculty of Mechanics and Mathematics. He is Doctor of Technical Sciences, Professor of the Department of Design and Operation of Gas and Oil Pipelines of Gubkin Russian State University of Oil and Gas (National Research University). He has over 40 scientific and educational works. E-mail: melovat@mail.ru
Roman А. SHESTAKOV graduated from Gubkin Russian State University of Oil and Gas in 2013. He is assistant lecturer of the Department Oil Products and Gas Supplies of Gubkin Russian State University of Oil and Gas (National Research University). He is specialist in the field of design and operation of systems of pipeline transport of oil and gas. He has 35 scientific and educational works. E-mail: Shestakov.r@gubkin.ru
Valery V. ULANOV graduated from Gubkin Russian State University of Oil and Gas (National Research University) in 2015. He is assistant lecturer of the Department of Design and Operation of Gas and Oil Pipelines of Gubkin Russian State University of Oil and Gas (National Research University). He is Head of the Laboratory of the Department of Design and Operation of Gas and Oil Pipelines of Gubkin Russian State University of Oil and Gas (National Research University). He has published 13 scientific and educational works. E-mail: Ulanov.v@gubkin.ru

Abstract: Local resistances created by the diagnostic projectile during the in-line flaw detection of a gas pipeline are calculated. In particular, the local resistance is cal- culated separately both at the input to and at the output from the flaw detector equipped with an automatic speed control system. Further, the calculations are combined and have a general form for the entire flaw detector as a whole. Some existing devices for automatic speed control of the flaw detector are conside- red by passing gas through the diagnostic projectile. The term "rate-quenching coefficient’ is introduced. The main problems of speed damping of the flaw detector are revealed. The necessary values of the regulated parameters are determined to ensure reliable diagnosis. Recommendations are given on the optimal parameters of the flaw detector and the speed control device to achieve the required speed of the flaw detector and the maximum speed-quenching coefficient.

Index UDK: 622.691.4

Keywords: in-line diagnostics, pipeline gas transport, flaw detector, nondestructive testing, flaw detector speed control, local resistances, gas bypass

Bibliography:
1. Ulanov V.V., Shestakov R.A., Bratchik A.S. Analysis of methods of speed control of flaw detectors used in gas pipelines. Industrial service, 2018, no. 4, p. 23-27.
2. Podgorbunskikh A.M. Development of a system for automatically maintaining the speed of movement of a pig flaw detector: author. Cand. tech. of Sciences, Yekaterinburg, 2008, 9 p.
3. Bochkarev N.N., Kurochkin A.A. Vibrodiagnostic control of movement of in-line objects in the main gas pipelines. Electronic scientific journal “Oil and gas business”, 2012, no. 5, p. 86-98.
4. Kovalenko A.N., Ulanov V.V., Shestakov R.A. Methods of non-destructive testing and diagnostics of gas and oil pipelines. Part 1. Problem book on the course [Electronic resource]. Moscow. Gubkin Russian State University of oil and gas (NRU), 2018. Mode of access: http://elib.gubkin.ru/ content/23047 (date accessed: 24.12.2018).
5. Kovalenko A.N., Ulanov V.V., Shestakov R.A. Methods of non-destructive testing and diagnostics of gas and oil pipelines. Part 2. Problem book on the course [Electronic resource]. Moscow. Gubkin Russian State University of oil and gas (NRU), 2018. Mode of access: http://elib.gubkin.ru/ content/23049 (date accessed: 24.12.2018).
6. Kovalenko A.N. Theoretical and experimental studies of magnetic fields of finite size defects and creation of specialized scanners for pipeline flaw detection: diss. doct. tech. sciences: 05.11.13. M.: CJSC NIIIN MNPO “SPECTRUM”, 2010, 369 p.

2019/4
Tools for formation of design task bases on basis of decision tables
Technical sciences

Authors: Alena O. NAGIBINA graduated from Gubkin Russian State University of Oil and Gas in 2013. Specialist in the field of engineering technology. E-mail: kornipusi@yandex.ru

Abstract: In the article the reason of spending much time on adapting computer-aided design (CAD) of technological processes system for conditions of the concrete enterprise and of the concrete structural unit of this enterprise is stated. The article describes tools of one of the modules of the CAD system which enables technologists in different departments at the enterprise to fill up design tasks bases with required information which is presented in reference literature in the form of decision tables and to do it by themselves without administrator for reducing the time of adapting. An example of describing a design task on basis of a decision table with developed tools in specialized language is considered. The structure of specialized language operators used for describing is presented.

Index UDK: 004.9

Keywords: comprehensive technology automation system, decision tables, tools, design task bases

Bibliography: 1. Obshchemashinostroitel’nye normativy rezhimov rezaniya dlya tekhnicheskogo normirova- niya rabot na metallorezhushchikh stankakh. Chast’ I. Tokarnye, karusel’nye, tokarno-revol’vernye, almazno-rastochnye, sverlil’nye, strogal’nye, dolbezhnye i frezernye stanki [General machine-building standards of cutting conditions for technical rate setting of operations on cutting machines. Part I. Lathes, turning-and-boring lathes, turret lathes, diamond boring, drilling, planning, slotting and milling machines]. 2nd ed. M.: Mashinostroenie, 1974, 406 p.
2. Obshchemashinostroitel’nye normativy rezhimov rezaniya dlya tekhnicheskogo normirova- niya rabot na metallorezhushchikh stankakh. Chast’ II. Zuboreznye, gorizontal’no-rastochnye, rez’bonakatnye i otreznye stanki [General machine-building standards of cutting conditions for technical rate setting of operations on cutting machines. Part II. Gear-cutting, horizontal boring, thread-rolling and cutting-off machines]. 2nd ed. M.: Mashinostroenie, 1974, 200 p.

2019/4
Gear mechanisms of periodic intermittent motion: designs, calculation methods, modeling
Technical sciences

Authors: Alexander N. SOBOLEV born in 1979, graduated from Moscow State University of Technology “STANKIN” in 2002 in the direction of the magistracy “Technology, Equipment and Automation of Engineering Industries”. He is Candidate of Technical Sciences, Assistant Professor of the Sub-department of Machines of MSUT “STANKIN”. He is expert in the theory of mechanisms and CAD. He is author and co-author of more than 65 scientific and educational works. E-mail: stankin-okm@yandex.ru
Alexey Ya. NEKRASOV born in 1971, graduated from Moscow State University of Technology “STANKIN” in 1994 by specialty “Machine tools and metalworking”. He is Candidate of Technical Sciences, Assistant Professor of Sub-department of Machines of MSUT “STANKIN”. He is expert in engineering. He is author and co-author of more than 65 scientific and educational works. E-mail: stankin-okm@yandex.ru
Michail O. ARBUZOV born in 1942, graduated from Moscow machine tool institute in 1964 by specialty “Mechanical engineering technology, machine tools and metalworking”. He is Candidate of Technical Sciences, Assistant Professor of Sub-department of Machines of MSUT “STANKIN”. He is expert in the field of designing and calculating machine parts. He is author and coauthor of more than 35 scientific and educational works. E-mail: stankin-okm@yandex.ru
Victor G. PIROZHKOV born in 1949, graduated from the Krasnoyarsk Polytechnic institute in 1971 with a degree in mechanical engineering technology, machine tools and metalworking. He is Candidate of Technical Sciences, Professor at the Department of Technical Mechanics of Gubkin Russian State University of Oil and Gas (National Research University). He is expert in the field of calculation of strength and reliability of elements of engineering structures. He is author of more than 60 scientific publications. E-mail: pirogkov.v@gubkin.ru

Abstract: Gear mechanisms of periodic intermittent motion (discontinuous kinematics) quite widely used in mechanical engineering. The main advantage of such mechanisms in comparison with the Maltese is the required lower accuracy and manufacturing cost. However, the calculation of the gear mechanisms of intermittent motion is of considerable complexity, which is due to both the presence of many geometric parameters and the variability of kinetic and dynamic characte-ristics. Consequently, modern software is needed that would simplify the calculation and modeling of the elements of the mechanisms under consideration. The article provides an overview of the designs, as well as the basis of the methodology for computer-aided design of gear mechanisms of periodic intermittent motion. The results of computer modeling and calculation of the elements of mechanisms are presented.

Index UDK: 621.0.01:621.8.02.024.5

Keywords: gear mechanisms of discontinuous kinematics, design automation, three-dimensional and two-dimensional modeling

Bibliography:
1. Sobolev A.N., Kosov M.G. Avtomatizaciya kinematicheskogo i dinamicheskogo analiza tehnologicheskih mashin. Vestnik MGTU “Stankin” [Messenger of Moscow State University of Technology “STANKIN”], 2010, no. 2, p. 32-36 (in Russian).
2. Nekrasov A.Ya., Sobolev A.N., Arbuzov M.O. Innovacionniy interaktivniy programmniy product kak sredstvo povisheniya effektivnosti proektirovaniya mehanizmov. Innovacii [Innovations], 2016, no. 8, p. 104-107 (in Russian).
3. Sobolev A.N., Nekrasov A.Ya. Sovershenstvovanie metodiki proektirovaniya cevochnogo zacepleniya na osnove novih programmnih sredstv rascheta i modelirovaniya. Vestnik MGTU “Stankin” [Messenger of Moscow State University of Technology “STANKIN”], 2015, no. 3, p. 34-38 (in Russian).
4. Yagolnitcer O.V., Sobolev A.N., Nekrasov A.Ya. Sovershenstvovanie metodiki proektirovaniya gidrociklonov na osnove avtomatizacii rasсhetov i parametricheskogo modelirovaniya. Vestnik MGTU “Stankin” [Messenger of Moscow State University of Technology “STANKIN”], 2016, no. 4, p. 98-102 (in Russian).
5. Sobolev A.N., Nekrasov A.Ya., Arbuzov M.O., Rivkin A.V. Sovershenstvovanie metodiki avtomatizirovannogo proektirovaniya gipocikloidalnih cevochnih peredach. Tehnologiya mashinostroeniya [Engineering technology], 2017, no. 10, p. 44-49 (in Russian).
6. Sobolev A.N., Nekrasov A.Ya., Rivkin A.V., Arbuzov M.O. Sovershenstvovanie metodiki interaktivnogo proektirovanya planetarno-cevochnih peredach. Tehnologiya mashinostroeniya [Engineering technology], 2017, no. 11, p. 32-36 (in Russian).
7. Spravochnik konstruktora tochnogo priborostroeniya [Reference instrument designer precision instrument]. Pod redakciey doktora tehnicheskih nauk, prof. F.L. Litvina. M.-L.: Mashinostroenie, 1964, 943 p.
8. Guschin V.G., Sobolev A.N., Kosov M.G. Avtomatizirovannoe proektirovanie maltiyskih mehanizmov. Vestnik MGTU “Stankin” [Messenger of Moscow State University of Technology “STANKIN”], 2010, no. 1, p. 40-47 (in Russian).
9. Sobolev A.N., Nekrasov A.Ya., Arbuzov M.O. Sintez i modelirovanie kulachkovih mehanizmov v CAD-sistemah. Vestnik MGTU “Stankin” [Messenger of Moscow State University of Technology “STANKIN”], 2014, no. 1, p. 81-86 (in Russian).
10. Sobolev A.N., Nekrasov A.Ya. Avtomatizirovannoe proektirovanie hrapovih mehanizmov. Vestnik MGTU “Stankin” [Messenger of Moscow State University of Technology “STANKIN”], 2016, no. 3, p. 38-41 (in Russian).
11. Sobolev A.N., Nekrasov A.Ya. Raschet i modelirovanie maltiyskih mehanizmov stankov v CAD/CAE-sistemah. STIN [STIN], 2015, no. 9, p. 2-6 (in Russian).
12. Sobolev A.N., Nekrasov A.Ya., Arbuzov M.O. Usovershenstvovannaya metodika proektirovaniya zubchatih i chervyachnih mehanizmov v CAD/CAE-sistemah. Vestnik MGTU “Stankin” [Messenger of Moscow State University of Technology “STANKIN”], 2014, no. 2, p. 102-106 (in Russian).
13. Sobolev A.N., Nekrasov A.Ya. Raschet i modelirovanie v CAD-sisteme evolventnih i cikloidalnih (chasovih) zubchatih peredach priborov. Vestnik MGTU “Stankin” [Messenger of Moscow State University of Technology “STANKIN”], 2016, no. 2, p. 13-16 (in Russian).
14. Kosov M.G., Sobolev A.N., Nekrasov A.Ya. Informacionnaya struktura sistemi netverdotelnogo modelirovaniya. Vestnik MGTU “Stankin” [Messenger of Moscow State University of Technology “STANKIN”], 2015, no. 1, p. 108-111 (in Russian).
15. Sobolev A.N., Kosov M.G., Nekrasov A.Ya. Modelirovanie konstrukciy korpusnih detaley s ispolzovaniem raschetnih makroelementov. Vestnik MGTU “Stankin” [Messenger of Moscow State University of Technology “STANKIN”], 2014, no. 3, p. 98-101 (in Russian).
16. Kosov M.G., Sobolev A.N. Avtomatizirovannoe proektirovanie na osnove metodologii netverdotelnogo modelirovaniya. Tehnologiya mashinostroeniya [Engineering technology], 2010, no. 3, p. 44-48 (in Russian).
17. Chekanin V.A., Chekanin A.V. Struktura dannih dlya zadachi trehmernoi ortogonalnoi upakovki obyektov. Vestnik MGTU “Stankin” [Messenger of Moscow State University of Technology “STANKIN”], 2015, no. 1, p. 112-116 (in Russian).
18. Kazakov A.A., Arbuzov M.O., Pirozhkov V.G., Saldadze A.D. Vliyanie pogreshnostey formi detali v raschetah tochnostey oborudovaniya. Neft, gaz i biznes [Oil, Gas and Business], 2012, no. 1-2, p. 98-101 (in Russian).
19. Pirozhkov V.G., Sobolev A.N., Nekrasov A.Ya., Arbuzov M.O. K voprosu formoobrazovaniya profilya cilindricheskih zubchatih koles pri elektroerozionnom virezanii. Trudi RGU nefti i gaza (NIU) imeni I.M. Gubkina [Proceedings of Gubkin Russian State University of Oil and Gas], 2018, no. 4, p. 118-131 (in Russian).
20. Pirozhkov V.G., Sobolev A.N., Nekrasov A.Ya., Arbuzov M.O. Avtomatizirovannoe proektirovanie i modelirovanie v mashinostroenii: ortogonalnie cilindro-konicheskie peredachi. Trudi RGU nefti i gaza (NIU) imeni I.M. Gubkina [Proceedings of Gubkin Russian State University of Oil and Gas], 2019, no. 2, p. 95-106 (in Russian).

2019/4
Comprehensive evaluation of efficiency of creating infrastructure of liquefied natural gas in energy supply of regions
Technical sciences

Authors: Elena B. FEDOROVA graduated Gubkin Moscow Institute of Petrochemical and Gas Industry in 1984. She is Candidate of Technical Sciences, Associate Professor of the Department of Engineering Mechanics of Gubkin Russian State University of Oil and Gas (National Research University). She is specialist in the field of processes and apparatus of oil and gas processing, and of LNG production. She is author of more than 50 scientific publications. E-mail: fedorova.e@gubkin.ru
Vyacheslav B. MEL’NIKOV graduated Gubkin Moscow Institute of Oil-Chemical and Gas Industry in 1970. Doctor of Chemical Sciences, professor of the Engineering Mechanics Department of Gubkin Russian State University of Oil and Gas (National Research Univer-sity). Specialist in the field of field gathering and processing of gas and gas condensate, processes and apparatus of oil and gas processing. He is the author of more than 190 scientific publications. E-mail: v.mel@mail.ru

Abstract: The article provides a methodology for creating LNG infrastructure with a detailed description of each stage, including a comprehensive assessment of various options for energy supply to consumers and defines the term “LNG infrastructure”. The authors introduce the concept of the LNG efficiency coefficient for energy supply of socio-economic objects, the value of which shows which of the energy supply options will be more effective.

Index UDK: 661.91-404

Keywords: liquefied natural gas, LNG, LNG infrastructure, NGV fuel, alternative gasification, LNG efficiency

Bibliography:
1. Biscardini G., Schmill R., Adrian Del Maestro. Small going big. Why small-scale LNG may by the next big wave. Strategy&, 2017. Available at: https://www.strategyand.pwc.com/media/file/ Small-going-big.pdf (accessed 15 April 2019).
2. LNG Blue Corridors. Available at: www.lngbluecorridors.eu (accessed 12 December 2018).
3. Fedorova E.B., Mel’nikov V.B. Osnovnye problemy malotonnazhnogo proizvodstva i potreb-lenija szhizhennogo prirodnogo gaza [Basic problems of small-scale production and consumption of the liquefied natural gas]. Trudy RGU nefti i gaza imeni I.M. Gubkina [Proceedings of Gubkin University of Oil and Gas], 2014, no. 4, p. 112-123 (in Russian).
4. Fedorova E.B., Mel’nikov V.B. Perspektivy razvitija malotonnazhnogo proizvodstva szhiz-hennogo prirodnogo gaza v Rossii [Prospects for development of small scale liquefied natural gas in Russia]. NefteGazoHimija [OilGasChemistry], 2015, no. 3, p. 44-51 (in Russian).
5. Fedorova E.B., Mel’nikov V.B. Rol’ i znachenie malotonnazhnogo proizvodstva szhizhennogo prirodnogo gaza dlja Rossijskoj Federacii [Role and value of small scale LNG plants in Russia]. Gazovaja promyshlennost’ [Gas Industry], 2015, no. 8, p. 90-94 (in Russian).
6. Medvedeva O.N. Tehniko-jekonomicheskij analiz variantov gazosnabzhenija potrebitelej [Technical and economic analyze of gas supply options for consumers]. Fundamental’nye issledovanija [Fundamental Research], 2011, no. 4, p. 121-126 (in Russian).
7. Kohler T., Bruentrup M. Choose the best refrigeration technology for small-scale LNG production. Hydrocarbon Processing, 2014, no. 1, р. 45-52.
8. Frolov V.O. Razrabotka racional’nyh shem avtonomnogo gazosnabzhenija na baze szhizhennogo prirodnogo gaza [Development of rational autonomous gas supply schemes based on liquefied natural gas]. Autorized summary of Cand. Diss. Saratov, 2014, 18 p. (in Russian).
9. Osipova N.N. Razrabotka nauchnyh osnov sovershenstvovanija regional’nyh i poselkovyh sistem snabzhenija szhizhennym gazom [Development of scientific foundations for improving region- nal and village systems for LPG supply]. Autorized summary of Doct. Diss. Penza, 2016, 46 p. (in Russian).
10. Kliment’ev А.Yu., Mitrova Т., Sobko А. et al. Srednetonnazhnyj SPG v Rossii: mezhdu ne-bom i zemlej [Midscale LNG in Russia: between sky and ground]. Moscow School of Management “Skolkovo”, 2018. Available at: https://energy.skolkovo.ru/downloads/documents/SEneC/Research/ SKOLKOVO_EneC_RU_MediumDutyLNG_01122018.pdf (accessed 10 April 2019) (in Russian).

2019/4
Research of possibility of using anti-wear additive OK-16 in composition of domestic aviation kerosene
Chemical sciences

Authors: Alexandra K. GORYUNOVA defended her Master’s thesis at Lomonosov Moscow state University of Fine Chemical Technologies in 2015. She is presently a postgraduate student of the specialized Department of the Chemmotology of Motor Fuels of Gubkin Russian State University of Oil and Gas (National Research University). She is the junior researcher of the Department of Qualification Assessment of Fuels and Oils of the FAI “25-th State Research Institute of Chemmotology of Ministry of Defense of Russian Federation”. She is author of 20 scientific papers in the field of chemmotology of jet fuels. E-mail: goryunova25@yandex.ru
Konstantin V. SHATALOV graduated from Khmelnitsky Ulyanovsk Higher Military Technical School in 1983 and also from Military Academy of Logistics and Transport in 1998. He is Candidate of Technical Sciences, Associate Professor of the specialized Department of Chemmotology of Motor Fuels of Gubkin Russian State University of Oil and Gas (National Research University). Head of the Department of Qualification Assessment of Fuels and Oils of the FAI “25-th State Research Institute of Chemmotology of Ministry of Defense of Russian Federation”. He is the author of more than 100 scientific papers, the area of his scientific interests are chemmotology, quality assessment of fuels and oils, metrological assurance of fuels and oils testing. E-mail: 1499090@mail.ru
Natalya M. LIHTEROVA graduated from Gubkin Moscow Institute of Petrochemical and Gas Industry in 1969. She is Doctor of Technical Sciences, Professor, Leading Researcher of the the Department of Qualification Assessment of Fuels and Oils of the FAI “25-th State Research Institute of Chemmotology of Ministry of Defense of Russian Federation”. She is author of more than 200 scientific works, the area of scientific interests are technology of production and chemmotology of motor fuels, technology, properties and rational use of heavy oil feedstock and colloidal structure of oil and oil products. E-mail: 1499090@mail.ru

Abstract: Comparative tests of laboratory samples of fuels based on kerosene fraction of hydrocracking with the addition of a new domestic anti-wear additive OK-16 and the currently used additive HITEC 580 are given, according to the indicators regulated by GOST 10227 and the “Standard Program for Qualification Testing of Experimental Designs of Fuels for TC-1 and RT”. It is shown that the anti-wear additive OK-16 is superior in lubricity to the currently used additive HITEC 580. When added to the kerosene fraction, the additive OK-16 does not adversely affect the physico-chemical parameters and performance properties of the fuel.

Index UDK: 665.753

Keywords: jet fuels, anti-wear additives OK-16 and HITEC 580, physico-chemical parameters and performance properties

Bibliography:
1. Chulkov P.V., Chulkov I.P. Topliva i smazochnye materialy: assortiment, kachestvo, primenenie, ehkonomiya, ehkologiya. M.: Politekhnika, 1995, 302 p.
2. Piskunov V.A., Zrelov V.N. Vliyanie topliv na nadezhnost’ reaktivnyh dvigatelej i samoletov. Himmotologicheskaya nadezhnost’. M.: Mashinostroenie, 1978, 270 p.
3. Yanovskij L.S., Dubovkin I.F., Galimov F.M. i dr. Inzhenernye osnovy aviacionnoj himmo-tologii. Kazan’: Izd-vo Kazan. un-ta, 2005, 714 p.
4. Dubovkin A.F., Malanicheeva V.G., Massur Yu.P., Fedorov E.P. Fiziko-himicheskie i ehks-pluatacionnye svojstva reaktivnyh topliv: Spravochnik. M.: Himiya, 1985, 240 p.
5. Shatalov K.V., Lihterova N.M., Seregin E.P. Kachestvo otechestvennyh topliv dlya reaktivnyh dvigatelej. Tekhnologii nefti i gaza, 2016, no. 1, p. 3-7.
6. Goryunova A.K., Lihterova N.M., Shatalov K.V. Protivoiznosnaya prisadka k toplivam dlya reaktivnyh dvigatelej. Patent RF, no. 2649396, 2017, 6 p.
Alexandra K. GORYUNOVA defended her Master’s thesis at Lomonosov Moscow state University of Fine Chemical Technologies in 2015. She is presently a postgraduate student of the specialized Department of the Chemmotology of Motor Fuels of Gubkin Russian State University of Oil and Gas (National Research University). She is the junior researcher of the Department of Qualification Assessment of Fuels and Oils of the FAI “25-th State Research Institute of Chemmotology of Ministry of Defense of Russian Federation”. She is author of 20 scientific papers in the field of chemmotology of jet fuels. E-mail: goryunova25@yandex.ru

2019/4
Development of thermostable dry acid composition based on sulfamic acid
Chemical sciences

Authors: Lyubov A. MAGADOVA graduated from Gubkin Moscow Institute of Petrochemical and Gas Industry in 1975. She is Doctor of Technical Sciences. Professor of the Department of Chemical Reagents for Oil and Gas Industry from Gubkin Russian State University of Oil and Gas (National Research University). She is specialist in the field of oilfield chemistry, reagents and technologies for hydrocarbons recovery processes. She is author of more than 180 scientific publications. E-mail: lubmag@gmail.com
Mikhail D. PAKHOMOV graduated from Gubkin Moscow Institute of Petrochemical and Gas Industry in 1976. He is Head of the Surfactant and Acid Systems Division at the Research and Educational Center “Oilfield Chemistry”. He is specialist in the field of acid treatment, applications of surfactants. He is author of more than 40 scientific publications. E-mail: pahomov.m.d@mail.ru
Timur I. YUNUSOV graduated from Gubkin Russian State University of Oil and Gas (National Research University) in 2018. He is Engineer of the Surfactant and Acid Systems Division at the Research and Educational Center “Oilfield Chemistry”. E-mail: timyun96@gmail.com
Vadim A. TSYGANKOV graduated from Gubkin Russian State University of Oil and Gas in 2006. He is Candidate of Technical Sciences, Associate professor of the Department of Chemical Reagents for Oil and Gas Industry from Gubkin Russian State University of the Oil and Gas (National Research University). He is specialist in the field of oilfield chemistry, technologies and reagents for well stimulation, in particular, acid treatment technologies. He is author of more than 40 scientific publications. E-mail: tsygankov.v@gubkin.ru

Abstract: This article is dedicated to the development of the dry acid composition based on sulfamic acid for well bottomhole zone acid treatment after injection profile flattening treatment. The main disadvantage of the compositions of this kind is complications occurring at temperatures higher than 60oC due to intense hydrolysis of sulfamic acid. The presented results showed that this disadvantage could be eliminated. Thermal stability is attributed to sulfamic acid by addition of specific modifiers that shift the equilibrium of sulfamic acid hydrolysis to the original agents. The developed composition is workable, meets industrial standards and may be recommended for use during the injectivity profile flatte- ning treatment.

Index UDK: 622.276.63

Keywords: acid treatment, sulfamic acid, hydrolysis, dry acid composition, amho-lytic surfactant

Bibliography:
1. Khisamov R.S., Gazizov A.A., Gazizov A.Sh. Increase of treated formations sweep efficiency. M: OAO “VNIIOENG”, 2003, 568 p.
2. Kelland M.A. Production chemicals for the oil and gas industry. Taylor&Fransis Group, 2009, 404 p.
3. Gluschenko V.N., Silin M.A. Oilfield chemistry. Published as 5 volumes. Volume 4. Acid treatment. Edited by I.T. Mischenko. M.: Interkontakt Nauka, 2010, 703 p.
4. New guidebook for chemists and technologists. Chemical equilibrium. Solutions properties. Edited by S.N. Simanova. SPb.: ANO “NPO Professional”, 2004, 998 p.
5. Amiyan V.A., Ugolev V.S., Pankratova M.N. Temperature influence on the efficiency of well acidizing with sufamic acid. Oil industry, 1971, no. 2, p. 35-38.
6. Amiyan V.A., Ugolev V.S., Kuznetsov G.N. Results of investigation of metal corrosion in sulfamic acid solutions. Oil industry, 1969, no. 10, p. 62-65.
7. Amiyan V.A., Ugolev V.S. Physical and chemical methods of well stimulation. M.: Nedra, 1970, 280 p.
8. Silin M.A., Magadova L.A., Tsygankov V.A., Mukhin M.M., Davletshina L.F. Acid treat- ment and methods of acid compositions testing: Guidebook. M.: Gubkin University of Oil and Gas, 2011, 142 p.

2019/4
Sorbents from sugarcane waste for removal of oil products from water
Chemical sciences

Authors: Alexandr I. VEZENTSEV graduated from Kharkiv Polytechnic Institute in 1971. He is Doctor of Technical Sciences, Professor. His experience of scientific and pedagogical work is more than 40 years. He is coauthor of more than 350 scientific works, including 30 patents. E-mail: Vesentsev@bsu.edu.ru
Dinh Chien NGUYEN graduated from Belgorod State National Research University (BelSU) in 2015. He is a research fellow at the Department of Technology Application and Transfer, Institute of Environmental Technology of the Vietnamese Academy of Science and Technology. He is postgraduate student of the Department of General Chemistry (BelSU). He is coauthor of 15 scientific works. E-mail: ngudichi@yandex.ru
Stanislav V. MESHCHERYAKOV graduated from Gubkin Russian State University of Oil and Gas in 1968, is Head of the Department of Industrial Ecology of Gubkin Russian State University of Oil and Gas (National Research University). He is Doctor of Technical Sciences, Professor. His experience of scientific and pedagogical work is 50 years. He is author of more than 150 scientific publications. E-mail: stas@gubkin.ru
Vladimir A. PERISTYI graduated from Odessa Polytechnic University in 1964. He is Candidate of Technical Sciences. His experience of scientific and pedagogical work is 53 years. He is coauthor of 114 scientific works, including 11 patents. E-mail: peristy@bsu.edu.ru

Abstract: Sorption materials were obtained from sugar cane waste pyrolysis products; the pyrolysis process was carried out using bentonitic clay to limit the contact of plant waste with atmospheric oxygen. The sorption capacity of the developed materials with respect to low viscosity oil products was investigated. The buoyancy of the developed sorbent materials on the surface of kerosene was revealed. It is established that the sorbents obtained by the proposed method have higher sorption efficiency with respect to kerosene than commercial activated carbon from coconut shell. It is revealed that sorption materials based on the products of the pyrolysis of sugar cane waste can absorb kerosene in an amount greater than its own weight. It was also found that the rate of release of sorbed kerosene from waste materials from sugar cane is higher than that from commercial activated carbon based on coconut shell pyrolysis products.

Index UDK: 66.092

Keywords: аctivated carbon, waste of sugarcane bagasse, sorption, oil products, sorption method of water treatment, pyrolysis, bentonite clay

Bibliography:
1. Bukharova E.A. Sorbtsionnye materialy na osnove otkhodov polietilentereftalata i soedineniy grafita dlya ochistki stochnykh vod. Diss. kand. tekh. nauk. 05.17.06. Saratov, 2015, 161 p.
2. Dolbnya I.V. Razrabotka magnitnykh kompozitsionnykh sorbentov na osnove gal’vanoshla-ma dlya ochistki vody ot nefteproduktov i ionov tyazhelykh metallov. Diss. kand. tekh. nauk. Saratov, 2017, 155 p.
3. Vezentsev A.I., Peristyy V.A., Peristaya L.F., Yapryntsev M.N., Kornienko I.V. Sorbtsiya uglevodorodov na sorbentakh razlichnoy khimicheskoy prirody. Materialy Vserossiyskoy nauchnoy konferentsii s mezhdunarodnym uchastiem “Sorbtsionnye i ionoobmennye protsessy v nano- i supramolekulyarnoy khimii”. Belgorod, 22-24 sentyabrya 2014 g. Belgorod: Izd: ID “Belgorod” NIU “BelGU”, 2014, p. 127-130.
4. Peristyy V.A., Peristaya L.F., Indina I.V., Yapryntsev M.N. Sravnitel’naya otsenka sorbtsionnoy sposobnosti aktivirovannogo uglya i tsitrogipsa po otnosheniyu k nefteproduktam. Nauchnye vedomosti BelGU. Seriya “Estestvennye nauki”, 2009, vyp. 9/2, no. 11 (66), p. 91-94.
5. Peristyy V.A., Yapryntsev M.N., Peristaya L.F., Indina I.V. Ochistka vody ot nefteproduktov prirodnymi sorbentami. Materialy IV Mezhdunarodnoy konferentsii “Sorbenty kak faktor kachestva zhizni i zdorov’ya”. Belgorod, 24-28 sentyabrya 2012 g., p. 243-249.
6. Yapryntsev M.N., Peristyy V.A., Peristaya L.F. Sorbtsionnaya kharakteristika nekonditsionnogo peska Razumenskogo mestorozhdeniya dlya ochistki stochnoy vody ot nefteproduktov. Materialy Vserossiyskoy konferentsii s elementami nauchnoy shkoly dlya molodezhi “Nano- i supramolekulyarnaya khimiya v sorbtsionnykh i ionnoobmennykh protsessakh”. Belgorod, 14-17 sentyabrya 2010 g., p. 167-169.
7. Yapryntsev M.N., Indina I.V., Peristaya L.F., Peristyy V.A. Ispol’zovanie tekhnogennykh otkhodov Belgorodskoy oblasti dlya ochistki proizvodstvennykh stochnykh vod ot nefteproduktov. Materialy Vserossiyskoy konferentsii s elementami nauchnoy shkoly dlya molodezhi “Ekotoksikologiya — 2010”. Tula, 18-20 oktyabrya 2010 g., 28 p.
8. Gruzinova V.L. Ochistka neftesoderzhashchikh stochnykh vod lokomotivnykh depo s primeneniem koagulyantov i otkhodov sinteticheskikh materialov. Avtoref. kand. diss. Spets.: 05.23.04. Vodosnabzhenie, kanalizatsiya, stroitel’nye sistemy okhrany vodnykh resursov. Minsk: Belorusskiy natsional’nyy tekhnicheskiy universitet, 2014, 29 p.
9. Fomenko A., Sokolov L. Sorbtsionnaya ochistka stochnykh vod ot nefteproduktov. Ekologiya i promyshlennost’ Rossii, 2015, no. 19 (5), p. 8-12. https://doi.org/10.18412/1816-0395-2015-5-8-12.
10. Akinbade Adeshola Olubunmi, Somin V.A., Komarova L.F. Novye sorbenty iz otkhodov rastenievodstva dlya ochistki vody ot nefteproduktov. Polzunovskiy vestnik, 2017, no. 4, p. 114-117.
11. FAO — Prodovol’stvennaya i sel’skokhozyaystvennaya organizatsiya OON. Rezhim dostupa: http://www.fao.org/faostat/ru/#data/QC/. (Data obrashcheniya: 03.08.2018).
12. Vezentsev A.I., Nguen Dinh Chien, Mikhaylyukova M.O. Komponentnyi sostav i kharakte-ristiki protsessa termicheskoi destruktsii bagassy. Lesotekhnicheskiy zhurnal, 2018, no. 1, p. 135-145. DOI: 10.12737/article_5ab0dfc26f3564.53546946.
13. Nguen Dinh Chien, Mikhaylyukova M.O., Vezentsev A.I. Ispol’zovanie produktov piroliza bagassy dlya adsorbtsii fenola i 2,4-dikhlorfenola iz vodnoy sredy. Po materialam mezhdunarodnоу nauchno-tekhnicheskoу konferenzii. “Innovatsionnye puti resheniya aktual’nykh problem prirodopol’zovaniya i zashchity okruzhayushchey sredy”. Alushta, 4-8 iyunya, 2018 g. Belgor. gos. tekhnol. un-t, 2018, ch. II, p. 156-161.
14. Nguen Dinh Chien, Mikhaylyukova M.O., Vezentsev A.I. Termograficheskoe issledovanie bagassy. Sbornik dokladov mezhdunarodnoi nauchno-tekhnicheskoi konferenzii. “Problemy prirodopol’zovaniya i ekologicheskaya situatsiya v Evropeyskoy Rossii i sopredel’nykh stranakh”. Belgorod, 2017, p. 309-315.
15. Eremin I.S. Razrabotka sorbirujushhego materiala na osnove saharnogo trostnika. Jekologija i promyshlennost’ Rossii, 2017, no. 10, p. 14-17.
16. Meshherjakov S.V., Gazarov R.A., Mkrtychan V.R., Eremin I.S. Ispol’zovanie mikrovolnovogo izluchenija pri poluchenii uglerodnogo adsorbenta. Trudy RGU nefti i gaza (NIU) imeni I.M. Gubkina, 2018, no. 1, p. 128-140.

2019/4
Study of destruction of Study of destruction of solutions of high molecular weight polyisobutylenes in petroleum oilsolutions of high molecular weight polyisobutylenes in petroleum oil
Chemical sciences

Authors: Aleksey V. LEONT’EV (b. 1988) graduated from Gubkin Russian State University of Oil and Gas in 2013. He is post-graduate student of the Department of Chemistry and Techno-logy of Lubricants and Chemmotology of Gubkin Russia State University of Oil and Gas (National Research University). He is Research Fellow in OOO United Research and Deve-lopment Center (OOO “RN-CIR”). He is author of 10 publications. E-mail: leontievaleksey@gmail.com
Igor R. TATUR (b. 1956) graduated from Gubkin Moscow Institute of Petrochemical and Gas Industry in 1979. He is Candidate of Technical Sciences, Associate Professor of the Dept. of Chemistry and Technology of Lubricants and Chemmotology of Gubkin Russian State University of Oil and Gas (National Research University). He is author of 3 books, 27 patents, 120 publications. E-mail: igtatur@yandex.ru
Valeria D. SHEVTSOVA is a student of the Department of Chemistry and Technology of Lubricants and Chemmotology of Gubkin Russia State University of Oil and Gas (National Research University). E-mail: limsy@rambler.ru

Abstract: Application of polyisobutylenes (PIB) in lubricants is often limited due to polymer degradation. Thermal oxidation and mechanical stability of solutions of PIB in oil with polymer concentration more than 1 % mass is still not well understood. This paper includes the results of the research of the PIB destruction with different molecular weights of domestic and foreign manufacturers. The influence of temperature, mechanical impact, molecular weights and concentration were investigated. It was found that the higher molecular weight or concentration is, the larger destruction of PIB is. Other patterns of PIB’s degradation are also presented in the article.

Index UDK: 665.7.038.64

Keywords: viscosity modifier, condensed oils, polyisobutylene, polymers, thermal oxidation destruction of polymers, mechanical destruction of polymers

Bibliography:
1. Rudnik L.R. Prisadki k smazochnym materialam. Svojstva i primenenie. Рod red. A.M. Dani-lova: per. s angl. 2-go izd. SPb.: COP “Professiya”, 2013, 928 p.
2. Kaplan S.Z., Radzevenchuk I.F. Vyazkostnye prisadki i zagushchennye masla. L.: Himiya, 1982, 136 p.
3. Tatur I.R., Sevаst’yanova E.S., Leont’ev A.V., Spirkin V.G., Holodov B.P. Research of thermal oxidation and mechanical stability of low molecular weight polyisobutylenes in petroleum base and synthetic oils. Proceedings of Gubkin Russian State University of Oil and Gas. M.: RSU of Oil and Gas I.M. Gubkina, 2017, no. 1 (286), 122 p.
4. Kichkin G.I., Zaskal’ko P.P. Destrukciya poliizobutilena pri rabote zagushchennogo masla v shesterenchatom reduktore. Himiya i tekhnologiya topliv i masel, 1967, no. 12, 39 p.
5. www.chemmarket.info.ru.
6. www.tebiz.ru.
7. Kichkin G.I., Zaskal’ko P.P., Almazov O.A. Vliyanie temperatury na destrukciyu poliizobutilena, rastvorennogo v mineral’nom masle. Himiya i tekhnologiya topliv i masel, 1971, no. 12, 46 p.