Extended Search

- in all fields
- in the title
- in key words
- in the abstract
- in the bibliography
Issue
Name
Authors
Category
2020/4
Assessment of the actual technical state of the Syrian oil pipeline
Geosciences

Authors: Vadim A. POLYAKOV graduated from M.V. Lomonosov Moscow State University in 1981. He is Doctor of Technical Sciences, Vice Head for Academic Work of the Dept. of Design and Operation of Pipelines at the Faculty of Design, Construction and Operation of Pipeline Systems at Gubkin Russian State University of Oil and Gas (National Research University). He is author of more than 100 scientific papers. E-mail: vapolyakov@rambler.ru
Yasser Abed AANEY is postgraduate student of Dept. of Design and Operation of Pipelines at the Faculty of Design, Construction and Operation of Pipeline Systems at Gubkin Russian State University of Oil and Gas (National Research University). E-mail: yasseraaney@gmail.com

Abstract: Assessment of the current technical state of the Syrian oil pipeline is the first step towards determining the optimal volume of pumping and repair work schedule. This article discusses the construction of diagrams of the carrying capacity of the Syrian oil pipeline to assess its real state.

Index UDK: 622.692.4

Keywords: rehabilitation of the Syrian oil pipeline, pipe defects, maximum pressure, assessment of the technical state of the pipe, pipeline bearing capa- city

Bibliography:
1. Yasser Abed Aaney, Polyakov V.A. Challenges of Syrian oil pipeline system reinstatement. Proceedings of Gubkin Russian State University of Oil and Gas 1 (294), 102-108, 2019 (in Russian).
2. Polyakov V.A. Methods and norms of technological design of oil pipelines: Textbook. M.: Gubkin Russian State University of Oil and Gas, 2019, 113 p. [Electronic resource]. Access mode: elib.gubkin.ru/content/24273 (in Russian).
3. Polyakov V.A. Fundamentals of technical diagnostics: a course of lectures: Textbook. M.: INFRA-M, 2012, 118 р. (in Russian).
4. Vasiliev G.G., Polyakov V.A., Sentsov S.I., Lange B.S. Ranking of pipeline sections with non-critical defects in the pipe body. Gas Industry, 2012, no. 12 (683), p. 82-83 (in Russian).
5. RD-24.040.00-KTN-062-14. Main pipeline transportation of oil and oil products. Trunk oil pipelines. Design standards. Moscow: OAO AK Transneft’, 2014, 165 p. (in Russian).
6. ASME B31.4. Liquid Transportation Systems for Hydrocarbons. Liquid Petroleum Gas. Anhydrous Ammonia and Alcohol’s. American Society of Mechanical Engineers, 1993.
7. Documents and annual reports of the Syrian crude oil transportation company (in Arabic).

Authors: Alexander N. SOBOLEV graduated from Moscow State University of Technology “STANKIN” in 2002 in the direction of the magistracy “Technology, Equipment and Automation of Engineering Industries”. He is Candidate of Technical Sciences, Assistant Professor of the Sub-department of Machines of MGTU “STANKIN”. He is expert in the theory of mechanisms and CAD. He is author and co-author of more than 120 scientific and educational works. E-mail: stankin-okm@yandex.ru
Alexey Ya. NEKRASOV graduated from Moscow State University of Technology “STANKIN” in 1994 by specialty “Machine tools and metalworking”. He is Candidate of Technical Sciences, Assistant Professor of Sub-department of Machines of MSUT “STANKIN”. He is expert in engineering. He is author and co-author of more than 120 scientific and educational works. E-mail: stankin-okm@yandex.ru
Michail O. ARBUZOV graduated from Moscow machine tool institute in 1964 by specialty “Mechanical engineering technology, machine tools and metalworking”. He is Candidate of Technical Sciences, Assistant Professor of Sub-department of Machines of MSUT “STANKIN”. He is expert in the field of designing and calculating machine parts. He is author and co-author of more than 65 scientific and educational works. E-mail: stankin-okm@yandex.ru
Victor G. PIROZHKOV graduated from the Krasnoyarsk Polytechnic institute in 1971 with a degree in mechanical engineering technology, machine tools and metalworking. He is Candidate of Technical Sciences, Professor at the Department of Technical Mechanics of Gubkin Russian State University of Oil and Gas (National Research University). He is expert in the field of calculation of strength and reliability of elements of engineering structures. He is author of more than 75 scientific and educational works. E-mail: pirogkov.v@gubkin.ru

Abstract: The variety of possible technical solutions creates significant difficulties in the design process for a mechanical engineer. The creation and use of knowledge bases of engineering solutions for typical units of machines and mechanisms is one of the ways to reduce the time required to search for possible design options in various sources and to promptly make rational decisions in the design process. The article deals with the problem of increasing the level of automation in the design of worm gears based on the development of logical, informational, algorithmic and software for the knowledge base of design solutions for the bearing units of worm shafts.

Index UDK: 621.0.01:621.833:621.828.3

Keywords: level of design automation, worm gears, knowledge base of design solutions, bearing arrangements of worm shafts

Bibliography:
1. Prokhorov A.F. Constructor I EVM [Constructor and computer]. M.: Machinostroenie, 1987, 272 p.
2. Sobolev A.N., Kosov M.G. Automation of kinematic and dynamic analysis of technological machines. Vestnik MGTU “Stankin” [Messenger of Moscow State University of Technology “Stankin”], 2010, no. 2, p. 32-36 (in Russian).
3. Pirozhkov V.G., Sobolev A.N., Nekrasov A.Ya., Arbuzov M.O. To the question of the shaping of the profile of cylindrical gears during electrical discharge cutting. Trudi RGU nefti i gaza (NIU) imeni I.M. Gubkina [Proceedings of Gubkin Russian State University of Oil and Gas], 2018, no. 4, p. 118-131 (in Russian).
4. Pirogkov V.G., Sobolev A.N., Nekrasov A.Ya., Arbuzov M.O. Computer-aided design and modeling in mechanical engineering: orthogonal bevel gears. Trudi RGU nefti i gaza (NIU) imeni I.M. Gubkina [Proceedings of Gubkin Russian State University of Oil and Gas], 2019, no. 2, p. 95-106 (in Russian).
5. Pirozhkov V.G., Sobolev А.N., Nekrasov А.Ya., Аrbuzov M.O. Gear mechanisms of intermittent intermittent motion: designs, calculation methods, modeling. Trudi RGU nefti i gaza (NIU) imeni I.M. Gubkina [Proceedings of Gubkin Russian State University of Oil and Gas], 2019, no. 4, p. 156-166 (in Russian).
6. Gushchin V.G., Baltadzhi S.A., Sobolev A.N., Brovkina Yu.I. Proyektirovaniye mekhanizmov i mashin [Design of mechanisms and machines]. Tutorial. Stary Oskol, 2019, 488 p.
7. Pirozhkov V.G., Arbuzov M.O., Sobolev A.N., Nekrasov A.Ya. Progressive ways of mounting parts on the shaft. Trudi RGU nefti i gaza (NIU) imeni I.M. Gubkina [Proceedings of Gubkin Russian State University of Oil and Gas], 2020, no. 2, p. 99–110 (in Russian).
8. Nekrasov А.Ya., Аrbuzov M.O., Pirozhkov V.G. On a formalized method for determining the additional loads caused by individual errors in the steps of links in mechanical devices with multi-pair contact of elements. Neft’ gaz i biznes [Oil, Gas and Business], 2011, no. 3, p. 62-67 (in Russian).
9. Kazakov A.A., Arbuzov M.O., Pirogkov V.G., Saldadze A.D. Influence of part shape errors in equipment accuracy calculations. Neft’ gaz i biznes [Oil, Gas and Business], 2012, no. 1-2, p. 98-101 (in Russian).
10. Sobolev А.N., Nekrasov А.Ya., Yаgol’nitser O.V., Butrimova E.V. An experimental model for assessing the technical and environmental indicators of machine tools. Vestnik MGTU “Stan- kin” [Messenger of Moscow State University of Technology “Stankin”], 2016, no. 1, p. 33-37 (in Russian).
11. Sobolev A.N., Kosov M.G., Nekrasov A.Ya. Modeling of structures of hull parts using calculated macrocells. Vestnik MGTU “Stankin” [Messenger of Moscow State University of Technology “Stankin”], 2014, no. 3, p. 98-101 (in Russian).
12. Sobolev А.N., Nekrasov А.Yа., Аrbuzov M.O. Effective methods of training future engineering and scientific personnel at the machine tool department of MGTU “Stankin”. Tekhni- cheskoe tvorchestvo molodyozhi [Technical creativity of youth], 2016, no. 1, p. 21-24 (in Russian).
13. Nekrasov A.Ya., Аrbuzov M.O. Algorithm for the rationalization of contact loading of multi-pair gearing elements based on a discrete model. Vestnik MGTU “Stankin” [Messenger of Moscow State University of Technology “Stankin”], 2013, no. 2, p. 80–85 (in Russian).
14. Nekrasov A.Ya., Sobolev A.N. Algorithmization of the design process of parts and components of machines (for example, chain transmission). Vestnik MGTU “Stankin” [Messenger of Moscow State University of Technology “Stankin”], 2015, no. 3, p. 47–51 (in Russian).
15. Orlov P.I. Osnovy konstruirovaniya. [Basics of design]. Reference and methodological manual. In two books, Book 2, Moscow, 1988, 543 p.
16. Chekanin V.A., Chekanin A.V. Data structure for the problem of three-dimensional orthogonal packing of objects. Vestnik MGTU “Stankin” [Messenger of Moscow State University of Technology “Stankin”], 2015, no. 1, p. 112-116 (in Russian).
17. Khudoshina M.Yu., Butrimova O.V. The stage of conceptual design of the database on lubricating and cooling technological means, systems of their use and disposal. Vestnik MGTU “Stankin” [Messenger of Moscow State University of Technology “Stankin”], 2010, no. 1, p. 150–154 (in Russian).
18. Nekrasov А.Ya., Arbuzov M.O., Pirozhkov V.G. Application of a universal system for automated analysis of the load distribution scheme between elements in multi-contact kinematic pairs (for selecting the number of teeth of a smaller pulley in a gear-belt transmission). Neft’, gaz i biznes [Oil, Gas and Business], 2010, no. 7-8, p. 69-74 (in Russian).
19. Pirozhkov V.G., Sobolev А.N., Nekrasov А.Ya., Аrbuzov M.O. Automation of design and technological preparation of gear production by copying method. Trudi RGU nefti i gaza (NIU) imeni I.M. Gubkina [Proceedings of Gubkin Russian State University of Oil and Gas], 2020, no. 3, p. 60-71 (in Russian).

2020/4
Calculation of regulated number of calibration activities for catalytic combution sensors installed around open refinery installations
Technical sciences

Authors: Alexey V. KRYUCHKOV graduated from Kiev Higher Engineering Radiotechnical School of Air Defence in 1988. He is Candidate of Technical Sciences, associate professor of the Department of Integrated Security of Critical Facilities of Gubkin Russian State University of Oil and Gas (National Research University). He is a specialist in the field of synthesis of special software for automated control systems. He is author of 24 scientific publications. E-mail: hook66@list.ru
Andrey Yu. STROGONOV graduated from Gubkin Russian State University of Oil and Gas in 2006. He is postgraduate of the Department of Automation of Technological Proces- ses of Gubkin Russian State University (National Research University) of Oil and Gas. Research interests include the automation of assessment of efficiency of management of fire safety and improvement of automation of intellectual support of management of fire and explosion protection. He is author of 17 scientific publications. E-mail: andreystrogonov@gubkin.ru
Ilya V. SAMARIN graduated from Gubkin Russian State University of Oil and Gas in 2006. He is Candidate of Technical Sciences, associate professor of the Department of Automation of Technological Processes of Gubkin Russian State University of Oil and Gas (National Research University). He is a specialist in the field of automation and management. He is author of more than 90 scientific publications. E-mail: ivs@gubkin.ru

Abstract: The paper describes a variant of constructing a mathematical model for determining the regulated number of calibration measures for a single catalytic combustion sensor (CCS) and model for determining total number of measures for all CCS installed around open installations at an oil refinery. The relevance of the study of measures for the maintenance of CCS stationary gas analyzers located at the open installations of a refinery is described. The choice of devices of the thermochemical principle of operation has been substantiated. The model of the STM-10 gas analyzer is considered as an example. Information about the time intervals between checks and calibrations of CCS are used from the manual for this model of the device. The coefficient for the correction of the operating life of the sensitive element (SE) of the CCS is presented as a piecewise constant function. An approximate view of its dependence on the number of calibrations for the calibration gas mixture is given. It is mathematically substantiated that the total number of calibration activities for all CCS installed around the open installations of the refinery depends on the influence of environmental conditions, as well as on the number of installed CCS around the open installation and the number of calibrations during one calibration interval for one sensor.

Index UDK: 681.5

Keywords: fuel and energy complex, petroleum refinery, fire safety, gas analyzer, thermochemical detector, open plant, maintenance, verification, calibration

Bibliography:
1. Kidam K., Hussin N.E., Hassan O., Ahmad A., Johari A., Hurme M. Accident prevention approach throughout process design life cycle. Process Safety and Environmental Protection, 2014, vol. 92, no. 5, p. 412-422.
2. Samarin I.V., Fomin A.N. Strategic planning at the enterprise: application of a method of the analysis of hierarchies for the strategic activity monitoring. Statistika i Ekonomika. Statistics and Economics, 2014, no. 5, p. 84-89 (in Russian).
3. Samarin I.V. ACS strategic planning at the enterprise: refinement of methodological and instrumental basics of planning schemes. Sovremennaya nauka: aktualnyye problemy teorii i praktiki. Seriya: Yestestvennyye i tekhnicheskiye nauki. Modern Science: Actual Problems of Theory and Practice. Series: Natural and Technical Science, 2017, no. 2, p. 31-44 (in Russian).
4. Samarin I.V., Strogonov A.Yu. Model of evaluation of fire safety at fuel and energy comp- lex facilities using temporal characteristics from graphs of strategic planning using automated con- trol system. Trudy Rossiyskogo gosudarstvennogo universiteta nefti i gaza imeni I.M. Gubkina. Proceedings of Gubkin Russian State University of Oil and Gas, 2018, no. 4 (293), p. 143-154 (in Russian).
5. Prokhorov A.M. Bolshaia Sovetskaia Entsiklopediia [Great Soviet Encyclopedia]. Moscow, Sovietskaia Entsiklopediia, 1970 (in Russian).
6. Requirements for installation of alarms and gas analyzers, TU-gas-86. Available at: https://files.stroyinf.ru/Data1/9/9177/ (Accessed September 13, 2020) (in Russian).
7. Ivanov E.N. Pozharnaya zashchita otkrytyh tekhnologicheskih ustanovok [Fire protection of open process installations]. Moscow, Chemistry, 1975, 199 p. (in Russian).
8. Rukin M.V. Fire safety of oil depots, tank farms, warehouses of oil and petroleum products. Available at: http://www.ervist.ru/stati/pozharnaya-bezopasnost-neftebaz-rezervuarnyh-parkov-skla-dov-nefti-i-nefteproduktov.html (Accessed September 15, 2020) (in Russian).
9. Abrosimov А.А., Topolskiy N.G., Fedorov А.V. Avtomatizirovanniyye systemy pozharovzrivobezopasnosti neftepererabatyvayushchikh proizvodstv [Computer-aided fire and explosion safety systems of petroleum refineries]. Moscow, State Fire Academy of the Ministry of Internal Affairs of Russia Publ., 1999, 239 p. (in Russian).
10. Korotcenkov G. Handbook of gas sensor materials. Volume 1: Conventional Approaches. Springer, New York, 2013, 442 p.
11. Classification of gas analyzers. Available at: https://www.gazoanalizators.ru/poleznoe. html%26art%3D2 (Accessed September 16, 2020) (in Russian).
12. Khamatdinova A.V., Smorodova O.V. The instrumental control of gas environment state on refining plants. Tekhnologii tekhnosfernoj bezopasnosti. Technology of technosphere safety, 2015, no. 4 (62), p. 325-331 (in Russian).
13. The web site of “Kipkomplekt”. Available at: http://www.kipkomplekt.ru/sfera_neft.php (Accessed September 16, 2020) (in Russian).
14. STM-10 signaling devices. User manual. Application album. Available at: http://www.ana-litpribor-smolensk.ru/products/bezopasnost_gazoanalizatory/stacionarnye_gazoanalizatory/ signalizator _ stm10/ (Accessed September 20, 2020) (in Russian).
15. Navackij A.A., Baburov V.P., Baburin V.V., Fomin V.I., Fedorov А.V. Proizvodstvennaya avtomatika dlya preduprezhdeniya pozharov i vzryvov. Pozharnaya signalizaciya [Industrial automation for fire and explosion prevention. Fire alarm]. Moscow, State Fire Academy of EMERCOM of Russia, 2005, 335 p. (in Russian).
16. Fomin V.I., Fedorov A.V., Lukyanchenko A.A., Kostyuchenkov D.K. An automatic analytical control of explosion hazard of air medium of industrial objects. Pozharovzryvobezopasnost’. Fire and Explosion Safety, 2004, vol. 13, no. 4, p. 49-54 (in Russian).
17. Frenkel B.A. Promyshlennye analizatory sostava i svojstv zhidkostej i gazov v processah pererabotki nefti [Industrial analyzers of the composition and properties of liquids and gases in oil refining processes]. Moscow, Tsniiteneftekhim, 1995, 145 p. (in Russian).
18. Information portal about gas analyzers, gas detectors and gas detectors. Principles of operation of gas analyzers. Available at: https://gas-analyzer.ru/ (Accessed September 24, 2020) (in Russian).

2020/4
Aspects of calculating free energy of drop on solid surface
Chemical sciences

Authors: Alexander N. LOPANOV graduated from Donetsk State University in 1977. Doctor of Technical Sciences, associate professor, Head of the Department of Life Safety of Belgorod State Technological University named after V.G. Shukhov. He is author of more than 200 scientific publications. E-mail: alopanov@yandex.ru

Abstract: The analysis of the wetting model based on the measurement of the areas of the interface of the contacting phases: liquid—gas, solid—gas, solid—liquid is carried out. It is shown that the calculations of the Isobaric-isothermal potential ΔF during wetting must take into account all the main components of the surface energies (the free energy of the drop before the wetting process); this condition is rather important if the variational principle of the minimum energy is not realized in the process of wetting — the shape of the drop before the wetting process is not spherical, and the wetting process is not equilibrium, or it is necessary to take into account the forces of gravity at large drop sizes, and for a water drop with a small radius (less than 0.5 mm), all cases of wetting can be interpreted by representing the drop as a spherical segment with different section heights. To improve the accuracy of determining wetting parameters, one must enter a dimensionless parameter m, equal to the ratio of the section height of the spherical segment to its radius. Hysteresis phenomena when using the parameter m to a lesser extent affect the measurement accuracy, since the measurements determine the linear characteristics of the drop rather than the contact angles of wetting.
Formulas for calculating the work of adhesion, Isobaric-isothermal potential depending on the wetting parameter m, as well as conditions under which the change in Isobaric-isothermal potential in the wetting process is zero are revealed. The use of a parametric wetting model can improve the accuracy of measurements and calculations of thermodynamic parameters of wetting.
The model has advantages in the study of systems where the edge angle of wetting is difficult to measure.

Index UDK: 547

Keywords: Young’s equation, the boundary angles of wetting, the parametric model of wetting, isobaric-isothermal potentia

Bibliography:
1. Young T. An Essay on the Cohesion of Fluids. Phil. Trans. R. Soc. Lond., 1805, no. 95, p. 65-87.
2. Wenzel R.N. Resistance of Solid Surfaces to Wetting by Water. Industrial & Engineering Chemistry, 1936, vol. 28, p. 988-994.
3. Deryagin B.V. On the dependence of the edge angle on the microrelief or roughness of the wetted surface. Doklady AN SSSR, 1946, vol. 51, no. 5, p. 357-360 (in Russian).
4. Cassie A.B.D., Baxter S. Wettability of Porous Surfaces. Transactions of the Faraday Society, 1944, vol. 40, p. 546-551.
5. Samsonov M.V., Samsonov V.M. On boundary wetting conditions for a rough hard surface. Fiziko-himicheskie aspekty izuchenija klasterov, nanostruktur i nanomaterialov: mezhvuz. sb. nauch. tr. Tver: Tver. state university (edited by V. M. Samsonov, N. Yu. Sdobnyakov), 2015, vol. 7, p. 427 (in Russian).
6. Kwangseok Seo, Minyoung Kim, Do Hyun Kim. Re-derivation of Young’s Equation, Wenzel Equation, and Cassie-Baxter Equation Based on Energy Minimization//Surface-energy//Section 2: Derivation with simple mathematics, 2015, 7 р.
7. Bormashenko Е. Physics of solid—liquid interfaces: from the Young equation to the superhydrophobicity. Low Temperature Physics/Fizika Nizkikh Temperatur, 2016, vol. 42, no. 8, p. 792-808.
8. Ababneh A., Amirfazli A., Elliott J.A. Effect of Gravity on the Macroscopic Advancing Contact Angle of Sessile Drops. The Canadian Journal of Chemical Engineering, 2006, no. 84, p. 39-41.
9. Diana A., Castillo M., Brutin D., Steinberg T. Sessile Drop Wettability in Normal and Reduced Gravity. Microgravity Sci. Technol, 2012, no. 24, p. 195-202.
10. Zhu Z-Q., Wang Y., Liu Q-S., Xie J-C. Influence of Bond Numbers on Behaviors of Liquid Drops Deposited onto Solid Substrates. Microgravity Sci. Technol, 2012, no. 24, p. 181-188.
11. Allen J.S. An analytical solution for determination of small contact angles from sessile drops of arbitrary size. Journal of Colloid and Interface Science, 2003, no. 261, p. 481-489.
12. Lippman G.J. Beziehungenzwischen der Capillaren und elektrischen Erscheinungen. Ann. Physik und Chemie (Series 2), 1873, no. 149, p. 546-561.
13. Lаwrence J., Parsons R., Payne R.J. ElectrosorptionValency and Partial Charge Transfer. Electroanal. Chem., 1968, no. 16, p. 193.
14. Marey E.J., Lippman G.J. In ion photographique des indications de l’électromètre de Lippman. Compt. rend. Acad. Sci. (Paris), 1876, no. 83, p. 278-280.
15. Rusanov A.I. On the theory of wetting elastic-deformable bodies. Kolloidnyj zhurnal, 1977, vol. 39, no. 4, p. 704-717 (in Russian).
16. Lopanov A.N., Tikhomirova K.V. Parametric models of wetting. Uspehi sovremennogo estestvoznanija, 2016, no. 11, p. 18-23 (in Russian).
17. Tikhomirova K.V. Kolloidno-himicheskie aspekty agregacii i jelektroprovodnosti uglerodnyh chastic v jelektrolitah i cementnom kamne: Avtoref. diss. kand. tehn. nauk [Colloidal-chemical aspects of aggregation and electrical conductivity of carbon particles in electrolytes and cement stone: autoref. dis. Cand. technical Sciences]. Belgorod, 2018, 23 p. (in Russian).

2020/3
Problems of HTR Reservoirs Production Monitoring Using Well Test Methods
Geosciences

Authors: Andrey I. IPATOV graduated from Gubkin Russian State University of Oil and Gas in 1982. He is Doctor of Technical Sciences, Professor of the Department of Geophysical Information Systems of Gubkin Russian State University of Oil and Gas (National Research University), specialist in the field of geophysical and hydrodynamic control of development of oil and gas fields. He is author of more than 200 scientific publications, 8 monographies, 30 patents of inventions. E-mail: ipatov.ai@gazprom-neft.ru
Dmitry M. LAZUTKIN graduated from Gubkin Russian State University of Oil and Gas (National Research University) in 2017. He is specialist in well testing and production logging. He is author of more than 20 scientific publications, 3 patents of invention. E-mail: dimlaz@mail.ru

Abstract: Due to the growing share of deposits formed by reservoirs with abnormally low permeability in the assets of oil and gas companies, the geophysical support of the production of such deposits is an urgent task. Conducting and interpreting hydrodynamic studies in reservoirs with abnormally low permeability is a complex task, which requires both, adjusting the methodology for conducting and interpreting studies, and the correct approach to aggregation.
This article examines the problems encountered in well test surveys on hard-to-recover (HTR) reserves, substantiates the prerequisites for the occurrence of key uncertainties, and provides recommendations for well test methods in reservoirs with abnormally low permeability.

Index UDK: 550.8.014

Keywords: well test, pressure, flow rate, hard-to-recover reserves, low-perme-able reservoirs, pressure gauge, log-log graph, interpretation

Bibliography:
1. Kremeneckij M.I., Ipatov A.I. Stacionarnyj gidrodinamiko-geofizicheskij monitoring razrabotki mestorozhdenij nefti i gaza [Stationary monitoring of oil and gas field development by production logging and well testing]. M.-Izhevsk: IKI, 2018, 796 p. (in Russian).
2. Guljaev D.N., Lazutkin D.M., Morozovskij N.I. Kontrol’ razrabotki nizkopronicaemyh terrigennyh kollektorov po dannym gidrodinamicheskih issledovanij skvazhin [Low-permeable terrigenous reservoirs production monitoring based on well test methods] Trudy ХII Vserossijskoj nauchno-tehnicheskoj konferencii “Aktual’nye problemy razvitija neftegazovogo kompleksa Rossii” [Proc. of the ХII Russian science-technical conference “Russian oil and gas industry actual problems”] Moscow, 12-14 february 2018, p. 82-91 (in Russian).
3. Bilinchuk A.V., Ipatov A.I., Sitnikov A.V., Yakovlev A.A., Shurunov A.V., Galeev R.R., Kolesnikov M.V. PLT control of production of low-permeable formations in wells with complex completion. The experience of the company “Gazprom Neft”. Neftjanoe hozjajstvo [Oil Industry], 2018, no. 12, p. 34-37 (in Russian).
4. Lazutkin D.M., Ipatov A.I., Kremeneckij M.I. Features of studying reservoirs with abnormally low permeability based on the results of well test. Sb. trudov mezhd. konf. “Trudnoizvlekaemye zapa- sy — nastojashhee i budushhee” [Proc. Int. Symp. “Hard-to-recover reserves — presence and future”]. Saint-Petersburg, 2019, p. 20-21 (in Russian).
5. Vol’pin S.G., Lomakina O.V., Afanaskin I.V. Features of the geological structure and energy state of the Bazhenov formation deposits. Materialy mezhdunarodnoj nauchno-tehnicheskoj konferencii “Geopetrol 2014, Razvedka i razrabotka kollektorov nefti i gaza — novye tehnologii, novye vyzovy” [Proc. Int. Symp. “Geopetrol 2014, Exploration and production of oil and natural gas reservoirs — new technologies, new challenges”]. Krakow, 2014, p. 85-95.

2020/3
Geological Activity of Shale Diapir in Bao Vang Field, Block 111-113, Centre of Song Hong Basin
Geosciences

Authors: Nguyen Tien THINH graduated from Hanoi University of Mining and Geology (Vietnam) in 2004, earned Master’s Degree in Geoscience of Chulalongkorn University in 2010, and became Candidate of Geological and Mineralogical Sciences, Department of General and Petroleum Field Geology of Gubkin Russian State University of Oil and Gas (National Research University). He is specialist in the field of geophysics and geology of oil and gas fields. E-mail: thinh196@gmail.com

Abstract: Diapirs are very common in the center of the Shonghong Basin in the north of the continental shelf of the Socialist Republic of Vietnam. They are formed as a result of the release of high pressure in the Oligocene, Miocene layers. Exploration results show that gas discoveries in the Bao Wang field and adjacent fields are closely related to shale diapirs. This article is devoted to the results of diapirs interpretation, their activity based on the latest 2D, 3D seismic data from the Bao Wang field, blocks 111-113. The article also discusses and evaluates the origin, formation mechanism and role of diapir activity in relation to oil and gas accumulations

Index UDK: 550.8

Keywords: clay diapir, Shonghong basin, high pressure, Bao Wang, pliocene

Bibliography:
1. Gavrilov V.P., Leonova E.A., Rybalchenko V.V. Gryazevoj vulkanizm i neftegazonosnost Songhongskogo progiba (Severnyj shel’f Vetnama) [Mud volcanism and petroleum potential of the Song Hong trough (North Vietnam shelf)]. Trudy RGU nefti i gaza imeni I.M. Gubkina, 2011, no. 265, p. 29–37 (in Russian).
2. Bonini M. Mud Volcanoes: Indicators of Stress Orientation and Tectonic Controls. Earth-Science Reviews, 2012, vol. 115 (3), p. 121–152.
3. Chapman R.E. Diapirs, Diapirism and Growth Structures. Petroleum Geology, 1983, vol. 16, p. 325–348.
4. Dimitrov L.I. Mud volcanoes — the most important pathway for degassing deeply buried sediments. Earth-Science Reviews, 2002, vol. 59 (1), p. 49–76.
5. Di P., Huang H., Huang B., He J., Chen D. Seabed pockmark formation associated with mud diapir development and fluid activities in the Yinggehai Basin of the South China Sea. Journal of tropical oceanography, 2012, vol. 31 (5), p. 26–36.
6. He L., Xiong L., Wang J. Heat flow and thermal modeling of the Yinggehai Basin, South China Sea. Tectonophysics, 2002, p. 245–253.
7. Huang B.J., Xiao X.M., Dong W.L. Multiphase natural gas migration and accumulation and its relationship to diapir structures in the DF1-1 gas field, South China Sea. Marine and Petroleum Geo-logy, 2002, vol. 19 (7), p. 861–872.
8. Lei C., Jianye R., Peter D.C., Wang Z., Li X., Tong C. The structure and formation of diapirs in the Yinggehai-Red River Basin, South China Sea. Marine and Petroleum Geology, 2011, vol. 28 (5), p. 980–991.
9. Mazzini A. Mud Volcanism: Processes and Implications. Marine and Petroleum Geology, 2009, vol. 26 (9), p. 1677–1680.
10. Mazzini A., Nermoen A., Krotkiewski M., Podladchikov Y., Planke S., Svensen H. Strike-Slip Faulting as a Trigger Mechanism for Overpressure Release through Piercement Structures, Implications for the Lusi Mud Volcano, Indonesia. Marine and Petroleum Geology, 2009, vol. 26 (9), p. 1751–1765.
11. Morley C.K., Guerin G. Comparison of Gravity-Driven Deformation Styles and Behavior Associated with Mobile Shales and Salt. Tectonics, 1996, vol. 15 (6), p. 1154–1170.
12. Morley C.K. A tectonic model for the Tertiary evolution of strike-slip faults and rift basins in SE Asia. Tectonophysics, 2002, vol. 347 (4), p.189—215.
13. Rensbergen P.V., Morley C.K., Ang D.W., Hoan T.Q., Lam N.T. Structural Evolution of Shale Diapirs from Reactive Rise to Mud Volcanism: 3D Seismic Data from the Baram Delta, Offshore Brunei Darussalam. Journal of the Geological Society, 1999, vol.156 (3), p. 633–650.
14. Report on regional geology and potential hydrocarbon in Song Hong basin. Vietnam Petro-leum Institute, 2011, 143 p.
15. Report on study of formation and accumulation of hydrocarbon in the late Miocene and early Pliocene period, centre Song Hong Basin. Vietnam Petroleum Institute, 2015, 152 p.
16. Stewart S.A., Davies R.J. Structure and Emplacement of Mud Volcano Systems in the South Caspian Basin. AAPG Bulletin, 2006, Vol. 90 (5), pp. 771–786.
17. Tapponier P. et al. On the mechanics of the collision between India and Asia. Collision tectonics, 1986, p. 115–157.
18. Vendeville B.C., Jackson M.P.A., 1992. The rise of diapirs during thin-skinned extension. Marine and Petroleum Geology, 1986, vol. 9 (4), p.331—354.
19. Wang X.C., Li Z.X., Li X.H., Li J., Liu Y., Long W.G., Zhou J.B., Wang F. Temperature, Pressure, and Composition of the Mantle Source Region of Late Cenozoic Basalts in Hainan Island, SE Asia: A Consequence of a Young Thermal Mantle Plume close to Subduction Zones?. Journal of Petrology, 2012, vol. 53 (1), p. 177–233.
20. Xie X., Li S., Dong W., Zhang Q. Overpressure development and hydrofracturing in the Yinggehai basin, South China Sea. Journal of Petroleum Geology, 1999, vol. 22 (4), p. 437–454.
21. Yuan Y., Zhu W., Mi L., Zhang G., Hu S., He L. Uniform Geothermal Gradient and Heat Flow in the Qiongdongnan and Pearl River Mouth Basins of the South China Sea. Marine and Petroleum Geology, 2009, vol. 26 (7), p. 1152–1162.

2020/3
Justification of Productive Interval Penetration Path for Horizontal Drilling
Geosciences

Authors: Елена Михайловна КОТЛЯРОВА окончила МИНГ имени И.М. Губкина в 1988 г. Кандидат технических наук, доцент кафедры разработки и эксплуатации газовых и газоконденсатных месторождений, заведующая отделением Разработки нефтяных, газовых и газоконденсатных месторождений филиала РГУ нефти и газа (НИУ) имени И.М. Губкина в г. Ташкенте. Член-корреспондент РАН, специалист в области разработки и эксплуатации газовых и газоконденсатных месторождений и ПХГ. Автор более 50 научных публикаций. E-mail: kotlyarova_gubkin@mail.ru
Загид Самедович АЛИЕВ окончил Азербайджанский индустриальный институт имени М. Азизбекова в 1957 г. Профессор кафедры разработки и эксплуатации газовых и газоконденсатных месторождений РГУ нефти и газа (НИУ) имени И.М. Губкина. Крупнейший специалист в области подсчета запасов, исследования скважин и проектирования разработки месторождений нефти и газа с использованием вертикальных и горизонтальных скважин. Доктор технических наук, профессор, академик РАЕН, академик Международной академии наук природы и общества. Автор 365 публикаций, в том числе 35 монографий и 30 тематических брошюр. E-mail: rgkm@gubkin.ru
Нурлан Шахларович АЛИЕВ студент юридического факультета РГУ нефти и газа (НИУ) имени И.М. Губкина.
E-mail: rgkm@gubkin.ru

Abstract: This paper discusses practical examples of justifying the horizontal wellbore path of a gas-bearing formation. Various possible paths have been proposed, taking into account the geological characteristics of the field and numerous factors affecting the productivity of horizontal wells, with respect for synchronous decrease in reservoir pressure in the productive layers

Index UDK: 622.244.5

Keywords: drilling path, horizontal wellbore, reservoir pressure, multi-object field, interlayer, ascending profile, gas-hydrodynamic connection

Bibliography:
1. Aliev Z.S., Arutyunova K.A. Opredelenie neobhodimoi dlini horizontalnoi gazovoi skvajini v prosesse razrabotki. М. Gazovaya promishlennost, 2005, no. 12, p. 45-47.
2. Алиев З.С. и др. Teoreticheskie i tekhnologicheskie osnovy primeneniya gorizontal’nyh skvazhin dlya osvoeniya gazovyh i gazokondensatnyh mestorozhdenij. M.: Nedra, 2014, 450 p.
3. Aliyev Z.S., Sheremet V.V. Opredelenie proizvoditel’nosti gorizontal’nyh skvazhin, vskryvshih gazovye i gazoneftyanye plasty. M.: Nedra, 1995, 131 p.

2020/3
Analysis of influence of properties of real and ideal gases on thermal conductivity of oil and gas-liquid mixture
Geosciences

Authors: Konstantin H. SHOTIDI graduated from Gubkin Russian State University of Oil and Gas in 1966. He is Candidate of Technical Sciences. Deputy Head of the Department of Thermodynamics and Heat Engines, Professor. He is author of more than 100 scientific, educational and methodical works and patents on thermal methods of impact on oil reservoir, research of thermal properties of rocks, applied issues of thermodynamics and heat transfer. E-mail: chotidi.k@gubkin.ru
Sergey V. KRASEN’KOV graduated from Bauman Moscow Technical University in 2014. He is leading thermal engineer of OOO OKB GAMMA. He is post-graduate student of the Department of Thermodynamics and Heat Engines of Gubkin Russian State University of Oil and Gas (National Research University). E-mail: krasenkov.s@yandex.ru

Abstract: One of the problems that throughout the history of commercial oil production significantly has been complicating wells operating conditions is paraffin deposits. There are a number of factors contributing to the formation of paraffin deposits, with changes in well temperature and pressure conditions being most significant, in particular, a decrease in the temperature of the fluid during production. Today, fluid temperature distribution along the depth is rarely measured in wells. Therefore, for most wells, it is necessary to build thermograms using the corresponding calculated dependencies. To implement the required calculation algorithm, a basic set of initial data is required. Due to the fact that the fluid is a mixture of oil, water and gas, many of the necessary parameters must be calculated specifically for the mixture, for example, density, heat capacity, thermal conductivity. The first two are calculated according to the mass additivity rule, whereas for thermal conductivity there are several calculation methods applicable to a particular case.
The article presents a methodology for calculating the coefficient of maximum thermal conductivity of a fluid. A comparative analysis of the effect of the properties of real and ideal gases on the calculated coefficient of maximum thermal conductivity of the fluid is also carried out.

Index UDK: 622.276

Keywords: coefficient of thermal conductivity of the fluid, paraffin’s, complications in work of wells, methods of dealing with complications, downhole heating cable, electric heating systems, temperature field, heat transfer in well

Bibliography:
1. Termodinamika i teploperedacha v tehnologicheskih processah neftjanoj i gazovoj promyshlennosti [Thermodynamics and hеаt transfer in technological processes of oil and gas industry]. A.F. Kalinin, S.M. Kuptsov, A.S. Lopatin, K.H. Shotidi: Uchebnik dlja vuzov. Moscow, 2016, 264 p.
2. Kuptsov S. M. Teplofizicheskie svojstva plastovyh zhidkostej i gornyh porod neftjanyh mestorozhdenij [Thermo physical properties of a reservoir fluid and rocks of petroleum deposits]. Moscow, 2008, 205 p.
3. Amiks Dzhems V. Fizika neftjanogo plasta: Per. s angl. [Petroleum reservoir engineering. Physical properties]. Dzh. Amiks, D. Bass, R. Uajting. Moscow, 1962, 572 p.
4. Mishhenko I. T. Skvazhnaja dobycha nefti: Uchebnoe posobie dlja vuzov [Downhole oil production: a textbook for universities]. Moscow, 2003, 816 p.
5. Shotidi K.H., Krasenkov S.V. Metody i sposoby bor’by s parafinovymi otlozhenijami. Perspektivy razvitija. Ctroitel’stvo neftjanyh i gazovyh skvazhin na sushe i na more [Construction of oil and gas wells on land and sea], 2019, no. 11, p. 56-60 (in Russian).

2020/3
Refined estimation of vibration of pipelines transporting oil and gas
Geosciences

Authors: Alexey P. EVDOKIMOV graduated from Moscow State Open University. He is Doctor of Technical Sciences, Professor of the Department of Technical Mechanics of Gubkin Russian State University of Oil and Gas (National Research University). He is specialist in the field of nonlinear mechanics of deformation and destruction of viscoelastic structural elements. He is author of more than 60 scientific publications. E-mail: a_evdo@mail.ru

Abstract: The article provides a conclusion of theoretical dependencies of the updated estimation of the vibration state of oil and gas pipelines. They are based on the turns of pipelines during vibration. When deriving the equations, such an important factor as “chain forces” is taken into account. The natural frequencies of vibration motion are estimated taking into account the inertia of the rotation of the cross sections of the pipe and the condition for the occurrence of resonance

Index UDK: 621.825

Keywords: vibration, pipeline, flow pressure, radial stresses, axial deformation

Bibliography:
1. Shary N.V., Semishkin V.P., Pimenov V.A., Dragunov Yu.G. Strength of the main equipment and pipelines of VVER reactor installations. Moscow: Izdat, 2004, 496 p.
2. Panovko Ya.G. Free and forced vibrations of rods and rod systems. Reference book “Strength. Stability. Vibrations”, vol. 3. Moscow: Mashinostroenie, 1968, 568 p.
3. Targ S.M. Short course of theoretical mechanics. Moscow: Nauka, 1970, 478 p.
4. Kittel C.H., Knight W., Ruderman M. Mechanics. Moscow: Nauka, 1971, 480 p.
5. Feodosiev V.I. Resistance of materials. Moscow: Nauka, 1970, 544 p.
6. Shcheglov B.A., Makhutov N.A., Shary N.V. Vibration of pipes with flows. Problems of mechanical engineering and machine reliability, 2009, no. 4, p. 105-109.

2020/3
On the mechanism of heat and mass transfer of moisture under thermal influence on frozen soils during the construction and operation of oil and gas pipelines
Geosciences

Authors: Boris L. ZHITOMIRSKIY graduated from Kamenetz-Podolsk Higher Military Enginee- ring Command School named after Marshal of Engineering Troops Kharchenko and Kuibyshev Military Engineering Order of Lenin Red Banner Academy. He is Candidate of Technical Sciences, General Director of AO “Gazprom Orgenergogaz”. He is Professor at the Department of Termodynamics and Heat Engines of Gubkin Russian State University of Oil and Gas (National Research University). He is author of more than 50 scientific papers in the field of power engineering, diagnostics, energy saving and gas transport.
E-mail: zhyitomirsky@oeg.gazprom.ru

Abstract: Issues of construction, ensuring reliable and safe operation of oil and gas pipelines at the facilities of the energy complex of the Russian Federation are a priority. From this point of view, the results of research on the working processes of soil development with thermomechanical equipment of a new generation are considered. Based on the results of theoretical and experimental studies, the mechanism of heat and mass transfer of a vapor-gas mixture from a coolant in a pit in frozen soils is justified. Recommendations are given for methodological support of working processes and technology of soil development with thermomechanical equipment during construction and operation of oil and gas pipelines in frozen ground conditions

Index UDK: 620.19

Keywords: gas and oil pipelines, gas turbine engine, pit, heat carrier

Bibliography:

1. Teoriya i praktika ispytanij na prochnost’ i vvoda v dejstvie gazoprovodov. V.G. Dubinskij, I.F. Egorov, A.S. Lopatin i dr. M.: MAKS Press, 2015, 576 p.
2. Dmitriev A.P., Goncharov S.A. Termodinamicheskie processy v gornyh porodah. M.: Nedra, 1990, 360 p.
3. Zhitomirskij B.L., Dubinskij V.G., Lopatin A.S. Issledovanie rezhimov techeniya strui voz-duha ot burovogo instrumenta pri termomekhanicheskom sposobe razrabotki shurfov na gazoprovodah. Trudy RGU nefti i gaza (NIU) imeni I.M. Gubkina, 2019, no. 4 (297), p. 99-111.
4. Zhitomirskij B.L. Sposob regulirovaniya processa termomekhanicheskogo vozdejstviya na grunt pri stroitel’stve i ekspluatacii truboprovodov. Oborudovanie i tekhnologii dlya neftegazovogo kompleksa, 2020, no. 3 (117), p. 70-72.
5. Zhitomirskij B.L. Issledovanie vliyaniya svojstv grunta na proizvoditel’nost’ burovogo instrumenta dlya primeneniya pri stroitel’stve i ekspluatacii neftegazoprovodov. Trudy RGU nefti i gaza (NIU) imeni I.M. Gubkina, 2020, no. 1 (298), p. 74-78.
6. Zhitomirskij B.L. Ob optimizacii energeticheskogo balansa termomekhanicheskogo burovogo instrumenta pri shurfovom diagnostirovanii truboprovodov. Neftegaz, 2020, no. 1-2, p. 98-102.
7. Teplo- i massoobmen v kapillyarnoporistyh telah. Sbornik statej Akad. nauk BSSR. Instityt teplo- i massoobmena, pod red. akad. A.V. Lykova i prof. B.M. Smol’skogo. Minsk: Nauka i tekhnika, 1965, 154 p.