Extended Search

- in all fields
- in the title
- in key words
- in the abstract
- in the bibliography
Issue
Name
Authors
Category
2017/2
Geodynamic Evolution of South-Eastern Part of East European Platform to Estimate Prospects for Oil and Gas
Geosciences

Authors: Vadim V. MASLOV graduated from Gubkin Russian State University of Oil and Gas in 1995. He is Candidate of Geological and Mineralogical Sciences, associate professor of the Department of Geology of Gubkin Russian State University of Oil and Gas (National Research University). His research interests include petroleum potential of Upper Paleozoic complex deposits in the Ustyurt region, as well as oil and gas potential shelves of marginal seas. He is author of 15 articles and co-author of one monograph. E-mail: maslov.v@gubkin.ru
Lyubov F. GORUNOVA graduated from Gubkin Moscow Institute of Petrochemical Gas Industry in 1978, she is Candidate of Geological and Mineralogical Sciences, associate professor of the Department of Geology of Gubkin Russian State University of Oil and Gas (National Research University). Her scientific interests are related with studies of the geological structure and prospects of petroleum capacity of the complexes of the Caspian cavity sediments, areas of connection with outlying structures — Scythian and Turan plates. She is author of 20 scientific publications and 1 textbook. E-mail: luba-gor@mail.ru
Oleg S. OBRYADCHIKOV graduated from Gubkin Russian State University of Oil and Gas in 1960. He is Candidate of Geological and Mineralogical Sciences, associate professor of the Department of Geology of Gubkin Russian State University of Oil and Gas (National Research University). His scientific interests are related with the regional geology of the Russian Federation and overseas, geological modeling in oil and gas industry and salt dome tectonics. He is author of more than 80 scientific publications, co-author of two monographs. E-mail: osobr19@yandex.ru

Abstract: Another interpretation of the geological structure of the Donbas, the Caspian cavity and the relationship of the southeast of the East-European platform with the surrounding Scythian, Turan plate is offered in the article. The presented ideas about the peculiarities of the geological structure, development history and its oil and gas potential indicate the important role the geodynamic processes which took place there

Index UDK: 550.3

Keywords: Donbass, Turan plate, Scythian plate, folding, fat, oil and gas capa- city

Bibliography:
1. Zhuravlev V.S. Comparative tectonics ekzogonalnyh cavities of Russian platform. Wr. MGK XXII session. Rep. modern geol. M .: Science, 1964, р. 25-39.
2. Paleozoic sediments of border areas Turan and Russian plates (geological structure and petrogas). Ed.: V.A. Benenson, N.Y. Kunin, M.N. Morozova, K.K. Nurzhanov. M.: Nauka, 1978, 102 p.
3. Zonenshain L.P., Kuzmin M.I., Natapov L.M. Plate tectonics in the USSR. In 2 books. M.: Nedra, 1990, box. 1, 326 p, box. 2, 334 p.
4. Brajnikov O.G. Forecast petrogas of mobile lithospheric blocks. M.: Nedra, 1997, 251 p.
5. Obryadchikov O.S., Taskinbayev K.M. Geodynamic nature of the sedimentary cover and the petrogas perspectives of the Aral-Caspian region. In. «Geology of the Caspian and Aral Seas regions». Almaty: Kazakh Geological Society «KazGeo», 2004, p. 91-97.
6. Astrakhan carbonate massif: the structure and oil and gas. Edited by JA Volozh, B.C. Parasyny. M.: Science World, 2008, 221 p.
7. Leonov Y.G., Volozh Y.A., Antipov M.P., Bykadorov V.A., Hereskova T.N. The consolidated crust of the Caspian region. Works of GIN RAN, vol. 593, 2010, 64 p.
8. Leonov Y.G., Volozh Y.A., Antipov M.P., etc. The consolidated crust of the Caspian region: the experience of regionalization. Wr. GIN, vol. 593. M.: GEOS, 2010, 64 p.
9. Gavrilov P.V., Maslov V.V. petroleum potential of the upper Paleozoic complex of the Eastern Ustyurt (Uzbekistan). Collection of scientific works of Russian state University of oil and gas imeni I.M. Gubkina, 2015, no. 4 (281), р. 15-28.
10. Maslov V.V., Miloserdova L.V. Tectonic nonuniformity and oil-and-gas content of the Turan Plate based on the satellite images interpretation. Collection of scientific works of Russian state University of oil and gas imeni I.M. Gubkinf, 2016, no. 3, р. 68-83.

2017/2
Analysis of factors affecting productivity of fractured horizontal well in tight gas formations (a case study of reservoirs in Western Sichuan, China)
Geosciences

Authors: Anlun WANG is a PhD candidate of Gubkin Russian State University of Oil and Gas (National Research University). E-mail: law8912@163.com
Vladimir S. YAKUSHEV is Doctor of Geology and Mineralogy, professor of the Department of Gas and Gas-Condensate Reservoir Engineering of Gubkin Russian State University of Oil and Gas (National Research University), member of the Academy of Natural Sciences (Section of Oil and Gas). His professional interests are prospecting, exploration, exploitation, procession and storage of natural gas. E-mail: law8912@163.com

Abstract: An analytical model was used to analyze the affect of factors on the productivity of fractured horizontal gas well in formations with permeability of about 0,1 mD. The following factors were considered: fracture width, fracture half-length, the number of fractures and fracture permeability. It was shown that unlike conventional low-permeability reservoirs, fracture permeability in tight formations has limited effect on the well productivity, whereas fracture half-length and the number of fractures are the main affect factors. It is noted that increasing fracture width thousands of times has no effect on the well productivity, and therefore, mesh simplification for numerical simulation of fractured horizontal wells in such formations was proved feasible

Index UDK: 662.279.3

Keywords: tight formation, fractured horizontal well, factors, affecting well pro-ductivity

Bibliography:
1. Jun Ye, Tong Zhu, Zejiang Zhao. A study of gas reservoirs of upper shaximiao formation (J2s) and its origin in xinchang gas field, west Sichuan//Experimental petroleum geology, 1998, 12.
2. Lee S.-T. and Brockenbrough, J.R. A new approximate analytic solution for finite-conductivity vertical fractures, 1986. SPE Form Eval 1 (1): 75-88. http://dx.doi.org/10.2118/ 12013-PA.
3. Gringarten A.C. and Ramey, H.J., and Raghavan, R. 1974. Unsteady-State pressure distributions created by a well with a single infinite-conductivity vertical fracture. SPEJ 14(4): 347-360. SPE 4051-PA.
4. Bo Song, Michael J. Economides. Design of multiple transverse fracture horizontal wells in shale gas reservoirs. 2011 SPE 140555.
5. Yongren Sun, Shan Ren, Shize Wang, Qidong Xiong. Study on the key fracturing technology for tight gas reservoirs in the west of Sichuan. Drilling and production technology, 2008, vol. 31, no. 4, p. 68-70.
6. Zhijun Wu, Shunli He. Geologic characteristics of Xinchang tight gas reservoir and reasonable fracturing scale. Natural gas industry, 2004, vol. 24, no. 9, p. 93-96.
7. Huachang Li, Zhimin du, Yong Tang, Yong Wang. The calculation of the control reserve of single horizontal well in shaerduan formation of xinchang gas field. Drilling and production technology, 2012, vol. 35, no. 2, p. 51-53.
8. Xu Wang, Mingwen Tan, Xiaoyong Yan, Guangpeng Xu, Wenlong Deng, Song Feng. Evaluation of horizontal well performance in shaximiao formation JS21 of xinchang gas field. Drilling and production technology, 2012, vol. 35, no. 1, p. 45-48.
9. Stalgorova, E. and Mattar, L. Analytical model for unconventional multifractured composite systems. Paper SPE 162516 presented at the SPE Canadian unconventional resources conference, Calgary, Alberta, 30 October-1 November, 2013.
10. Brown, M., Ozkan, E., Raghavan, R. et al. 2009. Practical solutions for pressure transient responses of fractured horizontal wells in unconventional reservors. Paper SPE 125043 presented at the SPE annual technical conference and exhibition, New Orleans, Louisiana, 4-7 October. http:/dx.doi.org/10.2118/125043-MS.
11. Hanqiao Jiang, Jun Yao, Ruizhong Jiang. Theory and methods of reservoir engineering. 2-nd edition. M.: China university of petroleum press, 2006, p. 171.

2017/2
Thermohydrodynamical tests of gas wells in the conditions of hydrate formation
Geosciences

Authors: Zoya A. VASILYEVA graduated from Lomonosov Moscow State University in 1975. She is a Candidate of Technical Sciences, Associate Professor of the Department of Development and Exploitation of Gas and Gas-Condensate fields of Gubkin Russian State University of Oil and Gas (National Research University). She is specialist in the gas and oil fields development and simulation. Author of more than 70 scientific publications. E-mail: zoyavac@gmail.com
Chenlong LE — post-graduate student of the department «Gas and Gas-Condensate Reservoir Engineering» of Gubkin Russian State University of Oil and Gas (National Research University) (Chinese citizen). E-mail: lcl880301@gmail.com

Abstract: The technique of interpretation of the results of thermohydrodynamical tests of gas wells in the conditions of hydrate formation. It is proposed to implement standard procedures on the phase diagram to construct a curve of phase equilibrium hydrate-gas-water measurements buttonhole temperatures and pressures, which is based on the dependence of the buttonhole temperature from the pressure. The first mode is to determine the coefficients Joule-Thomson at decrease and increase of pressure at reservoir conditions, and then the phase diagram predicted subsequent studies in «no hydrate formation» mode

Index UDK: 622.248.3

Keywords: thermodynamic conditions, hydrate formation, temperature and pressure transient well testing, interpretation

Bibliography:
1. Vasilyeva Z.A., Dzhafarov D.S., Ametova T.A. Technogenic Indirect signs indicating gas hydrates in the permafrost zone. Earth Cryosphere. Wounds FROM Novosibirsk, 2011, vol. 1, р. 61-67.
2. Instruction on complex gas and gas condensate test-wells. Gazprom 086-2010.
3. Istomin V.A., Kvon V.G. Prevention and elimination of gas hydrates in gas production systems. M.: OOO «IRTS Gazprom», 2004, 506 p.
4. Zotov G.A., Aliev Z.S. Instructions for complex research of gas and gas condensate reservoirs and wells. M.: Nedra, 1980, 300 p.
5. Aliev Z.S., Samuylova L.B., Marakov D.A. Gas-hydrodynamic studies of gas and gas condensate fields and wells. M.: MAKS Press, 2011, 340 p.
6. Barenblatt G.I., Entov V.M., Ryzhik V.M. Theory of unsteady filtration of fluid and gas. M.: Nedra, 1972, 211 p.

2017/2
Gasdynamic research on Kushevskoe UGS. E.M. Kotlyarov
Geosciences

Authors: Elena M. KOTLYAROVA graduated from Gubkin Russian State University of Oil and Gas in 1988. She is Candidate of Technical Sciences, associate professor of the Dept. of Gas and Condensate Field Development and Operation of Gubkin Russian State University of Oil and Gas (National Research University). She is expert in the field of development and operation of gas and gas-condensate fields and UGS. She is author of 30 publications, including 1 monograph.
E-mail: kotlyarova_gubkin@mail.ru
Zagid S. ALIEV (born 1935) graduated from Azibekov Azerbaijani industrial Institute in 1957. He is Professor of the Dept. of Gas and Condensate Field Development and Operation of Gubkin Russian State University of Oil and Gas (National Research University). He has been head and the executive director of projects of development of oil and gas fields of Russia, Iran, Iraq, Vietnam, Kazakhstan, Algeria, Germany, etc., and also author of normative do-cuments of OAO Gazprom such as instructions, manuals and standards of enterprises. He is author of 365 publications, including 35 monographs and 30 thematic brochures.
E-mail: rgkm@gubkin.ru

Abstract: The technology of gas dynamic studies of horizontal wells of the Kushchevsky UGS and determining the coefficients of the filtration resistance ag and bg is analyzed. Horizontal wells of the Kuschevsky UGS were studied according to the method of conducting research on vertical wells without taking into account the features for horizontal wells. It is determined that the actual operating time of the well in the test modes is not comparable to the required stabilization time, therefore pressures and flow rates are not stabilized. The use of classical technology for research on stationary filtration modes developed for vertical wells is impractical for horizontal wells. The article presents the existing methods for determining the coefficients of filtration resistance

Index UDK: 551.1/.4

Keywords: gas-hydrodynamic studies, horizontal well, stabilization of bottomhole pressure and flow rate, specific gas reserves, underground gas storage, horizontal well production, cluster location, filtration resistance coefficients

Bibliography:
1. Instruction on a complex research of gas and gas-condensate layers and wells. Under the editorship of G.A. Zotov, Z.S. Aliyev. M.: Nedra, 1980.
2. Gritsenko A.I., Aliyev Z.S., etc. A management on well survey. M.: Nedra, 1995.
3. Aliyev Z.S., etc. Theoretical and technological bases of application of horizontal wells for development of gas and gas-condensate fields. M.: LLC Publishing House Nedra, 2014, 450 p.
4. Aliyev Z.S., etc. Practical inexpediency and impossibility of a research of horizontal gas wells on the stationary modes of a filtration. Gas industry, 2014, no. 1.

2017/2
Application of Aggregate Gas-Oil Block at Compressor Stations
Geosciences

Authors: Semen S. ZATSEPIN graduated from Gubkin Russian State University of Oil and Gas in 2015. He is first rank engineer at the Engineering Center of OOO „Gazprom transgaz Moscow”. He is post-graduate student of Gubkin Russian State University of Oil and Gas (National Research University). He is author of 1 scientific publication.E-mail: cemenz@mail.ru
Sergey M. KUPTSOV graduated from Gubkin Moscow Institude of Petrochemical and Gas Industry in 1973. He is Doctor of Technical Sciences, prof. of the Dept. of Thermodynamics and Heat Engines of Gubkin Russian State University of Oil and Gas (National Research University). He is specialist in thermal processes in the oil and gas industry. He is the author of more then 90 scientific and educational works. E-mail: kuptsov_sm@mail.ru

Abstract: The use of secondary energy resources in the natural gas transportation system is considered. The heat released into the lubrication oil of the gas turbine engine and the centrifugal compressor is lost in the atmosphere, although it can be effectively utilized.
Devices that regenerate the heat flow released into the oil have not been used at compressor stations of main gas pipelines yet.
A variant of generating additional electric power, cooling the oil and heating the fuel gas is proposed.
The main characteristics and operation mode of the aggregate gas-oil block are calculated. This device allows to bring the heat flow from the hot oil to the fuel gas supplied to the combustion chamber of the gas turbine engine.
An assessment of the economic effect of the implementation of this unit is also given.

Index UDK: 622.691.4:536.246

Keywords: compressor station, heat exchange, turboexpander, temperature, gas turbine engine, heat exchanger

Bibliography:
1. Theoretical foundations of heat engineering. Part 1 Thermodynamics in the technological processes of the oil and gas industry: textbook. B.P. Porshakov, A.F. Kalinin, S.M. Kuptsov et al. M.: RSU of Oil and Gas named after I.M. Gubkin, 2005, 148 p. (in Russian).
2. Zatsepin S.S., Kuptsov S. M. The Use оf Turbo-Expander Units On Gas-Distributing Stations. Territorija Neftegaz [Oil and Gas Territory], 2016, no. 12, p. 50-53 (in Russian).
3. Kalinin A.F., Kuptsov S.M., Lopatin A.S. Determination of the thermodynamic characteristics of natural gas for solving energy-technological problems. Scientific and technical collection. Series: Sectoral energetics and energy saving problems, 2004, no. 1, p. 3-9 (in Russian).
4. Kalinin A.F., Kuptsov S.M. Forecasting the temperature and pressure of natural gas at the boundaries of linear sections of gas mains. Scientific and technical collection. Series: Sectoral energy and energy saving problems, 2004, no. 1, p. 10-21 (in Russian).

2017/2
Method of pressure gages calibration while operation of gas mains and their systems
Geosciences

Authors: Mikhail G. SUKHAREV graduated from Lomonosov Moscow State University, Department of Mechanics & Mathematics in 1959. He is Doctor of Technical Sciences. Professor of the Department of Applied Mathematics and Computer Modeling at Gubkin Russian State University of Oil and Gas (National Research University). His area of expertise includes mathematical modelling, reliability theory, analytics of oil & gas complex. He is author of 20 monographs, 280 scientific publications.
E-mail: mgsukharev@mail.ru
Ksenia O. KOSOVA graduated from Gubkin Russian State University of Oil and Gas in 2014. She is postgraduate student of the Department of Applied Mathematics and Computer Modeling of Gubkin Russian State University of Oil and Gas (National Research University). She is author of 10 scientific publications in the field of modeling of oil and gas industry problems.
E-mail: kseniya_kosova@mail.ru

Abstract: A method of calibration of the measuring equipment designed for the current level of the gas-supply system information service. It uses standard measurements and does not require mounting additional diagnostic equipment. The method makes it possible to estimate systematic errors of measuring instruments during gas-supply systems operation. It is based on the algorithm of gas-supply system parameter identification. The mathematical model includes the identification of the following parameters: systematic errors of measuring instruments and coefficients of the technical state of gas-supply system objects.
Numerical experiments on multiline main gas pipelines demonstrated the method efficiency. Its inclusion in the specialized software will enable to improve the dispatching control of gas supply system.

Index UDK: 622.691.4: 53.089.6

Keywords: gas-supply system, measuring instruments calibration, pressure gages, systematic errors, parameter identification problem

Bibliography:
1. Zhu J., Abur A. Identification of network parameter errors. IEEE Trans. Power Syst., 2006, vol. 21, no. 2, p. 586-592.
2. Kolosok I.N., Korkina E.S., Gurina L.A. Analiz nadezhnosti rezul’tatov otsenivaniya sostoyaniya po dannym PMU pri kiberatakakh na WAMS [Vulnerability analysis of the state estimation problem based on PMU data under cyber attacks on WAMPS]. Metodicheskie voprosy issledovaniya nadezhnosti bol’shikh sistem energetiki. Aktual’nye problemy nadezhnosti sistem energetiki [Methodical research questions of the large-scale power systems reliability. Actual problems of energy systems reliability]. Minsk, 2015, vol. 66, p. 231-237 (in Russian).
3. Sukharev М.G., Samoylov R.V. Analiz i upravlenie statsionarnymi i nestatsionarnymi rezhi-mami transporta gaza [Analysis and control of steady and non-steady flow of gas transport]. Мoscow, 2016, 397 p.
4. STO Gazprom 2-3.5-051-2006. Production engineering standard of gas-main pipeline. Moscow, 2006, 198 p. (in Russian).
5. Sukharev М.G., Kosova K.О. Identifying parameters in gas supply systems models (method and computer experiment). Trudy RGU nefti i gaza imeni I.M. Gubkina [Proceedings of Gubkin Russian State University of Oil and Gas], 2014, no. 3, p. 60-68 (in Russian).
6. Sukharev М.G., Kosova K.О. Raspoznavanie urovnya rabotosposobnosti ob’ektov sistemy gazosnabzheniya po dispetcherskoy informatsii [Identification of operable state operability level of gas supply system object by dispatching information]. Metodicheskie voprosy issledovaniya nadezhnosti bol’shikh sistem energetiki. Aktual’nye problemy nadezhnosti sistem energetiki [Methodical research questions of the large-scale power systems reliability. Actual problems of energy systems reliability]. Syktyvkar, 2016, vol. 67, p. 110-119 (in Russian).

2017/2
Numerical modelling of soft soil stabilized by vertical drains for CaMau power plant construction project in Vietnam
Geosciences

Authors: Gennadiy G. VASILIEV graduated from Gubkin Russian State University of Oil and Gas in 1978. He is Doctor Science (Tech.), professor, head of the Department of Pipeline and Storage Facilities Construction and Rehabilitation at Gubkin Russian State University of Oil and Gas (National Research University). He is specialist in the field of construction and maintenance of pipeline and storage facilities. He is author of 169 scientific publications. E-mail: srgnp@gubkin.ru
Phan Anh NGUYEN graduated from Belarussian National Technical University in 2010. He is Postgraduate Student of the Department of Pipeline and Storage Facilities Construction and Rehabilitation at Gubkin Russian State University of Oil and Gas (National Research University), lecturer of PetroVietnam University. He is specialist in the field of construction and maintenance of pipeline and storage facilities. E-mail: anhnp@pvu.edu.vn

Abstract: The construction site of the CaMau power plant is located on a 17m thick layer of soft clay with very poor characteristics. The proposed method of increasing the load-bearing capacity of the soil is based on vacuum sealing and installation of vertical drains with surcharge in the form of a sand mound. The purpose of this paper is to construct a ground behavior model for installing vertical drainage to test the analytical solutions to the theories of Baron (1948) and Hansbo (1981) as well as application of this model under actual fill conditions on the field to determine the change in pore pressure, the degree of consolidation and forecasting the size of the draft of weak soils in the construction project of the Ka Mau station. The model is the basis for further study of the change in soil characteristics during vacuum consolidation. An acceptable coincidence was established between simulation results and analytical solutions.

Index UDK: 624.159.2

Keywords: vertical drain, consolidation, clay, saturated soil

Bibliography:
1. Yoshikuni H., Nakanodo H. Consolidation of soils by vertical drain wells with finite hydraulic conductivity. Soil Found, 1974, vol. 2, no. 14, p. 35-46.
2. Onoue A. Consolidation by vertical drains taking well resistance and smear into considera-tion. Soil Found, 1988, vol. 4, no. 28, p. 165-174.
3. Barron R.A. Consolidation of fine-grained soils by drain wells. Transactions ASCE, 1948, no. 113, p. 718-724.
4. Hansbo S. Consolidation of fine-grained soils by prefabricated drains. Proceedings 10th International Conference on Soil Mechanics and Foundation Engineering, Stockholm, 1981, no. 3.
5. Terzaghi K. Die Berechnungder Durchlassigkeitszifferdes Tonesausdem Verlaufder Hydrodynamischen Spannungserscheinungen. Akademieder Wissenschaftenin Wien, Sitzungsberichte, Math. naturw. Klasse, part IIa, 1923, vol. 132, no. 3-4, p. 125-l38. Reprinted in From Theory to Practice in Soil Mechanics, Wiley, New York, 1960, p. 133-146.
6. Indraratna B., Redana I.W. Numerical modeling of vertical drains with smear and well resistance installed in soft clay. Can Geotech J., 2000, no. 37, p. 132-145.
7. Varaksin Serge. Theory and Practical Application of Vacuum Consolidation at the site of Camau Power Plant in Vietnam. Proc. workshop on Soft Soil Improvement and Foundation Techni-ques, Vietnam, 2007.
8. Bo M.W., Chu J., Low B.K. and Choa V. Soil improvement prefabricated vertical drain techniques. Thomson Learning. Singapore, 2003.
9. Vasil’yev G.G., Nguyen F.A. Ensuring the sustainability of oil and gas facilities in the geotechnical and hydrogeological conditions in Vietnam. Truboprovodnyy transport (teoriya i praktika), 2016, no. 5, p. 41-43 (in Russian).
10. Vasil’yev G.G., Nguyen F.A. Numerical model for thermal consolidation of the basement of a vertical steel tank on saturated soft soil. Transport i khranenie nefteproduktov i uglevodorodnogo syr’ya, 2017, no. 1, p. 5-8 (in Russian).

2017/2
The application of open integration platform to the development of heterogeneous distributed software
Technical sciences

Authors: Dmitry G. LEONOV graduated from Gubkin Russian State University of Oil and Gas in 1992. Candidate of Technical Sciences, assistant professor at the Department of Automated Control Systems of Gubkin Russian State University of Oil and Gas (National Research University). Lead developer of the software suite for the gas transportation systems „Vesta”. He is author of more than 50 scientific and methodical publications. E-mail: dl@asugubkin.ru

Abstract: The article discusses the problems of the integrated information systems development in oil and gas industry, specifically the task of gas transportation dis- patching systems components integration. The evolution of architectural and technical approaches to the integration platforms development is analyzed, advantages and limitations of object-oriented and service-oriented architectures are considered. The proposed two-level implementation of service-oriented architecture approach allows integrating distributed software suites into the enterprise information infrastructure and organizing interconnection between their internal components. The structure of open integration platform allowing the consolidation of heterogeneous software suites as well as the creation of prerequisites for distributed calculations, cloud technologies, using of thin and mobile clients is proposed. The main functions of applied programming interface stan- dardizing data formats and protocols for the open integration platform is considered.

Index UDK: 004.057:622.691

Keywords: control systems software, integration platform, distributed system, oil and gas transport

Bibliography:
1. Grigor’ev L.I., Kostogryzov A.I. Aktual’nost’ i osnovy innovatsionnogo puti razvitiya ASDU. Avtomatizatsiya, telemekhanizatsiya i svyaz’ v neftyanoy promyshlennosti, 2016, no. 3.
2. Leonov D.G., Vasil’ev A.V. Postroenie mnogourovnevoy sistemy podderzhki prinyatiya dispetcherskikh resheniy, osnovannoe na razvitii raspredelennoy arkhitektury programmno-vychisli-tel’nogo kompleksa „Vesta”. Avtomatizatsiya, telemekhanizatsiya i svyaz’ v neftyanoy promyshlennosti, 2014, no. 6, p. 13-18.
3. Papilina T.M., Leonov D.G. Preodolenie arkhitekturnykh ogranicheniy programmno-vychisli-tel’nykh kompleksov v avtomatizirovannoy sisteme dispetcherskogo upravleniya. Neftegaz.RU, 2016, no. 1-2, p. 14-18.
4. Serrano N., Ernantes Kh., Gallardo G. Servisy, arkhitektura i unasledovannye sistemy. Otkry-tye sistemy. SUBD, 2014, no. 8, p. 20-22.
5. Stepin Yu.P. Komp’yuternaya podderzhka formirovaniya, mnogokriterial’nogo ranzhirovaniya i optimizatsii upravlencheskikh resheniy v neftegazovoy otrasli. M.: Nedra, 2016, p. 421.
6. Chistikov S.P., Lavrukhin V.K., Asanov T.A., Grigor’ev L.I., Ermolaev A.I. Tendentsii razvi-tiya integrirovannykh avtomatizirovannykh sistem upravleniya v gazodobyche. Gazovaya promyshlennost’, 2006, no. 5, p. 199-203.
7. Shvechkov V.A., Sardanashvili S.A. Servis-orientirovannaya arkhitektura kak instrument integratsii informatsionnogo obespecheniya v geterogennoy raspredelennoy ASDU ESG Rossii. Avtomatizatsiya v promyshlennosti, 2007, no. 5.
8. SOA vozrozhdaetsya. Otkrytye sistemy. SUBD, 2010, no. 9, p. 4-11.
9. Boost.Asio [Elektronnyy resurs]. URL: http://www.boost.org/doc/libs/1_63_0/libs/asio/ (data obrashcheniya: 20.02.2017).
10. ØMQ — The Guide [Elektronnyy resurs]. URL: http://zguide.zeromq.org/page:all (data obra-shcheniya: 20.02.2017).
11. RabbitMQ-Documentation [Elektronnyy resurs]. URL: https://www.rabbitmq.com/docu-mentation.html (data obrashcheniya: 20.02.2017).
12. Schlumberger Software Integrated Solutions: IAM [Elektronnyy resurs]. URL: http://sis. slb.ru/products/iam/ (data obrashcheniya: 20.02.2017).
13. TOGAF, an Open Group standard [Elektronnyy resurs]. URL: http://www.opengroup.org/ subjectareas/enterprise/togaf (data obrashcheniya: 20.02.2017).
14. UniSim-Software for Process Design and Simulation [Elektronnyy resurs]. URL: https:// www.honeywellprocess.com/en-US/explore/products/advanced-applications/unisim/Pages/unisim-design-suite.aspx (data obrashcheniya: 20.02.2017).
15. Zachman J.A. A framework for information systems architecture. IBM Systems Journal, 1999, vol. 38, no. 2-3, p. 454-470.

2017/2
Mathematical model of computer simulator for trunk oil pipeline dispatchers
Technical sciences

Authors: Ayrat R. KHALIULLIN is assistant lecturer of the Department of Design and Operation of Gas and Oil Pipeline Gubkin Russian State University of Oil and Gas (National Research University). He is author of 10 academic papers. The area of his professional interests includes software for gas and oil computer decision support systems, computer simulators, distributed software. Е-mail: khaliullin.a@gubkin.ru
Yuri P. STEPIN is Doctor of Engineering, Academician of Russian Academy of Natural Sciences, international engineering high school teacher, Professor of the Department of Automated Control Systems of Gubkin Russian State University of Oil and Gas (National Research University). He is author of more than 120 academic papers. His professional interests are Markov processes, multiobjective optimization, fuzzy logic, game theory, computer decision support systems, risk-management models, automated control systems design. Е-mail: stepin.y@gubkin.ru
Sergey A. SARDANASHVILI is Doctor of Engineering, associate professor, Head of Department of Design and Operation of Gas and Oil Pipeline Gubkin Russian State University of Oil and Gas (National Research University). He is author of more than 50 academic papers. His professional interests include gas and oil computer decision support systems, mathematical and methodical support for programming and computing suites and simulator complexes. Е-mail: sardanashvili.s@gubkin.ru

Abstract: The problem of mathematical modeling of computer simulator as a multicomponent realization of VPTE concept with components installed on remote computers in a network is discussed. The simulator complex is represented as a set of cooperative Markov processes with discrete states and continuous time. A random processes interaction scheme is formed, the states of processes are detailed; differential equations systems, initial conditions, normalization conditions and relations between equation solutions are made up. In addition, the article describes computer simulator operating modes, for each mode it determines evaluation of the complex functioning reliability index i.e. the availability factor. In collaboration with UML-diagrams, the mathematical functioning model of the computer simulator provides a possibility to describe its working process, to evaluate the parameters of the underlying Markov processes and to estimate the availability factor value.

Index UDK: 004.415.2; 51-74

Keywords: virtual professional training environment, computer simulator, mathematical model, Markov process, availability factor

Bibliography:
1. Fowler M. UML Distilled A Brief Guide to the Standard Object Modeling Language, 3rd Edition. Addison-Wesley Professional, 2003, 208 p.
2. Papilina T.M., Leonov D.G., Stepin Ju.P. Modelirovanie i ocenka jeffektivnosti funkcionirovanija sistemy oblachnyh vychislenij v ASDU. Avtomatizacija, telemehanizacija i svjaz’ v neftjanoj promyshlennosti, 2016, no. 7, p. 29-33 (in Russian).
3. Handzhjan A.O. Povyshenie nadezhnosti programmnogo obespechenija informacionno-izme-ritel’nyh i upravljajushhih sistem bezopasnosti jadernyh radiacionno-opasnyh ob’ektov. Dissertacija na soiskanie uchenoj stepeni kandidata tehnicheskih nauk, Moskva, 2006 (in Russian).
4. Khaliullin A.R., Shvechkov V.A., Leonov D.G. Organizacija vzaimodejstvija programmnyh komponentov mnogopol’zovatel’skih geterogennyh raspredelennyh kompleksov modelirovanija dina-micheskih processov truboprovodnyh sistem. Trudy XIV Vserossijskogo nauchnogo seminara „Matematicheskie modeli i metody analiza i optimal’nogo sinteza razvivajushhihsja truboprovodnyh i gid-ravlicheskih sistem”. Belokuriha, Altajskij kraj, 8-13 sentjabrja 2014 g. Irkutsk: ISJeM SO RAN, 2014, p. 410 (in Russian).
5. Khaliullin A.R. Arhitekturnye reshenija i opytnaja realizacija informacionnogo obmena komponentov geterogennyh raspredelennyh kompleksov modelirovanija dinamicheskih processov truboprovodnyh system. Avtomatizacija, telemehanizacija i svjaz’ v neftjanoj promyshlennosti, 2016, no. 8, p. 17-24 (in Russian).
6. Khaliullin A.R., Shvechkov V.A., Sardanashvili S.A. Arhitekturnye reshenija realizacii upravlenija komponentami raspredelennyh kompleksov podderzhki prinjatija dispetcherskih reshenij. Trudy Rossijskogo gosudarstvennogo universiteta nefti i gaza imeni I.M. Gubkina, 2015, no. 4 (281), p. 114-128 (in Russian).
7. Ventcel’ E.S. Issledovanie operacij. M.: Sov. radio, 1972, 552 p (in Russian).
8. Stepin Y.P., Trahtengerc Je.A. Komp’juternaja podderzhka upravlenija neftegazovymi tehnologicheskimi processami i proizvodstvami. Kniga 1. M.: Vektor TiS, 2007, 384 s. Kniga 2. M.: MAKS Press, 2008, 528 p (in Russian).
9. GOST 27.002-89. Nadezhnost’ v tehnike. Osnovnye ponjatija. Terminy i opredelenija. M., 1990 (in Russian).

2017/2
Behavior of oils from one oil field while selecting acid compositions for terrigenous reservoir treatments
Chemical sciences

Authors: Ljucija F. DAVLETSHINA graduated from Al’met’evskij State Oil Institute in 1998, she is Candidate of Technical Sciences, assistant professor of the Department of Chemical Engineering for Oil and Gas Industry of Gubkin Russian State University of Oil and Gas (National Research University). She specializes in the field of oil-field chemistry. She is author of 60 scientific publications.
Е-mail: luchiad@mail.ru
Polina S. MIKHAYLOVA is a student of the Department of Chemical Engineering for Oil and Gas Industry of Gubkin Russian State University of Oil and Gas (National Research University). Е-mail: mihaylovapolly@mail.ru

Abstract: Most of fields currently turn to the late stage of development, connected with decline of production and physical-chemical change of hydrocarbons. The article states in terms of five wells that acidizing efficiency could be decreased by various interacting between acid and crude oils from explored wells. These interactions can result in emulsions or precipitations, which cause problems in acid and colmatants interactions. This process deteriorates in presence of iron compounds in the bottom-hole area. Iron compounds take place because of ageing well stock. Thus, based on investigations it should be observed that before acid treatment it is necessary to check acid and oil compatibility individually for each case.

Index UDK: 622.276.63

Keywords: acid treatment, selection of acid composition, precipitation, emulsions

Bibliography:
1. Silin M.A., Magadova L.A., Cygankov V.A., Muhin M.M., Davletshina L.F. Reservoir acidizing and acid system test : a textbook. PC RGU nefti i gaza im. I.M. Gubkina, 2011, p. 44, 93-94 (in Russian).
2. Wong T.C., Hwang R.J., Beaty D.W., Dolan J.D., McCarty R.A., Franzen A.L. Acid sludge characterization and remediation improve well productivity and save costs in the Permian Basin. SPE, paper for presentation at the Permian Basin Oil&Gas recovery Conference, Texas, 1996, p. 414-415.
3. Shakurova Al.F., Shakurova Aj.F. Simulation of hydraulic fracturing. Oil and Gas Enginee- ring: Electronic Scientific Journal, 2014, vol. 2. Available at: http://ogbus.ru/ authors/Shakurova/Shakurova_4.pdf (Accessed 10 January 2017). (in Russian).
4. Davletshina L.F., Tolstyh L.I., Mikhaylova P.S. On the necessity of hydrocarbons behavior patterns researching with a view to increase of reservoir acidizing effectiveness. Territory NEFTEGAZ, 2016, vol. 4, p. 95-96 (in Russian).
5. Loewen K., Chan K.S., Fraser M., Leuty B. A well stimulation acid tube clean methodology. Soc. Petrol. Eng., 1990, p. 47-1-2.
6. Taylor K.C., Nasr-El-Dln H.A., Al-Alawl M.J. Systematic study of iron control chemicals used during well stimulation. SPE journal, 1999, vol. 4, no. 1, p. 19-20.
7. Kelland M.A. Production chemicals for the oil and gas industry. Under the ed. of L.A. Magadova. Profession, 2015, no. 2, p. 238-239 (in Russian).
8. Dill W., Smolarchuk P. Iron control in fracturing and acidizing operations. JSPT, 1988, vol. 27 (May-June), no. 3, p. 76.
9. AlMubarak T. Investigation of acid-induced emulsion and asphaltene precipitation in low permeability carbonate reservoirs. Soc. Petrol. Eng, 2015. Available at: https://www.onepetro.org/ (accessed 14 January 2017).
10. Rietjens M., Mieuwpoort M. Acid-sludge: How small particles can make a big impact. The Hague, SPE European Formation Damage Conference, 1999. Available at: https://www.onepetro.org/ (accessed 20 January 2017).
11. O’Neil B., Maley D. Prevention of acid-induced asphaltene precipitation: a comparison of anionic vs. cationic surfactants. Soc. Petrol. Eng, 2015, vol. 54 (1), p. 49-50.