Extended Search

- in all fields
- in the title
- in key words
- in the abstract
- in the bibliography
Issue
Name
Authors
Category
2017/4
The oil products batching by using drag reducing agents to decrease an amount of interface
Geosciences

Authors: Nikita N. GOLUNOV was born in1981. He graduated from Gubkin Russian State University (Faculty of Design, Construction and Exploitation of Pipeline Transport Systems) in 2003. PhD in Technical Sciences, Associate professor of the Department of Gas and Oil Pipeline Engineering and Operation of Gubkin Russian State University (National Research University). He is author more than 20 publications. E-mail: golunov.n@gubkin.ru

Abstract: This article presents the process of multifarious oil products sequential transportation, while every product displace the previous one and is displaced by the next one. The interface, which is build up in oil products contact area, is governed by pipeline length and intensity of turbulent mixing. It is found that this intensity could be decrease sharply by provision of the small amount of drag redu cing agent (DRA), which will diminish either stream friction and batch volume. In this article the calculation of DRA’s volume for considerable reduction of interface is presented

Index UDK: 622.691.4

Keywords: pipeline transportation of petroleum products, batching technology, direct contact, cutting of an interface volume, drag reducing agents, reduction of the hydraulic resistance coefficient, separation plug

Bibliography:
1. Toms B.A. Some observation on the flow of linear polymer solution through straight tubes at large Reynolds numbers. Proceedings of the 1st International. Congress on Rheology. North-Holland. Amsterdam, 1949, vol. 2, p. 135–141.
2. Hoyt J. The effect of additives on fluid friction. Theoretical foundations of engineering calculations, 1972, no. 2, p. 1–31.
3. Virk P.S. Drag Reduction Fundamentals. AIChE Journal, 1975, no. 21 (4), p. 625–655.
4. Japper-Jaafar M.R. et al. Laminar, transitional and turbulent annular flow of drag-reducing polymer solutions. Journal Non-Newtonian Fluid Mechanics, 2010, no. 161, p. 86–93.
5. Pe’terfalv F. Drag reducing agent application on MOL high pressure liquid hydrocarbons pipelines. Science and technologies oil and oil products pipeline transportation, 2015, no. 4, p. 29–41.
6. Zholobov V.V., Moretsky V.Y., Varybok D.I. About determining functional dependence of anti turbulent additive hydraulic efficiency from parameters of transported medium. Science and technologies oil and oil products pipeline transportation, 2011, no. 4, p. 52–57.
7. Ishmukhametov I.T., Isaev S.L., Lurie M.V. Pipeline transport of petroleum products. M.: Publishing house „Oil and Gas”, 1999, 299 p.
8. Golunov N.N. The use of anti-turbulent additives in the zone of contact lots of different-grade petroleum products to reduce the mixture formation during sequential pumping. Diss. for the degree of candidate of technical sciences. M.: Gubkin Russian State University of Oil and Gas, 2006, 135 p.
9. Lurie M.V. Theoretical foundations of pipeline transport of oil, oil products and gas. M.: Publishing house Nedra, 2017, 478 p.

2017/4
Distribution of Droplets by Size in Spectrum in Atomized Liquids
Technical sciences

Authors: Alexander I. KHODYREV graduated from Gubkin Moscow Institute of Petrochemical and Gas Industry in 1980. He is Doctor of Technical Sciences, Professor of the Department of Machines and Equipment for Oil and Gas industry at Gubkin Russian State University of Oil and Gas (National Research University). He is specialist in equipment for liquid injection in various implementations. He is author of 95 scientific publications. E-mail: aihod@mail.ru
Dmitry A. KHODYREV graduated from Master Program of Gubkin Russian State University of Oil and Gas in 2013. He is engineer of 1 category of the Department of Metallurgy and Nonmetallic Materials at Gubkin Russian State University of Oil and Gas (National Research University). He is specialist in equipment for atomization of liquids. He has published one scientific paper.
E-mail: greendocent@rambler.ru
Maria G. BLOKHINA graduated from Gubkin Moscow Institute of Petrochemical and Gas Industry in 1976. She is senior lecturer of the Department of Machines and Equipment for Oil and Gas Industry at Gubkin Russian State University of Oil and Gas (National Research University). She is specialist in the field mathematical modeling and computer aided design. She is author of 8 scientific publications. E-mail: mblohina@gubkin.ru

Abstract: The paper discusses the parameters that characterize the fineness of liquid atomization with centrifugal atomizers. It is shown that the parameter „average diameter” and „average zauther diameter” used by the manufacturer without specifying the adopted distribution function of droplets by diameters makes it difficult for consumers to choose nozzles available on the market. The distribu-tion functions of Rosin-Rammler and Tresh-Golovkov for centrifugal atomizers are compared, and the ratios between the characteristic diameters of the droplets spectrum for these distributions are presented. The results of the study can guide the consumers in the characteristics of the fineness of atomization claimed by the manufacturers of the injectors and cited by authors in scientific and technical literature

Index UDK: 66.069.83

Keywords: centrifugal atomizer, fineness of liquid atomization, diameter of drops, distribution function, range.

Bibliography:
1. Khodyrev A.I., Mulenko V.V. Aerosol application of the inhibitor film in the gas pipelines of small diameter. Gas Industry, 1995, no. 11, p. 18-19 (in Russian).
2. Khodyrev A.I. The development and effective use of the equipment for inhibitor protection of gas pipelines from hydrogen sulfide corrosion. Territorija neftegaz, 2010, no. 3, p. 40-52 (in Russian).
3. Khmelev V.N., Shalunov A.V., Shalunova A.V., Golyh R.N., Genne D.V. Measurement of the size of liquid droplets obtained in different modes of operation of ultrasonic atomizers. Polzunovskij vestnik, 2012, no. 3/2, p. 179-184 (in Russian).
4. Pazhi D.G., Galustov B.C. Atomizers for a fluid. M.: Himija, 1979, p. 216 (in Russian).
5. Paloposki T. Drop size distributions in sprays. Acta politecnica scandinavia, mechanical engineering series, 1994, no. 114, p.1-209.
6. Raushenbah B.V., Belyj S.A., Bespalov I.V. et al. The physical basis of the working process in combustion chambers of jet engines. L.: Mashinostroenie, 1964, p. 526 (in Russian).
7. Prudnikov A.G., Volynskij M.S. Sagalovich V.N. The processes of mixture formation and combustion in air-breathing engines. M.: Mashinostroenie, 1971, p. 355 (in Russian).
8. Borodin V.A., Ditjakin Ju.F., Kljachko L.A., Jagodkin V.I. Atomization of liquids. M.: Mashinostroenie, 1967, p. 263 (in Russian).
9. Volkov E.B., Golovkov L.G., Syricyn T.A. Liquid rocket engines. Moscow, Voenizdat, 1970, p. 592 (in Russian).
10. Korolev D.V., Naumov V.N., Suvorov K.A. Determination of particle size distribution of powder by microscopic method. Methodical instructions for laboratory work. St. Petersburg, GOU VPO SPbGTI (TU), 2005, p. 41 (in Russian).
11. Lyshevskij A.S. Regularities of fragmentation of liquid mechanical injector pressure. Novocherkassk: Novocherkassk Polytechnic Institute, 1961, p. 180 (in Russian).
12. Golovkov L.G. The distribution of drops in size at atomization of liquids centrifugal injectors. IFZh, 1964, no. 11, p. 55-61 (in Russian).
13. Trjosh G. Atomization of liquid. Voprosy raketnoj tehniki, 1955, no. 4, p. 107-127 (in Russian).
14. Trjosh G., Grossman N. To distribution law of droplets in the atomization. Voprosy raketnoj tehniki, 1955, no. 4, p. 22-25 (in Russian).
15. Khodyrev A.I. The calculation method of parameters of centrifugal injectors at oil and gas production facilities. Neft’, gaz i biznes, 2005, no. 6, p. 57-60 (in Russian).

2017/4
Feasibility study of starting modes of asynchronous drive to determine parameters of sources power systems supply unit
Technical sciences

Authors: Ratibor N. KONKIN graduated from Gubkin Russian State University of Oil and Gas in 2013. He is postgraduate student of the Department of Theoretical Electrical Engineering and Electrification of Oil and Gas Industry at Gubkin Russian State University of Oil and Gas (National Research University). E-mail: konkin.r@gmail.com

Abstract: A method of experimental determination of the parameters of power sources on the basis of the measurement data obtained from a variety of steady state and transient electric drive loads is considered. Computer modeling in MATLABE Simulink and analysis of the starting modes of asynchronous drive to study the engine EMF influence on the measured parameters were performed. The section of launcher waveform of currents and voltages of the asynchronous drive was determined. This can be used to calculate the parameters of power sources

Index UDK: 621.3/31

Keywords: parameters of power supply systems, starting modes, modeling, asynchronous drive

Bibliography:
1. Mayer V.Ya., Galak I.L. Prakticheskoe Opredelenie parametrov korotkogo zamykaniya v sektsiyakh podstantsiy. Promyshlennaya energetika [Industrial power engineering], 1989, no. 6.
2. Ershov M.S., Egorov A.V., Tregubova S.I. Eksperimental’noe opredelenie parametrov korotkogo zamykaniya uzlov elektricheskoy nagruzki. Promyshlennaya energetika [Industrial power engineering], 1990, no. 11, p. 26–28.
3. Men’shov B.G., Ershov M.S., Egorov A.V. Opredelenie ekvivalentnykh parametrov pitayushchey seti dlya rascheta tokov korotkogo zamykaniya uzla nagruzki. Elektrichestvo [Electricity], 1993, no. 10, p. 19–22.
4. Belyaev A.V., Yurganov A.A. Zashchita, avtomatika i upravlenie na elektrostantsiya maloy energetiki: uchebnoe posobie: PEIPK, 2009, 72 p.
5. Egorov A.V., Ershov M.S., Konkin R.N. Opredelenie ekvivalentnykh parametrov istochnikov pitaniya promyshlennykh sistem elektrosnabzheniya. Trudy Rossiyskogo gosudarstvennogo universiteta nefti i gaza imeni I.M. Gubkina [Proceedings of Gubkin Russian State University of Oil and Gas], 2015, no. 2 (279). p. 99–110.
6. Ershov M.S., Konkin R.N. Metodika eksperimental’nogo opredeleniya parametrov istochnikov pitaniya promyshlennykh sistem elektrosnabzheniya. Promyshlennaya energetika [Industrial power engineering], 2017, no. 2, p. 34–39.
7. Konkin R.N Opredelenie ekvivalentnykh parametrov istochnikov pitaniya sistem elektrosnabzheniya. V kn.: Elektroenergetika glazami molodezhi. Trudy VI mezhdunarodnoy nauchno-tekhni-cheskoy konferentsii, 9–13 noyabrya 2015 goda, Ivanovo, v 2 t. T 1. Ivanovo: FGBOUVPO „Ivanov-skiy gosudarstvennyy energeticheskiy universitet im. V.I. Lenina”, 2015, p. 302–305
8. Tsey R., Shumafov M.M. Chislo obuslovlennosti matritsy kak pokazatel’ ustoychivosti pri reshenii prikladnykh zadach. Trudy FORA [Works of the Adygheya Republic Physical Society], 2011, no. 16, p. 61-67.
9. German-Galkin S.G. Matlab & Simulink. Proektirovanie mekhatronnykh sistem na PK. SPb.: KORONA-Vek, 2008, 368 p.
10. Usol’tsev A.A. Chastotnoe upravlenie asinkhronnymi dvigatelyami.Uchebnoe posobie. SPb: SPbGU ITMO, 2006, 94 p.
11. German-Galkin S.G., Kardonov G.A. Elektricheskie mashiny. Laboratornye raboty na PK. SPb: KORONA print, 2003, 256 p.
12. Klyuchev V.I. Teoriya elektroprivoda: uchebnik dlya vuzov. 2-e izd. pererab. i dop. M.: Energoatomizdat, 2001, 704 p.

2017/4
Research of specific aspects in interaction between oil and acid compositions in porous medium
Chemical sciences

Authors: MAGADOVA graduated from Gubkin Moscow Institute of Petrochemical and Gas Industry. She is Ph.D., Professor of the Department of Chemical Engineering for Oil and Gas Industry of Gubkin Russian State University of Oil and Gas (National Research Univer- sity), director of Scientific and Research Center „Promislovaya Himiya”. She is author of 150 scientific publications, 60 patents and 4 methodological works. She specializes in the field of oil-field chemistry, chemical agents and technologies for production stimulation, enhanced oil recovery, repair and insulation works and oil treatment. E-mail: lubmag@gmail.com
Ljucija F. DAVLETSHINA graduated from Al’met’evsk State Oil Institute in 1998, she is Candidate of Technical Sciences, assistant professor of the Department of Chemical Engineering for Oil and Gas Industry of Gubkin Russian State University of Oil and Gas (National Research University). She specializes in the field of oil-field chemistry. She is author of 60 scientific publications.
E-mail: luchiad@mail.ru
Vladimir B. GUBANOV graduated from Moscow Engineering Physics Institute. He is leading researcher in the Scientific and Research Center „Promislovaya Himiya”. He specializes in the field of seepage studies of agents for production stimulation, enhanced oil recovery, repair and insulation works. He is author of 50 scientific publications and 15 patents of invention.
E-mail: gubanowww@gmail.com
Polina S. MIKHAYLOVA is a student of the Department of Chemical Engineering for Oil and Gas Industry of Gubkin Russian State University of Oil and Gas (National Research University). She is author of 5 scientific publications. E-mail: mihaylovapolly@mail.ru
Viktoria D. VLASOVA is a student of the Department of Chemical Engineering for Oil and Gas Industry of Gubkin Russian State University of Oil and Gas (National Research University). She is author of 3 scientific publications. E-mail: vica-vv@yandex.ru

Abstract: In spite of all the benefits of acid treatment and good practice the efficiency of the process decreases. One of the reasons of this is high viscosity oil emulsions and precipitation formation during acid placement as well as acid interaction with oil in reservoir conditions is one of the reasons of this.
A sample of degassed and dry crude oil from Romashkinskoye oil field was used for investigation of oil hydrocarbon behavior during interaction between oils and acid compositions. Compatibility tests in free volume were made with equal quantities of oil and acid compositions put in a test tube and mixed. After this the stability and viscosity of formed emulsions were determined. Compositions based on hydrochloric and sulfamic acids were studied.
Interaction of the acid compositions in pore volume was studied. The received data was also compared with the results of the experiments with oil, acids, water and surfactants in similar conditions

Index UDK: 622.276.63

Keywords: acid treatment, oil-acid emulsions, seepage studies

Bibliography:
1. Mordvinov V.A., Glushhenko V.N. Reservoir performance and acid composition influence on acidizing efficiency. Geologija, geofizika i razrabotka neftjanyh i gazovyh mestorozhdenij, 2002, no. 11, p. 22-26 (in Russian).
2. Davletshina L.F., Tolstyh L.I., Mikhaylova P.S. On the necessity of hydrocarbons behavior patterns researching with a view to increase of reservoir acidizing effectiveness. Territory NEFTEGAZ, 2016, vol. 4, p. 95-96 (in Russian).
3. Fedorenko V.Ju., Nigmatullin M.M., Petuhov A.S., Gavrilov V.V., Krupin S.V. Acid compositions for bottom-hole formation zone treatment. Ferric ions content optimization as applied to some oils from povolzhskiy region. Vestnik Kazanskogo tehnologicheskogo universiteta, 2011, no. 13, p. 136-140 (in Russian).
4. Amijan V.A., Ugolev V.S. Fiziko-himicheskie metody povyshenija proizvoditel’nosti skvazhin [Physicochemical methods of well’s yield increase]. Moscow, Nedra, 1970, 279 p (in Russian).
5. Kelland M.A. Promyslovaja himija v neftegazovoj otrasli [Production chemicals for the oil and gas industry] (under the ed. of Magadova L.A). Profession, 2015, no. 2, pp. 238-239 (in Russian).
6. Davletshina L.F., Mikhaylova P.S., Akzigitov E.A. Behavior of oils from one oil field while selecting acid compositions for terrigenous reservoir treatments. Trudy Rossijskogo gosudarstvennogo universiteta nefti i gaza imeni I.M. Gubkina, 2017. , no. 2/287, pp. 153-162 (in Russian).
7. Magadov R.S., Silin M.A., Gaevoj E.G., Magadova L.A., Pahomov M.D., Davletshina L.F., Mishkin A.G. Upgrading of acid composition using Neftenol K. Neft’, gaz i biznes, 2007, no. 1-2, p. 93-97 (in Russian).
8. Silin M.A., Magadova L.A., Cygankov V.A., Muhin M.M., Davletshina L.F. Kislotnye obrabotki plastov i metodiki ispytanija kislotnyh sostavov: uchebnoe posobie [Reservoir acidizing and acid system test : a textbook]. PC RGU nefti i gaza imeni I.M. Gubkina, 2011, 119 p. (in Rus- sian).
9. Vahrushev S.A., Kotenev Ju.A. Composition investigations for acid exposure to high-grade carbonate reservoir. Neftegazovye tehnologii i novye materialy. Problemy i reshenija. Sbornik nauchnyh trudov. Ufa: OOO „Monografija”, 2015, p. 252-261 (in Russian).
10. Gavrilova N.N., Nazarov V.V., Jarovaja O.V. Mikroskopicheskie metody opredelenija razmerov chastic dispersnyh materialov: ucheb.posobie [Microscopic methods of definition of particles size in dispersive materials: a textbook] Moscow, RHTU imeni D.I. Mendeleeva, 2012, 52 p. (in Russian).

2017/4
Experimental validation of industrial CO2 sequestration scheme in underground pool of Devon field
Chemical sciences

Authors: Vadim N. KHLEBNIKOV graduated from Bashkir State University in 1979, he is Doctor of Technical Sciences, Professor of the Department of Physical and Colloid Chemistry of Gubkin Russian State University of Oil and Gas (National Research University). He is specialist in the field of enhanced oil recovery and development of hard-to-recover oil reserves. He is author of more than 200 scientific publications. E-mail: Khlebnikov_2011@mail.ru
Aleksandr S. MISHIN graduated from National Research Nuclear University „MEPhI” in 2005. He is engineer of the Department of Physical and Colloid Chemistry of Gubkin Russian State University of Oil and Gas (National Research University). He is specialist in the field of enhanced oil recovery and development of hard-to-recover oil reserves. He is author of more than 20 scientific publications. E-mail: aleks_mishin@mail.ru
LIANG MENG graduated from Beijing Institute of Petrochemical Technology in 2009, he is Ph.D of the Department of Physical and Colloid Chemistry of Gubkin Russian State University of Oil and Gas (National Research University). E-mail: liangmeng@mail.ru
Natalia A. SVAROVSKAYA graduated from Тomsk State University in 1971. She is Doctor of Technical Sciences, Professor of the Department of Physical and Colloid Chemistry of Gubkin Russian State University of Oil and Gas (National Research University). She is specialist in enhanced oil recovery and development of hard-to-recover oil reserves. She is author of more than 160 scientific publications. E-mail: na_sv2002@mail.ru
Natalia V. LIKHACHEVA graduated from Gubkin Russian State University of Oil and Gas. She is first-year PG student of the Department of Physical and Colloid Chemistry of Gubkin Russian State University of Oil and Gas (National Research University). Her academic interests include ecology and oil- and gas-extraction. E-mail: likhacheva.natalia.v@gmail.com

Abstract: Physical simulation of sequestration of СО2 as flue and enriched flue gas was made in the conditions of depleted reservoir filled with light crude and high-salinity water. In these circumstances it is advised to sequestrate industrial СО2 as WAG since this is an advanced method providing highly efficient displacement of residual oil and delays the breakthrough of gas. Using WAG allows to increase effective capacitance of geological trap to 25-105 %. A general procedure of sequestration of industrial greenhouse gases in geological traps is proposed

Index UDK: 502.211+622.276.344

Keywords: greenhouse gases sequestration, geological traps, depleted reservoir, water-alternated-gas injection, WAG

Bibliography:
1. Hlebnikov V.N., Zobov P.M., Hamidullin I.M. i dr. Perspektivnye regiony dlja osushhestvle- nija proektov po hraneniju parnikovyh gazov v Rossii. Bashkirskij himicheskij zhurnal, 2009, t. 16, no. 2, p. 73-80.
2. Bajmuhammetov K.S., Viktorov P.F., Gajnullin K.H., Syrtlanov A.Sh. Geologicheskoe stroenie i razrabotka neftjanyh i gazovyh mestorozhdenij Bashkortostana. Ufa: RIC ANK „Bashneft’ ”, 1997, 424 p.
3. Vafin R.V. Povyshenie jeffektivnosti tehnologii vodogazovogo vozdejstvija na plast na Alekseevskom mestorozhdenii. Neftepromyslovoe delo, 2008, no. 2, p. 33-35.
4. Vafin R.V. Metod regulirovanija tehnologiej vodogazovogo vozdejstvija na plast. Neftepro-myslovoe delo, 2008, no. 2, p. 30-32.
5. Zacepin V.V., Maksutov R.A. Sovremennoe sostojanie promyshlennogo primenenija tehno-logij vodogazovogo vozdejstvija. Neftepromyslovoe delo, 2009, no. 7, p. 13-21.
6. Polishhuk A.M., Hlebnikov V.N., Mishin A.S. i dr. Jeksperimental’noe issledovanie me-hanizma fil’tracii vodogazovyh smesej. Vestnik CKR Rosnedra, 2012, no. 6, p. 8-14.
7. Ulavlivanie i hranenie dvuokisi ugleroda. Special’nyj doklad MGJEIK. Mezhpravitel’stven-naja gruppa jekspertov po izmeneniju klimata, 2005. ISBN 92-9169-419-3. URL: https://ipcc.ch/pdf/ special-reports/srccs/srccs_spm_ts_ru.pdf (data obrashhenija: 09.10.2016).

2017/3
Investigating wave flow dynamics of fluid mode by analysis of oil and water production from hadum deposits of the North-Caucasian oil and gas province
Geosciences

Authors: Mikhail A. LOBUSEV graduated from Gubkin Russian State University of Oil and Gas in 2002. Candidate of Technical Sciences, assistant professor of the Department of General and Petroleum Field Geology of Gubkin Russian State University of Oil and Gas (National Research University). Specialist in the field of seismic-geological modeling, in improving the efficiency of development of hard-to-recover reserves. He is author of more than 70 scientific publications. E-mail: MLobusev@gmail.com
Yulia A. ANTIPOVA graduated master’s program from Gubkin Russian State University of Oil and Gas in 2008. Candidate of Geological and Mineralogical Sciences, assistant professor of the Department of General and Petroleum Field Geology of Gubkin Russian State University of Oil and Gas (National Research University). Specialist in the field of applied geology and hydrogeology of oil and gas fields. She is author of more than 30 scientific publications. E-mail: kpgng@gubkin.ru
Alena A. VERESOVICH graduated from Gubkin Russian State University of Oil and Gas in 2015. Postgraduate student of the Department of General and Petroleum Field Geology of Gubkin Russian State University of Oil and Gas (National Research University). Specialist in the field of oil and gas field geology. She is author of 5 scientific publications. E-mail: veresovich.a@gubkin.ru

Abstract: Possible interrelation between the expansion and subsequent compression of the Earth (pulsations) and the dynamics of fluid extraction from zones subject to tectonic stress is considered in the article. The absence of reliable proof of the phases of general global expansion (or contraction) is the most significant flaw in the hypothesis. Separate phases do not always occur simultaneously and consistently on the Earth. Stretching is most clearly manifested in the mid-oceanic ridge. Compression manifests itself in the folded belts of the Earth, where horizontal crushing of strata and squeezing them upward and sideward, with processes of metamorphism, magmatism (granitization), crushing occuring due to the increase in temperature (from the friction of compression. The paper gives brief information about geological, geophysical, lithological and seismic data in the area of research. The histograms of liquid extraction rates have been constructed for some of the existing deposits in the region that have been producing since the 1970s. The connections between the wave course of the dynamics of the fluid regime and the rates of fluid extraction are established. The alternating stages of the oilfield operation are distinguished, the wave course of fluid regime dynamics of oil and gas deposits is traced, and therefore, a relatively new pulsational scientific theory of compression and expansion of the Earth’s interior is possible.

Index UDK: 550.2+553.98

Keywords: Dynamics of hydrocarbons selection, Khaduma Formation, hydrocarbons, appraisal of resources, production forecast, structural geology, fracture analysis, dispersal movements, accumulations of hydrocarbons

Bibliography:
1. Informacionnyj geologo-geofizicheskij otchet o vypolnenii rabot. «Severo-Kavkazskaja NGP» RGU nefti i gaza (NIU) imeni I.M. Gubkina.
2. Lobusev A.V., Lobusev M.A., Cholovskij I.P., Vertievec Ju.A. Ispol’zovanie poputnogo gaza dlja razrabotki zalezhej UV bazhenovskoj svity Zapadnoj Sibiri. Gazovaja promyshlennost’, 2010, no. 644, p. 58-61.
3. Lobusev A.V., Lobusev M.A., Cholovskij I.P., Vertievec Ju.A. Geologo-promyslovoe obosnovanie promyshlennogo osvoenija zalezhej uglevodorodov bazhenovskoj svity Zapadnoj Sibiri. Territorija NEFTEGAZ, 2010, no. 3, p. 22-25.
4. Lobusev A.V. Zalezhi s trudnoizvlekaemymi zapasami nefti — odno iz vazhnejshih napravlenij geologorazvedki v Rossii. XIX Gubkinskie chtenija «Innovacionnye tehnologii prognoza, poiskov, razvedki i razrabotki skoplenij UV i prioritetnye napravlenija razvitija resursnoj bazy TJeK Rossii». M., 2011, p. 49-51.
5. Bragin Ju.I., Lobusev M.A., Vertievec Ju.A. Metodicheskoe rukovodstvo k laboratornym rabotam po kursu «Promyslovo-geologicheskij kontrol’ razrabotki zalezhej uglevodorodov». M.: Izdatel’skij centr RGU nefti i gaza imeni I.M. Gubkina, 2010, p. 56.
6. Lobusev M.A., Antipova Ju.A. Osnovy geologo-promyslovogo upravlenija razrabotkoj mestorozhdenij nefti i gaza: Uchebno-metodicheskoe posobie. M.: Izdatel’skij centr RGU nefti i gaza (NIU) imeni I.M. Gubkina, 2016, p. 70.
7. Alekperov Ju.V., Lobusev A.V., Lobusev M.A., Strahov P.N. Utochnenie geologicheskih modelej s cel’ju povyshenija jeffektivnosti razrabotki zalezhej nefti i gaza na primere ispol’zovanija kart vremennyh tolshhin pri interpretacii materialov sejsmorazvedki. Territorija NEFTEGAZ, 2011, no. 11, p. 12.
8. Lobusev M.A., Antipova Ju.A. Osnovy geologo-promyslovogo upravlenija razrabotkoj mestorozhdenij nefti i gaza: Uchebno-metodicheskoe posobie. M.: Izdatel’skij centr RGU nefti i gaza (NIU) imeni I.M.Gubkina, 2016.
9. Lobusev M.A., Veresovich A.A. Vyjavlenie i trassirovanie predpolagaemyh tektonicheskih narushenij v slaboizuchennom regione Arkticheskoj territorii severa Zapadnoj Sibiri. Neftegaz.RU, 2017, no. 1, p. 92-94.

2017/3
Аhalysis of stability of seismic acoustic inversion for different geological models of a priori information
Geosciences

Authors: Li QIANG graduated from Gubkin Russian State University of Oil and Gas (National Research University) with Master’s degree in 2014. He is now is postgraduate student of the Dept. of Exploration Geophysics at Gubkin Russian State University of Oil and Gas (National Research University). He specializes in amplitude inversion of seismic data. E-mail: seis@gubkin.ru

Abstract: The paper discusses how a priori information of the geological model affects the result of deterministic acoustic seismic inversion. Models with different statistical distribution of layer thickness and reflectivity have been calculated. The study of various model data with different noise showed that extremely thin layers of acoustic contrast, intense reflection coefficient and strong seismic noise have a negative impact on the result of acoustic inversion. The industry widely used software Hampson-Russell CGG has been tested

Index UDK: 550.3

Keywords: аcoustic impedance, Deterministic acoustic seismic inversion, stochastic distribution of elastic properties, model based inversion

Bibliography:
1. Cooke D. A. and Schneider W.A. Generalized linear inversion of reflection seismic data. Geophysics, 1983, v. 48, p. 665-676.
2. Hampson D.P., Russell B.H., Bankhead B. Simultaneous inversion of pre-stack seismic data. SEG Annual Meeting, Expanded Abstracts, 2005, p. 1633-1637.
3. Lindseth R.O. Synthetic sonic logs — A process for stratigraphic interpretation. Geophysics, 1979, no. 44, р. 3-26.
4. Russell B.H. and Hampson D.P. Comparison of poststack seismic inversion methods. SEG Annual Meeting, Expanded Abstracts, 1991, р. 876-878.

2017/3
Example of advanced methods of seismic interpretation with well log data and history of de-velopment in stratigraphic traps
Geosciences

Authors: Anton V. KHITRENKO graduated from joint master program of Gubkin Russian State University of Oil and Gas (National Research University) and Heriot Watt University (Scotland) in 2015, with Master Degree in Applied Petroleum Geoscience. He is senior geophysicist of the Department of Technology and Shelf Projects at OOO «RN-SakhalinNIPimorneft». He is author of 3 articles. E-mail: akhitrenko@mail.ru
Maxim V. PLOTNIKOV graduated from joint master program of Gubkin Russian State University of Oil and Gas (National Research University) and Heriot Watt University (Scotland) in 2015. He is specialist in geoscience at «ROXAR». E-mail: pl-max@mail.ru
Kirill S. BINKOV graduated from Gubkin Russian State University of Oil and Gas in 2012. He is senior geologist at OOO «Nrk-Technology». E-mail: ksbynkov@mail.ru

Abstract: An example of joint interpretation of 2D and 3D seismic data, well log data and development history of stratigraphic trap of Western Siberia is considered. The previous seismic interpretation has not yielded suitable results, therefore a new method was tested. It showed appropriate results and was used for geological modeling

Index UDK: 553.981.2:553.982.239

Keywords: West Siberia, stratigraphic traps, seismic interpretation, multi attribute analysis

Bibliography:
1. Law of the Russian Federation 21.02.92 N <2395-1 «O nedrah».
2. Nezhdanov A.A. Geological interpretation of seismic data: Course of lectures. Tyumen: TYumGNGU, 2000, р. 133.
3. Sheriff R.E., Gregori A.P., Vejl P.V. Seismic stratigraphy. M.: Mir, 1982, р. 839.
4. Rudkevich M.Ja., Ozeranskaja L.S., Chistjakova N.F. Oil and gas bearing complexes of the West Siberian basin. M.: Nedra, 1988, р. 303.
5. Gurari F.G., Devjatov V.P., Demin V.I. Geological structure and oil and gas content of the Lower-Middle Jurassic of the West Siberian Province. Novosibisk: Nauka, 2005, р. 156.
6. Van Wagoner, Mitchum R.M., Posamentier H.W., Vail P.R. An overview of sequence stratigraphy and key definitions. In: Bally A.W. (Eds.), Atlas of Seismic Stratigraphy. V  1. Studies in Geology. American Association of Petroleum Geologists, 1987, vol. 27, р. 11-14.
7. Avseth P., Mukerji T. and Mavko G. Quantitative seismic interpretation: Applying rock phy-sics tools to reduce interpretation risk: Cambridge Univ. Press, 2005.
8. Vail P.R., Mitchum R.M., Thompson S. Seismic stratigraphy and global changes of sea level, part 3: relative changes of sea level from coastal onlap. In: Payton, C.E. (Eds.), Seismic Stratigraphy. Applications to Hydrocarbon Exploration. American Association of Petroleum Geologists, 1977, vol. 26, р. 63-81.

2017/3
Features of geological structure and petroleum potential of Sobinsk field for rationale for exploration activity
Geosciences

Authors: Gennady Ya. SHILOV graduated from Azizbekov Azerbaijan Institute of Oil and Chemistry (now Azerbaijan State Academy of Oil) in 1970. He is Doctor of Geological and Mineralogical Sciences, professor of the Department of Theoretical Foundations of Oil and Gas Prospecting at Gubkin Russian State University of Oil and Gas (National Research Univer- sity), correspondent member of Russian Academy of Natural S. Sciences, author of over 190 publications. E-mail: genshilov@iskratelecom.ru
Sergey G. SEROV specializes in basin modeling. He is Teaching Fellow of the Dept. of Foundations of Prospecting and Exploration for Oil and Gas, Gubkin Russian State University of Oil and Gas (National Research University). E-mail: sgserov@mail.ru

Abstract: The article considers the features of the geological structure and oil and gas potential of the Sobinsk oil and gas condensate and helium deposit. To forecast and select objects promising for hydrocarbon exploration, the history of development and paleotectonic features of the Katanga oil and gas bearing area has been reconstructed. The results of these studies, combined with materials of geological survey, drilling, well logging, etc., made it possible to characterize the structure of the Proterozoic (mainly Vendian) strata, the relationship of structural geometry of promising complexes at various structural-lithological levels. The recommendations on geological exploration in the territory of Sobinsky license area are given

Index UDK: 550.8

Keywords: Katangskaya oil and gas province, Sobinsky deposit, Jelindukon structure, Siberian platform, geological exploration, Vanavar formation

Bibliography:
1. Aleksandrov B.L., Shilov G.Ja., Bondarev A.V. Uchet dannyh o rasprostranenii porovyh davlenij pri proektirovanii konstrukcii skvazhin v slozhnyh geologicheskih uslovijah. Karotazhnik, 2011, no. 11, p. 36-45.
2. Gutina O.V. Kompleksnoe obosnovanie stratigraficheskoy skhemy rifeyskikh otlozheniy yugo-zapadnoy chasti Sibirskoy platformy (Baykitskaya, Katangskaya NGO, Eniseyskiy kryazh, Chadobetskoe podnyatie). Novosibirsk: Izd-vo SO RAN, 2007, p. 180.
3. Gutina O.V., Pritsan N.V. Utochnenie stratigrafii razrezov verkhnego rifeya i venda yugo-zapadnoy chasti Sibirskoy platformy. Stratigrafiya i neftegazonosnost’ venda-verkhnego rifeya yugo-zapadnoy chasti Sibirskoy platformy. Krasnoyarsk: KNIIGiMS, 2001, p. 21-34.
4. Gordadze G.N., Kerimov V.Yu., Gayduk A.V., Giruts M.V., Lobusev M.A., Serov S.G., Kuznetsov N.B., Romanyuk T.V. Uglevodorody-biomarkery i uglevodorody almazopodobnogo stroeniya iz pozdnedokembriyskikh i nizhnekembriyskikh porod Katangskoy sedloviny (Sibirskaya platforma). Geokhimiya, 2017, no. 4, p. 335-343.
5. Kerimov V.Yu., Shilov G.Ya., Serikova U.S. Geologicheskie riski pri poiskakh i razvedke mestorozhdeniy nefti i gaza i puti ikh snizheniya. Neft’, gaz i biznes, 2014, no. 8, p. 44-52.
6. Krjuchkov V.E., Medvedev A.G., Izvekov I.B. Zony sochlenenija krupnyh tektonicheskih struktur — perspektivnyj ob’ekt poiskovo-razvedochnyh rabot na gaz i neft’ v vostochnoj Sibiri. Vesti gazovoj nauki, 2012, no. 1 (9), p. 55-60.
7. Lobusev M.A., Bondarev A.V., Serov S.G., Kuznetsov N.B. Vliyanie magmatizma Sibirskogo superplyuma na neftegazonosnost’ regiona. Trudy Rossiyskogo gosudarstvennogo universiteta nefti i gaza im. I.M. Gubkina, 2016, no. 3, p. 56-67.
8. Kerimov V.Y., Kuznetsov N.B., Bondarev A.V., Serov S.G. New directions for petroleum exploration on Siberian Platform. Geomodel 2015 — 17-th Scientific-Practical Conference on Oil and Gas Geological Exploration and Development, 2015, p. 579-583.
doi:10.3997/2214-4609.201414004

2017/3
Bazhen Formation Rocks Heterogeneity Characteristic Based on Changes of Sedimentation Cycles of Mineral Composition
Geosciences

Authors: Maria A. SREBRODOLSKAYA graduated from the Gubkin Russian State University of Oil and Gas in 2013, with Master Degree in Petroleum Engineering of Gubkin Russian State University of Oil and Gas (National Research University). She is postgraduate student doing research in geological and mineralogical sciences, focusing petrophysics, log data processing in complicated reservoirs, well logging in horizontal wells. She is author of more than 40 scientific papers. E-mail: mary_roza@bk.ru
Andrey D. SREBRODOLSKY graduated from Gubkin Moscow Institute of Petrochemical and Gas Industry in 1975. He is Candidate of Geological and Mineralogical Sciences, senior lecturer of the Department of Petrophysics of Gubkin Russian State University of Oil and Gas (National Research University). His research interests include log data processing technologies, quantitative evaluation of anomalous reservoir pressures, including those in the Bazhen Formation. He is author of more than 60 scientific publications and 2 copyright certificates. E-mail: gis-sad@list.ru
Valentina A. KOSTERINA graduated from Gubkin Moscow Institute of Petrochemical and Gas Industry in 1970. She is candidate of Geological and Mineralogical sciences. Senior Researcher of the Department of Petrophysics of Gubkin Russian State University of Oil and Gas (National Research University). She is specializes in the studies of complex oil and gas reservoirs by well log methods. She is author of more than 50 scientific papers. E-mail: kosterinava@mail.ru

Abstract: Bazhen Formation cyclic structure is explained and mineral composition heterogeneity of these deposits is characterized. Histograms of distribution of main rocks components weights incl. kerogen, kerogen volume, coefficients of total and open porosity in sedimentation cycles are analyzed. The regularities of the organic material (kerogen) distribution are considered in detail, depending on the sedimentation cycle and carbonate material concentration. Histograms of distribution of gamma-ray index in Salym oilfield wells in sedimentation cycles are described. The features of the lithological structure and mineral composition of each of the three cycles are identified and described. The conclusions about the advisability of creating a differentiated approach to Bazhen Formation sediments interpretation model are made in order to reduce errors in determining the total porosity values

Index UDK: 550.8.056

Keywords: вazhen formation, sedimentation cycles, distribution histogram analysis, kerogen volume, Salym field

Bibliography:
1. Vendelshteyn B.Yu., Tsareva N.V., Kosterina V.A., Farmanova N.V., Abdrakhmanova L.G., Sokolova T.F., Belyakov M.A. Evaluation of the filtration-capacitive properties of Bazhen complex reservoirs by well logging methods. Geofizika [Geophysics], 2001, no. 4, p. 49-55 (in Russian).
2. Dorofeyeva T.V., Krasnov S.G., Lebedev B.A. and others. Kollektory nefti bazhenovskoy svity Zapadnoy Sibiri [The oil Bazhen Formation reservoirs of Western Siberia]. Edited by. T.V. Dorofeyevoy. Leningrad: Nedra, 1985.
3. Klubova T.T., Khalimov E.M. and others. Oil-content of Bazhen suite sediments of the Salym field (study results and prospects). M.: VNIIOENG, 1995.
4. Preliminary calculation of oil and dissolved gas reserves of the Bazhen deposit (Yu0 horizon) of the Bolshoi Salym field of the Nefteyugansk district of the Tyumen region as of 1.01.85. responsible executors I. I. Nesterov, B. N. Lyankov. Tyumen: ZapSibNIGNI, 1986.
5. Sonich S.P., Borkun F.Ya. and others. The method of calculating reserves, justifying of parameters and estimating of reserves of oil and dissolved gas of the Bazhen suite of the Salym field. Report SibNIINP, Tyumen, 1985.
6. Srebrodolskaya M.A., Zoloyeva G.M., Kosterina V.A. Kerogen concentration determination in the Bazhen suite reservoirs according to the gamma method, taking into account the sedimentation cycles. Geofizika [Geophysics], 2014, no. 1, p. 46-52 (in Russian).
7. Telishev A.G., Sonich V.P. and others. Calculation of oil and dissolved gas reserves in the Bazhen suite of the Salym field. Tyumen: SibNIINP, 1986.
8. Fursov A.Ya., Postnikov Ye.V., Postnikov A.V. and others. Geological bases and new technologies for reservoir forecasting and estimation of oil reserves in the sediments of the Bazhen suite. Ways of realizing the oil and gas potential of KhMAO. Khanty-Mansysk, 2000, p. 162-173 (in Russian).