Extended Search

- in all fields
- in the title
- in key words
- in the abstract
- in the bibliography
Oil-Gas Potential of Chengbei Sag in Bohai Bay Basin (China)

Authors: Shiqi LIU is PHD student of the Department of Lithology of Gubkin Russian State University of Oil and Gas (National Research University). Her research interests are geology and lithology of oil and gas field.
E-mail: liushiqi1990@gmail.com

Abstract: Chengbei sag is one of the structure units of the Bohai Bay basin, which is a major oil and gas field in China. It is a graben basin depositing on the basement of Precambrian and mainly developing Cenozoic sedimentation. The hydrocarbon potential and saturation of these deposits are considered

Index UDK: 551.24:553.98(510)

Keywords: the source rock, Dongying formation, Chengbei sag, oil-gas saturation, alluvial system

1. Limonov A.F., Burlin Ju.K. Stroenie, razvitie i neftegazonosnost’ bassejna Bohaj (KNR). Geologija nefti i gaza, 1988, no. 10, p. 53-57.
2. Rejnek G.Je., Singh I.B. Obstanovki terrigennogo osadkonakoplenija. M.: Nedra, 1981, 438 p.
3. Fu Zhaohui, Qin Weijun, Li Min. Depositional Characteristics and Hydrocarbon Traps of the Palaeogene in Chengbei Sag, Bohai Bay Basin. Marine Geology Frontiers, 2015, no. 31 (1), p. 9-15.
4. Fu Zhaohui, Zhang Zaizhen, Li Dechun, et al. Analysis on Sedimentary Systems and Hydrocarbon Accumulation of Palaeogene, CB Sag. ACTA SEDIMENTOLOGICA SINICA, 2009, no. 1, p. 26-31.
5. Gao Xilong. Sequence stratigraphic characteristics and hydrocarbon exploration targets of Dongying Formation in Eastern Slope Area of Chengdao Oilfield. Fault-Block Oil and Gas Field, 2013, no. 20 (2), p. 140-146.
6. Hao Fang, Zhou Xinhuai, Zou Huayao, Teng Changyu, Yang Yuanyuan. Petroleum Char- ging and Leakage in the BZ25-1 Field, Bohai Bay Basin. Journal of Earth Science, 2012, no. 23 (3), p. 253-267.
7. Hua Liu, Donggao Zhao, Youlu Jiang, etc. Hydrocarbon accumulation model for Neogene traps in the Chengdao area, Bohai Bay Basin, China. Marine and Petroleum Geology, 2016, no. 77, p. 731-745.
8. He Yun. Development situation analysis of reservoir formation Dongying, field Chengdao. Inner Mongolia Petrochemical Industry, 2014, no. 3, p. 40-41.
9. Liu Yin, Chen Qinghua, Hu Kai. Comparison of the Bohai Bay Basin and Subei-South Yellow Sea Basin in the Structural Characteristics and Forming Mechanism. Geotectonica et Metallogenia, 2014, no. 38 (1), p. 38-51.
10. Ryder R.T., Qiang Jin, McCabe P.J., etc. Shahejie—Shahejie/Guantao/Wumishan and Carbo- niferous/Permian Coal−Paleozoic Total Petroleum Systems in the Bohaiwan Basin, China (based on geologic studies for the 2000 World Energy Assessment Project of the U.S. Geological Survey): U.S. Geological Survey Scientific Investigations Report, 2011, 5010, 2012, 89 p.
11. Song Guoqi, Hao Xuefeng, Liu Keqi. Tectonic evolution, sedimentary system and petroleum distribution patterns in dustpan-shaped rift basin: a case studу from Jiyang Depression, Bohai Bay Basin. Oil and Gas geology, 2014, no. 35 (3), p. 303-309.
12. Tan Heqing. Analysis of oil and gas resource potential in Chengbei sag, Southern Bohai Basin. Journal of Jiang Han Pet Roleum Institute, 2004, no. 26 (1), p. 39-41.
13. Yuexia D., Shang Y., Lei C., et al. Braided river delta deposition and deep reservoirs in the Bohai Bay Basin: A case study of the Paleogene Sha 1 Member in the southern area of Nanpu Sag. Petroleum Exploration and Development, 2014, no. 4, p. 429-436.
14. Zhu Weilin, Wu Jingfu, Zhang Gongcheng, et al. Discrepancy tectonic evolution and petro- leum exploration in China offshore Cenozoic basins. Earth Science Frontiers, 2015, no. 22 (1), p. 88-101.
15. Zhao Yuehan. Gravity Flow Sedimentary Characteristics and Facies Model for Dongying Formation on East Slope of Chengdao, Jiyagn Depression. Special Oil and Gas reservoirs, 2017, no. 24 (4), p. 24-31.

Features of Logging While Drilling in Horizontal Wells to Estimate Reservoir Properties

Authors: Maria A. SREBRODOLSKAYA graduated from Gubkin Russian State University of Oil and Gas (National Research University) in 2013 with Master Degree in Petroleum Engineering with honors. She is Candidate is Ph.D student in geology and mineralogy. Her research scope is petrophysics, log data processing in complicated reservoirs, well logging in horizontal wells. She is author of more than 40 scientific publications. E-mail: mary_roza@bk.ru

Abstract: The features of logging while drilling (LWD) in horizontal wells are considered. When logging while drilling, geophysical tools are incorporated in the bottom-hole assembly (BHA) above the bit. The composition of the BHA when drilling horizontal wells and offsets of sensors depending on the drilling method (RSS or DDM) are considered. Features of image data recording in horizontal wells with azimuthal tools are described. The factors influencing the BHA composition are analyzed, some of them being: the tasks to be solved, the drilling method, the well design and technical conditions in it, the presence or absence of geosteering service. The environment (lithological conditions) influencing the LWD complex is shown. The limitations imposed on the LWD complex are listed. Various information channels and peculiarities of data transmission in real time mode are considered. It is shown that both information channels transmitting data to the surface and autonomous channels for recording data limit the volume of the logging while drilling complex

Index UDK: 550.832

Keywords: horizontal wells, logging while drilling (LWD), bottom-hole assembly (BHA), azimuthal tools

1. Molchanov A.A., Luk’yanov E.E., Rapin V.A. Geofizicheskie issledovaniya gorizontal’nykh neftegazovykh skvazhin: Uchebnoe posobie. S.-Peterburg: Mezhdunaodnaya akademiya nauk ekologii, bezopasnosti cheloveka i prirody (MANEB), 2001, 298 р.
2. Burenie naklonno-napravlennykh i gorizontal’nykh skvazhin na sushe i na more: Uchebnoe posobie. A.I. Arkhipov, S.V. Vorob’ev, I.V. Dorovskikh, V.V. Zhivaeva, V.V. Kul’chitskiy, O.A Nechaeva. Samara: Samar. gos. tekhn. un-t, 2010, 120 p.
3. Strel’chenko V.V. Geofizicheskie issledovaniya skvazhin: Uchebnik dlya vuzov. M.: OOO “Nedra-Biznestsentr”, 2008, 551 p.
4. Srebrodol’skaya M.A., Fedorova A.Yu., Frolov V.M. Issledovanie gorizontal’nykh skvazhin azimutal’nymi priborami. Zapadno-Sibirskiy neftegazovyy kongress [West-Siberian petroleum congress]. Sbornik nauchnykh trudov XI Mezhdunarodnogo nauchno-tekhnicheskogo kongressa studencheskogo otdeleniya obshchestva inzhenerov-neftyanikov. Tyumen’: TIU, 2017, 169 p. (in Russian).
5. Srebrodol’skaya M.A., Fedorova A.Yu. Skvazhinnye skaniruyushchie ustroystva: sravnitel’nyy analiz i interpretatsiya imidzhey. Prirodnye protsessy v neftegazovoy otrasli. [Geonature 2017 = Natural processes in oil and gas field]. Sbornik nauchnykh trudov Mezhdunarodnoy nauchno-prakticheskoy konferentsii. Tyumen’: TIU, 2017, 343 p. (in Russian).
6. Srebrodol’skaya M.A., Frolov V.M. Zadachi kavernometrii v gorizontal’nykh skvazhinakh. Prirodnye protsessy v neftegazovoy otrasli. [Geonature 2017 = Natural processes in oil and gas field]. Sbornik nauchnykh trudov Mezhdunarodnoy nauchno-prakticheskoy konferentsii. Tyumen’: TIU, 2017, 343 p. (in Russian).
7. Chepik V.S. Osobennosti primeneniya razlichnyh tekhnologii bureniya v processe stroitel’stva skvazhiny. Molodoj uchenyj, 2018, no. 3, p. 55-59. — URL https://moluch.ru/archive/189/47878/ (date of reference 04. 11. 2018).
8. https://www.slb.ru/services/drilling/drilling_measurements/petrophysics_while_drilling/ (date of reference 04.11.2018).
9. https://www.slb.ru/upload/iblock/2f0/tekhnologii-nnb_-telemetrii-i-karotazha_spravochnik.pdf (date of reference 04.11.2018).

Biomarker characterizations of the Upper Cretaceous Shiranish formation in the south-eastern part of Iraqi Kurdistan, Northern Iraq

Authors: Rebaz A. HAMA AMIN graduated from University of Sulaimani in 2012, Gubkin State University of Oil and Gas (National Research University) in 2016. Post-graduate student in the Department of Geology of Hydrocarbon Systems in Gubkin State University of Oil and Gas (National Research University). Scientific interests are related with geochemical studies of oils and source rock samples and basin modeling study. He is an author of 1 scientific publication. E-mail: Rebaz_1989sa@yahoo.com
Natalia N. KOSENKOVA graduated from Lomonosov Moscow State University in 1980, and Post-graduate degree in 1987. Candidate of Geological and Mineralogical Sciences, teaching on the discipline “Formation of hydrocarbon systems” in Gubkin State University of Oil and Gas (National Research University). Specialist in the field of oil and gas fields’ exploration. She is author of 4 monographs and more than 20 scientific publications in Russian and foreign issues. E-mail: N.N.Kosenkova@gubkin.ru

Abstract: The geochemical studies were performed for the core samples of Shiranish formation in the depth interval of (3680-3950) from the south-eastern part of Iraqi Kurdistan. These rock samples comprise shale rocks. The geochemical investigation of biomarker parameters were performed for extract rock samples from Shiranish formation using gas chromatography GC, gas chromatography-mass spectrometry GC/MS — for saturated and aromatic hydrocarbons, and GC/MS/ MS — for saturated hydrocarbon. In addition, performed carbon isotope analysis of saturated and aromatic fractions. The extract samples are characterized by a high Pr/Ph ratio (> 1,0), a relatively high oleanine ratio, an abundance of mode- rate C27 regular steranes and disteranes, a relatively high C30 sterane index, presence of tricyclic terpanes, relatively low dibenzothiophene/phenanthrene ratios, a high CPI ratio (³ 1,0) and high Pr/n-C17 values in combination with low Ph/n-C18 values.
All of the above parameters indicate on the mixed type of organic matter: kerogen type II + III with a predominance of type II. According to the results of diagnostics, Source rock, represented by calcareous marls, were deposited under weak reducing conditions during diagenesis and have a high degree of maturity.

Index UDK: 551.24

Keywords: biomarker, Shiranish formation, Iraqi Kurdistan, organic matter, oil, depositional environment, maturity

1. Bacon C.N., Calver C.R., Boreham C.J., Lenman D.E., Morrison K.C., Revill A.T. and Volkman J.K. The Petroleum Potential of Onshore Tasmania: a review, Geological Survey Bulletin, 2000, 71, p. 1-93.
2. Buday T. The Regional Geology of Iraq, Volume 1, Stratigraphy and Paleogeography. Dar Al-Kutub (Mosul University, Iraq), 1980, 445 р.
3. Jassim S. Z., Goff J.C. Geology of Iraq. Published by Dolin, Brague Moravian Museum, Berno, 2006, 345 p.
4. Hill R.J., Jarvie D.M., Zumberg J., Henry M., Pollastro R.M. Oil and Gas geochemistry and Petroleum Systems of the Fort Worth Basin, AAPG, 2007, vol. 91, no. 4, p. 445-473.
5. Killops K. and Killops V. Introduction to Organic Geochemistry, second edition, black well publishing, 2005, 393 p.
6. Osuji L.C., Antia B.C. Geochemical Implication of some Chemical Fossils as Indicators of Petroleum Source Rocks, AAPL Journal, Sci. Environ. Mgt., 2005, vol. 9, no.1, p. 45-49.
7. Peters K.E., Fowler M.G. Applications of petroleum geochemistry to exploration and reservoir management, Review, Organic Geochemistry, 2002, vol. 33, p. 5-36.
8. Peters K.E., Walters C.C., Moldowan J.M. The Biomarker Guide, Second Edition. Volume II. Biomarkers and Isotopes in Petroleum Systems and Earth History, United Kingdom at the Cambridge University Press, 2005, 684 p.
9. Philp R.P. Formation and Geochemistry of Oil and Gas, in Treatise on Geochemistry, Holland, H.D. and Turekian, K.K. (Executive eds.), vol. 7. Sediments, Diagenesis and Sedimentary Rocks, Mackenzie F.T. (Volume Editor). Elsevier pergamon, 2003, p. 223-256.
10. Rohrback B.G. Crude Oil Geochemistry of the Gulf of Suez, Advances in Organic Geochemistry, 1983, p. 39-48.
11. Sadi Kan Jan Kaka. Sediment logical study of Shiranish formation well DD-1 (N-IRAQ), bull. Iraq nat. Hist. Mus., 2010, p. 47-56.
12. Shanmugam G. Significance of coniferous rain forests and related organic matter in genera- ting commercial quantities of oil, Gippsland Basin, Australia. AAPG Bulletin, 1985, no. 69 (8), p. 1241-1254.
13. Sletten E.B. A comparison of Petroleum from Reservoirs and Petroleum Inclusions in Authigenic Mineral Cements-Haltenbanken. University of Oslo, Department of Geology, 2003, p. 80-107.
14. Sofer Z. Stable carbon isotope compositions of crude oils-application to source depositional environments and petroleum alteration. AAPG Bulletin, 1984, v. 68, no. 1, p. 31-49.
15. Younes M.A., Philp R.P. Source Rock Characterization based on Biological Marker Distribution of Crude Oils in the Southern Gulf of Suez Egypt. Journal of Petroleum Geology, 2005, vol. 28, no. 3, p. 301-317.

Study of Potassium Formate-Based Drilling Fluid Influence on Core-Samples’ Permeability Characterized by AHFP.

Authors: Daria M. GUSEVA is currently a postgraduate student at the Drilling Department of Gubkin Russian State University of Oil and Gas (National Research University). She is specialist in drilling and completion fluids. E-mail: daria.guseva@yandex.ru
Sergey V. KOSTESHA graduated from Saratov State University in 2002 with a degree in industrial chemicals of drilling fluids and oil processing. He is author of “Colloid Chemistry of Drilling fluids”, a study guide for students and drilling fluid engineers, 2000.
E-mail: skostesha@mail.ru

Abstract: Formation drilling in abnormally high formation pressure zones adversely affects well construction efficiency.
The application of barite-free potassium formate-based drilling fluid ensures high-quality wellbore cleaning and minimizes the irreversible process of formation damage.
The impact of potassium formate-based drilling fluid and oil-based drilling fluid on core samples permeability was assessed, the applicability of drill-in fluids mentioned above was validated

Index UDK: 622.245.549

Keywords: potassium formate, return permeability, abnormally high formation pressure, weighted drilling fluids

1. Ovchinnikov V.P., Aksenova N.A., Grosheva T.V., Rozhkova O.V. Contemporary drilling fluid compositions: Workbook. Tyumen: TyumGNGU, 2013, 156 p.
2. Ryazanov Ya.A. Drilling Fluids Encyclopedia. Orenburg: Publisher “Letopis”, 2005, 664 р.
3. Nediljka Gaurina-eEðimurec, Borivoje Pasic, Katarina Simon, Davorin Matanovic, Matija Malnar. Formate-Based Fluids: Formulation and Application, Rudarsko-geološko-naftni zbornik. Zagreb, 2008, р. 41-49.
4. Downs J.D., Howard S.K., Carnegie A. Improving Hydrоcarbon Production Rate Through the Use of Formate Fluids — SPE 97694, 2005.

Authors: Petr V. PYATIBRATOV (born in 1979) graduated from Gubkin Russian State University of Oil and Gas in 2002, he is Candidate of Technical Sciences, assistant professor of the Department of Oil Field Development of Gubkin Russian State University of Oil and Gas (National Research University). He is specialist in the development and hydrodynamic modeling of oil and gas fields, and author of more than 30 scientific publications. E-mail: pyatibratov.p@gmail.com
Rinat А. KHABIBULLIN (born in 1978) graduated from Ufa State Aviation Technical University in 2000. He is Candidate of technical Sciences, assistant professor of the Department of Oil Field Development of Gubkin Russian State University of Oil and Gas (Natio- nal Research University). He is specialist in petroleum engineering and author of more than 30 scientific publications.
E-mail: Khabibullin.ra@gubkin.ru
Daniil S. SKOROV (born in 1997) graduated from Gubkin Russian State University of Oil and Gas (National Research University) in 2018 with Bachelor degree in “Petroleum Engineering”. He is Master student of the Department of Oil Field Development of Gubkin Russian State University of Oil and Gas (National Research University). E-mail: danilskorov@gmail.com
Vladislav V. MIKHALKIN (born in 1995) graduated from Gubkin Russian State University of Oil and Gas (National Research University) in 2014 (bachelor). Currently he is studying at “Offshore Field Development Technology” joint degree program of Gubkin Russian State University of Oil and Gas (National Research University) and Stavanger University. E-mail: mikhalkin.w@gmail.com

Abstract: Along with currently available research focused on the properties of foamy oil in the heavy oil field development, this article describes a method for modifying re- lative permeabilities, which simultaneously takes into account the presence of gas in a dispersed state and high mobility of the gas phase during steam injection

Index UDK: 622.276

Keywords: heavy oil, foamy oil, relative permeabilities modification, steam drive

1. Chen J.Z., Maini B. Numerical Simulation of Foamy Oil Depletion Tests. Canadian International Petroleum Conference. Calgary, Alberta: Petroleum Society of Canada, 2005.
2. Maini B. Foamy-Oil Flow. Journal of Petroleum Technology. University of Calgary: Society of Petroleum Engineers, 2001.
3. Mastmann M., Moustakis M.L., Bennion D.B. Predicting Foamy Oil Recovery. SPE Western Regional Meeting. Bakersfield, California: Society of Petroleum Engineers, 2001.
4. Shen C. A Practical Approach for the Modeling of Foamy Oil Drive Process. SPE Canada Heavy Oil Technical Conference. Calgary, Alberta, Canada: Society of Petroleum Engineers, 2015.
5. Sheng J.J., Maini B.B., Hayes R.E., Tortike W.S. Experimental Study of Foamy Oil Stability. Journal of Canadian Petroleum Technology. Banff, Alberta: Petroleum Society of Canada, 1997.
6. Mihajlov D.N. Dinamika techeniya nefti s uchetom obrazovaniya mikropuzyr’kov gaza v potoke. Trudy Rossijskogo gosudarstvennogo universiteta nefti i gaza imeni I.M. Gubkina. M.: Rossijskij gosudarstvennyj universitet nefti i gaza (nacional’nyj issledovatel’skij universitet) imeni I.M. Gubkina, 2011, no. 1 (262), p. 55-67.
7. Mihajlov D.N. Osobennosti processa vytesneniya nefti pri nalichii mikropuzyr’kov v fil’tra-cionnom potoke. Prikladnaya mekhanika i tekhnicheskaya fizika. Novosibirsk: Izdatel’stvo Sibirskogo otdeleniya RAN, 2012, p. 68-83.
8. Strizhov I.N., Pyatibratov P.V., Mihajlov A.I., Nechaeva E.V. Fazovye pronicaemosti, ispol’-zuemye pri raschete debitov skvazhin, ehkspluatiruemyh s zabojnymi davleniyami nizhe davleniya nasyshcheniya. Neftyanoe hozyajstvo. M.: AO Izdatel’stvo “Neftyanoe hozyajstvo”, 2006, p. 80-82.

Complex Approach to Optimization of Nitrogen Lifting Operation Using Coiled Tubing

Authors: Victor P. TELKOV (b.1982) graduated from Gubkin Russian State University of Oil and Gas in 2003. He is Candidate of Technical Sciences, assistant professor of the Department of Development and Exploitation of Oil Fields of Gubkin Russian State University of Oil and Gas (National Research University). He is Specialist in the field of well stimulation and well productivity operation. He is author of more than 60 scientific publications. E-mail: telkov_viktor@mail.ru
Ivan SAVIC (b. 1995) graduated from Gubkin Russian State University of Oil and Gas (National Research University) in 2018 as bachelor in Oil and Gas Business. E-mail: ivansavicorcr@gmail.com

Abstract: This paper presents the results of a series of numerical experiments conducted with self-developed software, which is based on an original algorithm. This algorithm models the nitrogen lifting process. A list of most common problems related to this well operation is given. Our qualitative conclusions could help to predict the work of lifting equipment for different combinations of technological parameters. We recommend the new methodology, based on computer modelling for solving the considered problems

Index UDK: 622.276

Keywords: well unloading, coiled tubing, nitrogen lifting, gas lift annular flow, two-phase flow in annuli, optimization, lift performance relationship

1. Bulatov A.I. Koltyubingovie tehnologii pri burenii, zakanchivanii i remonte neftyanih i gazovih skvazhin. Krasnodar: Prosveshenie-Yug, 2008, 370 p. (in Russian).
2. Mischenko I.T. Skvazhinnaya dobicha nefti. M.: Neft i gaz, 2007, 826 p. (in Russian).
3. Molchanov A.G. Mashiny i oborudovaniye dlya dobichi nefti i gaza. М.: Alyans, 2010, 588 p. (in Russian).
4. Barnea D. Effect of Bubble Shape on Pressure Drop Calculations in Vertical Slug, Int. J. Multiphase Flow (1990) 16, р. 79-89.
5. Cachard F., Delhaye J.M. A Slug-Churn Flow Model for Small-Diameter Airlift Pumps, Int. J. Multiphase Flow (1996) 22, no. 4, р. 627-649.
6. Fuladgar A.M. et al. Optimization of Unloading Operation with Coiled Tubing (Nitrogen Lifting) in One of the Southern Iranian Oil Fields, paper presented at the The 8th International Chemical Engineering Congress & Exhibition (IChEC 2014) Kish, Iran, 24-27 February, 2014.
7. Gu H., Walton I.C. Development of a Computer Wellbore Simulator for Coiled-Tubing Operations, paper SPE 28222 presented at the SPE Petroleum Computer Conference held in Dallas, Texas, USA, 3 July — 3 August 1994.
8. Lage A., Time R. An Experimental and Theoretical Investigation of Upward Two-Phase Flow in Annuli, SPE 64525 presented at the SPE Asia Pacific Oil and Gas Conference and Exhibition held in Brisbane, Australia, 16–18 October 2000.
9. Misselbrook J., Wilde G., Falk K. The Development and Use of a Coiled-Tubing Simulation for Horizontal Applications, paper SPE 22822 presented at the 66th Annual Technical Conference and Exhibition of the Society of Petroleum Engineers held in Dallas, TX, 6-9 October 1991.
10. Papadimitriou D.A., Shoham O. A Mechanistic Model for Predicting Annulus Bottomhole Pressures in Pumping Wells, paper SPE 21669 presented at 1991 Production Operations Symposium, Oklahoma City, 7-9 April.
11. Salim P., Li J. Simulation of Liquid Unloading from a Gas Well with Coiled Tubing Using a Transient Software, paper SPE 124195 presented at the 2009 SPE Annual Technical Conference and Exhibition held in New Orleans, Louisiana, USA, 4-7 October 2009.
12. Xu Z., Maurera J., Shields C. Well Displacement Hydraulics — A Field Case Study and Si- mulation Investigation, paper SPE 137342 presented at the Abu Dhabi International Petroleum Exhibition & Conference held in Abu Dhabi, UAE, 1-4 November 2010.
13. Zhou Y., Smalley E., Opel S. Determination of Optimum N2 Rate for Unloading Gas Wells with Coiled Tubing, paper 143337 was prepared for presentation at the SPE/ICoTA Coiled Tubing and Well Intervention Conference and Exhibition held in The Woodlands, Texas, USA, 5-6 April 2011.

Мooring type positioning system in arctic shelf conditions

Authors: Vadim B. KHAZEEV graduated from Gubkin Russian State University of Oil and Gas “Offshore Oil & Gas structures” speciality of Mechanical Faculty in 2009. Author of 10 publications published. E-mail: hazvad@yandex.ru
Genghis S. GUSEINOV graduated from the Faculty of Oilfield Development of Azerbaijan Industrial Institute in 1957, and graduate school of Gubkin Moscow Institute of Petroche- mical and Gas Industry in 1963, the Department of Transportation and Storage of Oil and Gas. He is Doctor of Technical Sciences, Professor of Computer Aided Design of Facilities of the Oil and Gas Industry of Gubkin Russian State University of Oil and Gas (National Research University). He is author of over 300 published works.
E-mail: guseinov2@yandex.ru

Abstract: The article describes outstanding difficulties of Arctic shelf development requiring underwater floating platforms introduction. Authors compare mooring positioning for newly proposed underwater platform with the conventional semi-submersible rig. Based on calculation results a conclusion is made regarding significantly lower environmental loads on underwater platforms and consequent reasonability of application of such units for Arctic shelf development

Index UDK: 622.691.4

Keywords: offshore platforms, Arctic Shelf, environmental loads, mooring systems, underwater systems

1. Khazeev V.B., Huseynov Ch.S. Ocenka vneshnikh vozdeisvyi na pogruzhnie i podvodnie morskie neftegazovie soorusheniyа. Burenie i nepht, 2018, no. 3, 2 p.
2. Kulmach P.P. Yakornie sistemi uderzhaniya plavuchih objektov. M.: Sudostoenie, 1980, 336 p.
3. Huseynov Ch.S. Podvodnaya ekspluatazionnaja platforma. Patent No 2503800 ot 13.07.2011, opublikovan 10.01.2014.
4. SP 38.13330. Nagruzki i vozdeistviya na gidrotehnicheskie soorusheniay. М., 2012.

Challenges of Syrian Oil Pipeline System Reinstatement

Authors: Yasser Abd AANEY is PhD student of the Dept. of Design and Operation of Pipelines at the Faculty of Design, Construction and Operation of Pipeline Systems at Gubkin Russian State University of Oil and Gas (National Research University).
E-mail: yasseraaney@gmail.com
Vadim A. POLYAKOV graduated from M.V. Lomonosov Moscow State University in 1981. He is Doctor of Technical Sciences, Vice Head for Academic Work of the Dept. of Design and Operation of Pipelines at the Faculty of Design at Gubkin Russian State University of Oil and Gas (National Research University). E-mail: vapolyakov@rambler.ru

Abstract: The reinstatement of the Syrian oil pipeline system is a mandatory initial step in the recovery of the Syrian oil industry. This article discusses the principles and challenges of the reinstatement of the Syrian oil pipeline based on techni- cal assessment of the current state of the pipeline through comparing the hyd-raulic gradient line with the current allowable maximum pressure — determi- ning the main quantitative indicator of the oil pipeline reinstatement project and the range of its allowable change — determining the best economic solution for the current state of the Syrian economy costs by gradually increasing the flow rate

Index UDK: 622.692.4

Keywords: reinstatement of the oil pipeline, optimization problem, the current allowable pressure, unified setting, technical assessment, quantitative indicator of project, oil pipeline system

1. Carla E. Humud, Robert Pirog, Liana Rosen. Islamic State Financing and U.S. Policy Approaches. Congressional Research Service, 2015. Available online: https://www.fas.org/sgp/crs/terror/ R43980.pdf (accessed on 19 May 2015).
2. U.S. Energy Information Administration (EIA). Syria Country Analysis Brief. EIA, 2011. Available online: https://www.eia.gov/todayinenergy/detail.cfm?id=3110 (accessed on 13 November 2015).
3. Ahmad Aldahik. Crude Oil Families in the Euphrates Graben Petroleum System. Ph.D. Thesis, Technical University of Berlin, Berlin, Germany, 2010.
4. Abdulrahman S. Alsharhan, Alan E.M. Nairn. Sedimentary Basins and Petroleum Geology of the Middle East, 1st ed. Amsterdam: Elsevier Science, 1997.
5. Documents and annual reports of the Syrian crude oil transportation company (in Arabic).
6. Polyakov V.A. Fundamentals of technical diagnostics: Textbook. M.: INFRA-M, 2012, 118 р.

Measurement of gas dynamic parameters in slit during evaporation of walls
Technical sciences

Authors: Georgy V. BELJAKOV (b. 1936) graduated from the Moscow Engineering Phy- sics Institute in 1959. He is Candidate of Physical and Mathematical Sciences, Senior Researcher at the “Geomechanics and fluid dynamics” Laboratory of the Institute of Geosphere Dynamics of the Russian Academy of Sciences. He is author of over 50 publications in the field of physics of high speed chemical processes and mechanics of multiphase fluids.
E-mail: m5184@yandex.ru
Aliya A. TAIROVA graduated from the Moscow Institute of Physics and Technology in 2008. She is Candidate of Physical and Mathematical Sciences, Senior Researcher at the “Geomechanics and Fluid Dynamics” Laboratory of the Institute of Geosphere Dyna- mics of the Russian Academy of Sciences, Associate Professor at the Department of Theo- retical and Experimental Physics of Geosystems of the Moscow Institute of Physics and Technology. She is author of over 30 publications in the field of geomechanics and dyna- mics of fluids.
E-mail: moscouposte@gmail.com
Anatoly N. FILIPPOV (b. 1960) graduated from the M.V. Lomonosov Moscow State University in 1982. He is Doctor of Physical and Mathematical Sciences, Professor at the Department of Higher Mathematics, Leading Researcher at the Laboratory of Functional Aluminosilicate Materials of Gubkin Russian State University of Oil and Gas (National Research University). He is author of over 350 scientific papers in the field of physical-chemical mechanics, colloid chemistry and mathematics.
E-mail: filippov.a@gubkin.ru

Abstract: The results of laboratory measuring of gas-dynamic parameters in the fracture during evaporation of its walls are presented. The fracture of a shale layer was simulated by a slit created in plexiglass. The fracture was blown through by gas flow, its speed was experimentally measured. The values of flow rates, evaporation speed and entrainment of the mass of material from the surface of the slit are recorded. The shall recovery factor is calculated under laboratory conditions

Index UDK: 536.46

Keywords: exothermic reaction, evaporation of slit walls, gas flow, fracturing mo-deling, recovery factor

1. Kim J.K. Investigation on the turbulent swirling flow field within the combustion chamber of a gun-type gas burner. Transactions of the Korean Society of Mechanical Engineers, B, 2009, vol. 33, issue 9, p. 666-673.
2. Fujimoto T., Usami M. Monte-Carlo Simulation on Rarefied Gas Flow through Two-Dimen-sional Slits (Cases of High-Pressure Ratio). Transactions of the Japan Society of Mechanical Engineers, Series B, 1984, vol. 50, issue 459, p. 2717-2722.
3. Usami M., Fujimoto T., Kato S. Mass-Flow Reduction of Rarefied Gas by Roughness of a Slit Surface: (High-Speed Calculation of DSMC Method on the Vector Processor). Transactions of the Japan Society of Mechanical Engineers, Series B, 1988, vol. 54, issue 501, p. 1042-1050.
4. Sharipov F., Kozak D.V. Rarefied gas flow through a thin slit at an arbitrary pressure ratio. European Journal of Mechanics B/Fluids, 2011, vol. 30, p. 543-549.
5. Kim Y.W., Metzger D.E. Heat transfer and effectiveness on film cooled turbine blade tip models. Journal of Turbomachinery, 1995, vol. 117, issue 1, p. 12-21.
6. Tairova A.A., Belyakov G.V., Chervinchuk S.Yu. Ablation in the slit in combustion. Proceedings of the international conference on advanced materials with hierarchical structure for new techno- logies and reliable structures 2017 (AMHS’17). AIP Conference Proceedings, 2017, vol. 1909, 020216. https://doi.org/10.1063/1.5013897.
7. Belyakov G.V., Tairova A.A. The measurement of gas dynamics parameters in the gap during ablation of its walls. Dynamics processes in geospheres. Collected scientific papers of IDG RAS. M.: Geos, 2017, issue 9, p. 75-79.
8. Landau L.D., Lifshitz E.M. Teoreticheskaya fisika VI — Gidrodinamika. M.: Nauka, 1988, 736 p.
9. Sedov L.I. Mekhanika sploshnoi sredy. Vol. 2. M.: Nauka, 1984, 560 p.

New Technical Solutions to Remove Seasonal Restrictions of Thermal Power Plants and Increase Reliability and Efficiency of Power Systems During Summer Period
Technical sciences

Authors: Vasily A. ZUBAKIN graduated from Omsk Polytechnic Institute in 1980, Doctor of Economic Sciences, Head of the Department of Renewable Energy Sources of Gubkin Russian State University of Oil and Gas (National Research University), head of the Department of LUKOIL Oil Company. Specialist in the field of economics and forecasting of energy, the economy of renewable energy sources and distributed generation, risk management in the fuel and energy sector, economic and mathematical models of the electricity market. He is an author of more than 60 scientific publications. E-mail: zubakinva@gmail.com
Fedor Yu. OPADCHIY graduated from Moscow Engineering Physics Institute as an engineer-physicist in 1997. Since 2004 he has been working in the System Operator of the Unified Energy System of Russia, in 2012 he was appointed as a Deputy Chairman of the Ma- nagement Board of Joint-Stock Company “System Operator of the Unified Energy System”. He oversees the development of electricity markets and information technologies of Joint-Stock Company “System Operator of the Unified Energy System”. He is a member of expert councils on electric power industry under the Government of the Russian Federation and the Federal Anti-Monopoly Service of Russia, and is a member of the Supervisory Board of the Association “NP MARKET COUNCIL” of infrastructure organizations. He represents Joint-Stock Company “System Operator of the Unified Energy System” in international organizations, in 2018-2019 he is elected as a president of the Association of System Operators of the world’s largest energy systems GO15 (VLPGO). E-mail: fedor@so-ups.ru
Denis L. DOGADIN graduated from the Engineering and Low Temperature Physics Department at the Moscow Power Engineering Institute in 1994, Head of Department for Examination and Support of Projects of the Department of Energy Assets Development and Project Support of LUKOIL Oil Company. Author of several scientific publications on the problems of improving the efficiency of thermal power plants operation, energy efficiency in the systems of heat and electricity supply of industrial and municipal enterprises. He is an author of a number of useful models. E-mail: Denis.Dogadin@lukoil.com
Tatyana Yu. USPENSKAYA graduated from the Department of Industrial Heat and Power Systems of Moscow Power Engineering Institute in 2010, Leading Specialist of the Department for the Development of Energy Assets and Projects Support of LUKOIL Oil Company. She is an author of more than 10 scientific publications. E-mail: Tatyana.Yu.Uspenskaya@lukoil.com

Abstract: Specific features of the operation of one of the most dynamically developing energy systems of the country are analyzed. The functioning of the United Energy Systems of the South Region is associated on the one hand with a steady increase in summer loads, and on the other, with a steady trend for reduction of the generation capacity. These are both for technological reasons and because of the shutdowns of the generating equipment for repair. Methods for solving the above mentioned problem using absorption chillers and evaporative coolers are proposed. Pioneer experience of the LUKOIL Group companies of applying these methods in Russia is presented

Index UDK: 621.311.22

Keywords: power system, absorption chiller, evaporative coolers, removal of seasonal restrictions of thermal power plants

1. Informatsionnyy obzor “Edinaya energeticheskaya sistema Rossii: promezhutochne itogi” za 2012-2018 gg. [Information review “United Energy System of Russia: intermediate results” for 2012- 2018] Available at: http://so-ups.ru/?id=tech_ (accessed 24 January 2019).
2. Dogadin D.L., Krykin H.H., Latypov G.A. Teplovaya elektricheskaya stantsiya s absorbtsionnoy bromisto-litievoy kholodil’noy mashinoy [Thermal power plant with absorption lithium bromide refrigeration machine]. Patent RF, no. 119393, 2012.
3. Dogadin D.L., Krykin H.H., Latypov G.A. Teplovaya elektricheskaya stantsiya s absorbtsionnoy bromisto-litievoy kholodil’noy mashinoy [Thermal power plant with absorption lithium bromide refrigeration machine]. Patent RF, no. 119394, 2012.
4. Dogadin D.L. Teplovaya elektricheskaya stantsiya s absorbtsionnoy bromisto-litievoy kholodil’noy mashinoy, rabotayushchey v rezhime teplovogo nasosa [Thermal power plant with absorption lithium bromide chiller operating in heat pump model]. Patent RF, no. 127818, 2012.