Authors: Rebaz A. HAMA AMIN graduated from University of Sulaimani in 2012, Gubkin State University of Oil and Gas (National Research University) in 2016. Post-graduate student in the Department of Geology of Hydrocarbon Systems in Gubkin State University of Oil and Gas (National Research University). Scientific interests are related with geochemical studies of oils and source rock samples and basin modeling study. He is an author of 1 scientific publication. E-mail: Rebaz_1989sa@yahoo.com
Natalia N. KOSENKOVA graduated from Lomonosov Moscow State University in 1980, and Post-graduate degree in 1987. Candidate of Geological and Mineralogical Sciences, teaching on the discipline “Formation of hydrocarbon systems” in Gubkin State University of Oil and Gas (National Research University). Specialist in the field of oil and gas fields’ exploration. She is author of 4 monographs and more than 20 scientific publications in Russian and foreign issues. E-mail: N.N.Kosenkova@gubkin.ru
Abstract: The geochemical studies were performed for the core samples of Shiranish formation in the depth interval of (3680-3950) from the south-eastern part of Iraqi Kurdistan. These rock samples comprise shale rocks. The geochemical investigation of biomarker parameters were performed for extract rock samples from Shiranish formation using gas chromatography GC, gas chromatography-mass spectrometry GC/MS — for saturated and aromatic hydrocarbons, and GC/MS/ MS — for saturated hydrocarbon. In addition, performed carbon isotope analysis of saturated and aromatic fractions. The extract samples are characterized by a high Pr/Ph ratio (> 1,0), a relatively high oleanine ratio, an abundance of mode- rate C27 regular steranes and disteranes, a relatively high C30 sterane index, presence of tricyclic terpanes, relatively low dibenzothiophene/phenanthrene ratios, a high CPI ratio (³ 1,0) and high Pr/n-C17 values in combination with low Ph/n-C18 values.
All of the above parameters indicate on the mixed type of organic matter: kerogen type II + III with a predominance of type II. According to the results of diagnostics, Source rock, represented by calcareous marls, were deposited under weak reducing conditions during diagenesis and have a high degree of maturity.
Index UDK: 551.24
Keywords: biomarker, Shiranish formation, Iraqi Kurdistan, organic matter, oil, depositional environment, maturity
Bibliography:
1. Bacon C.N., Calver C.R., Boreham C.J., Lenman D.E., Morrison K.C., Revill A.T. and Volkman J.K. The Petroleum Potential of Onshore Tasmania: a review, Geological Survey Bulletin, 2000, 71, p. 1-93.
2. Buday T. The Regional Geology of Iraq, Volume 1, Stratigraphy and Paleogeography. Dar Al-Kutub (Mosul University, Iraq), 1980, 445 р.
3. Jassim S. Z., Goff J.C. Geology of Iraq. Published by Dolin, Brague Moravian Museum, Berno, 2006, 345 p.
4. Hill R.J., Jarvie D.M., Zumberg J., Henry M., Pollastro R.M. Oil and Gas geochemistry and Petroleum Systems of the Fort Worth Basin, AAPG, 2007, vol. 91, no. 4, p. 445-473.
5. Killops K. and Killops V. Introduction to Organic Geochemistry, second edition, black well publishing, 2005, 393 p.
6. Osuji L.C., Antia B.C. Geochemical Implication of some Chemical Fossils as Indicators of Petroleum Source Rocks, AAPL Journal, Sci. Environ. Mgt., 2005, vol. 9, no.1, p. 45-49.
7. Peters K.E., Fowler M.G. Applications of petroleum geochemistry to exploration and reservoir management, Review, Organic Geochemistry, 2002, vol. 33, p. 5-36.
8. Peters K.E., Walters C.C., Moldowan J.M. The Biomarker Guide, Second Edition. Volume II. Biomarkers and Isotopes in Petroleum Systems and Earth History, United Kingdom at the Cambridge University Press, 2005, 684 p.
9. Philp R.P. Formation and Geochemistry of Oil and Gas, in Treatise on Geochemistry, Holland, H.D. and Turekian, K.K. (Executive eds.), vol. 7. Sediments, Diagenesis and Sedimentary Rocks, Mackenzie F.T. (Volume Editor). Elsevier pergamon, 2003, p. 223-256.
10. Rohrback B.G. Crude Oil Geochemistry of the Gulf of Suez, Advances in Organic Geochemistry, 1983, p. 39-48.
11. Sadi Kan Jan Kaka. Sediment logical study of Shiranish formation well DD-1 (N-IRAQ), bull. Iraq nat. Hist. Mus., 2010, p. 47-56.
12. Shanmugam G. Significance of coniferous rain forests and related organic matter in genera- ting commercial quantities of oil, Gippsland Basin, Australia. AAPG Bulletin, 1985, no. 69 (8), p. 1241-1254.
13. Sletten E.B. A comparison of Petroleum from Reservoirs and Petroleum Inclusions in Authigenic Mineral Cements-Haltenbanken. University of Oslo, Department of Geology, 2003, p. 80-107.
14. Sofer Z. Stable carbon isotope compositions of crude oils-application to source depositional environments and petroleum alteration. AAPG Bulletin, 1984, v. 68, no. 1, p. 31-49.
15. Younes M.A., Philp R.P. Source Rock Characterization based on Biological Marker Distribution of Crude Oils in the Southern Gulf of Suez Egypt. Journal of Petroleum Geology, 2005, vol. 28, no. 3, p. 301-317.