Articles Archive

№ 2/291, 2018

Title
Authors
Category
Processing of long-dimensional threads by rolling
Technical sciences

Authors: Mikhail Z. KHOSTIKOEV graduated from Moscow Institute of Machine Tool Design in 1969. Doctor of Technical Sciences, professor of the Department of Standardization, certification and quality management of oil and gas equipment production of Gubkin Russian State University of Oil and Gas (National Research University). Specialist in the field of development of theoretical foundations, methods and means for increasing the efficiency of technological processes of machining and improving the quality of threaded joints of pipes and couplings of the oil assortment. He is an author of more than 150 scientific publications.
E-mail: khostikoevmz@mail.ru
Vladimir A. TIMIRYAZEV graduated from Mosstankin in 1961. Doctor of Technical Sciences, professor, laureate of the Lenin Prize. Professor of the Department of Manufacturing Engineering of Stankin Moscow State Technological University (Stankin MSTU). Specialist in the field of complex control of the accuracy of technological systems. He is an author of more than 500 scientific publications. E-mail: timwa38@mail.ru
Dmitry N. LEVITSKY graduated from Gubkin Moscow Institute of petrochemical and gas industry in 1975. Doctor of Technical Sciences, head of the Department of Theoretical Mechanics of Gubkin Russian State University of Oil and Gas (National Research University). Specialist in the field of theoretical mechanics. He is an author of more than 100 scientific publications.
E-mail: levitskiy.d@gubkin.ru
Yuri Fedorovich NABATNIKOV is a doctor of Technical Sciences, head of the Department of technology of machine building and repair of mining machines in National University of Science and Technology „MISiS”. Specialist in the field of progressive approaches to production engineering. He is an author of more than 50 scientific publications. E-mail: kaftmr@mail.ru

Abstract: A new method for rolling threads is proposed. This extends the technological possibilities of the thread-rolling process with tangential heads by machining threads that are not limited in length to the rollers, as is the case with tangential heads. This allows to control the size and direction of the working axial feed of the rolling rollers, by varying the diameter and therefore the angle of inclination of the threads of the rollers, which in its turn allows to take into account the specific technological conditions of the processing. This is achieved by the fact that the combination and sequence of the types of working feeds and a new mutual initial setting of the rolling rollers and parts are regulated, which, when co-executed, rolls the threads of unlimited length when using tangential thread rolling heads

Index UDK: 621.992.7

Keywords: rolling of threads, thread-rolling heads, threads of long screwing, rolling of threads of unlimited length

Bibliography:
1. Timiryazev V.A., Khostikoev M.Z. Sposob nakatyvaniya rez’b [Thread rolling method]. Patent RF, no. 2467822, 2011.
2. Loktev A.D., Gushchin I.F., Khostikoev M.Z. General machine-building standards for cutting conditions. Reference book. T.2. M.: Mashinostroenie, 1991, 304 p. (in Russian).
3. Khostikoev M.Z., Kirin N.N., Garibov V.R. General machine-building standards for the machining regimes and the application rate for the application of tangential thread rolling heads, rolling rollers to machine tools and comb mills. M.: NIIMASh, 1984, 57 p. (in Russian).

Logic of automatic systems protection against loss of stability of industrial electrotechnical systems
Technical sciences

Authors: Andrey V. EGOROV graduated from Gubkin Moscow Institute of Petrochemical and Gas Industry majoring in „Electrification and Automation of Mining Operations” in 1980. He is Doctor of Technical Sciences, Full Professor, Dean of the Faculty of Postgraduate Education, Head of the Department of Theoretical Electrical Engineering and Electrification of Oil and Gas Industry of Gubkin Russia State University of Oil and Gas (National Research Univer- sity). He was secretary of the dissertation council for 23 years. He published more than 120 scientific publications, including 1 monograph. E-mail: egorov.a@gubkin.ru.
Galina N. MALINOVSKAYA graduated from Gubkin State Academy of Oil and Gas in 1994. She is Candidate of Technical Sciences, Associate Professor of the Department of Automated Control Systems of Gubkin Russia State University of Oil and Gas (National Research University). She has more than 20 scientific publications in the field of solving functional problems of automated control systems. E-mail: malinovskaya.g@gubkin.ru
Igor U. KHRABROV was born 1967. Graduated from Gubkin State Academy of Oil and Gas in 1991. He is Candidate of Technical Sciences, Associate Professor, Dean of the Faculty of Automation and Computer Science, Head of the Department of Information and Measuring Systems at of Gubkin Russia State University of Oil and Gas (National Research University). He is author of 25 scientific publications in the field of elaboration of information and measurement systems. E-mail: khrabrov.i@gubkin.ru

Abstract: The article is devoted to solving the actual problem of protection of electrical systems of industrial enterprises from the loss of stability in external disturbances. The algorithms of work of emergency protection systems based on digital high-speed microprocessor systems are presented and substantiated

Index UDK: 681.511+621.316

Keywords: protection of electrical systems, stability of electrical systems, dynamic stability, microprocessor measuring complexes

Bibliography:
1. Men’shov B.G., Tsvetkov N.A., Egorov A.V. Emergency prevention control plans of close to the optimal in isolated power systems. News of HEI. Energetics, 1986, no. 10, p. 39–41.
2. Ershov M.S., Egorov A.V., Trifonov A.A. Stability of industrial electrical systems. M: Nedra, 2010, 319 p.
3. Egorov A.V., Melik-Shakhnazarova I.A., Surzhikov A.V. Experience of improving the reliability of power supply to a high-tech enterprise. Proceedings of Gubkin Russian state University of oil and gas, 2012, no. 3 (268), p. 130–140.
4. Ershov M.S., Egorov A.V., Yatsenko D.E. Methods of determination of quality indicators of power supply of industrial complexes. Elektrichestvo, 1997, no. 12, p. 2–7.
5. Ershov M.S., Egorov A.V., Fedorov V.A. Some questions of improving the stability of electric receivers of a multi-machine complex with a continuous technological process in disturbances in the power supply system. Industrial energy, 1992, no. 7, p. 23–27.
6. Ershov M.S., Egorov A.V., Komkov A.N. Influence of unbalance of supply voltage on stability of synchronous motors. Proceedings of Gubkin Russian state University of oil and gas, 2012, no. 1 (266), p. 117–128.
7. Ershov M.S., Konkin R.N. Method of experimental determination of parameters of power supplies of industrial power supply systems. Industrial energy, 2017, no. 2, p. 34–39.

Problems of competitiveness of small-sized oil and gas pipeline devices in Russia
Technical sciences

Authors: Igor N. KARELIN graduated from Gubkin Moscow Institute of Petrochemical and Gas Industry in 1975. He is Doctor of Technical Sciences, Professor of the Department of Stan- dardization, Certification and Quality Management of Oil and Gas Equipment Manufacturing of Gubkin Russian State University of Oil and Gas (National Research University). He is specialist in the field of methods for ensuring the reliability of oil and gas equipment. He is author of more than 150 scientific publications.
E-mail: karelin-in@mail.ru

Abstract: The paper analyzes three main interrelated components of the competitiveness of domestic industrial products using the example of the most mass products of gas-oil engineering. It is shown that the quality of modern small-sized oil and gas pipeline devices is economically effective to be focused on the wear resistance of the sealing elements of oil and gas pipeline devices structures. The analysis of the second component of the competitiveness — innovations in the domestic armature construction — showed that copying of the samples of foreign oil and gas pipeline devices can be a deadlock for import substitution. Consideration of the third component — the Russian inventions — indicates the urgent need for moral and material incentives to generate new ideas and bring them to implementation. All participants should be interested in this: the consumer, the inventor, the manufacturer and various kinds of assistance funds (venture firms, the so-called incubators, etc.)

Index UDK: 621.646.1

Keywords: competitiveness, quality, innovation, invention, small-sized oil and gas pipeline devices, reliability, wear resistance, design, creative sphere

Bibliography:
1. Guideline for the development of an intellectual property strategy in countries with economies in transition. Presented by the World Intellectual Property Organization at the Third International Forum on Intellectual Property EXPOPRIORITY’2011. M., Expocentre Fairgrounds, 22 p.
2. General technical requirements for pipeline fittings supplied to OAO Gazprom’s facilities. Standard of organization of STO Gazprom 2-4.1-212—2008. OAO Gazprom, Association „High-reliability pipeline transport”. Moscow, 2008, 59 p.
3. Karimov I. The assessment is made by the expert: Analysis of the results of diagnostics of oilfield equipment using the example of wellhead valves that have fulfilled the regulatory deadline. Armature, 2011, no. 5, p. 83–85.
4. Pavlenko A.V. The use of equipment and materials DELORO STELLITE in the valve and pump building. In: Materialy Mezhdunarodnoj nauchno-tehnicheskoj konferencii „EcoPump 2011 InnoValve”. M., 2011, p. 29–31.
5. http://roost.ru/ (date of circulation: 05/17/2018).
6. Gurevich D.F. Calculation and design of pipeline fittings. L.: Mashinostroenie, 1968, 888 p.
7. Dictionary of foreign words. M.: Russkii yazik, 1990, 624 p.
8. http://www.imsholding.ru/ (circulation date is 15/05/2018).
9. Andreev A.P. Application of the diagnostic passport of pipeline valves to assess its technical condition. Chemical Engineering, 2008, no. 11, p. 8–11.
10. Bernard Shaw. Plays. Library of World Literature. Series three. Volume 200. M.: Fiction, 1968, 704 p. („A cart with apples”, p. 605).
11. Gavrilova Zh.L. Factors impeding the innovative development of Russia. Repair, restoration, modernization, 2012, no. 3, p. 4–7.
12. Karelin I.N. Technical ceramics in oil and gas pipeline devices. Experience of application in Russia. Germany, Saarbrücken: Palmarium Academic Publishing, 2012, 284 p.
13. Patent of the Russian Federation. No. 2537081, December 27, 2014.

Emulsifiers based on fish oil for enhanced oil recovery
Technical sciences

Authors: Vasiliy V. VASILEVICH graduated from Gubkin Russian State University of Oil and Gas (National Research University) in 2013. He is currently doing research for the degree of Сandidate of Technical Sciences. He is leading engineer of the Scientific and Research Center „Promislovaya Himiya”. He is specialist in the field of oil-field chemistry, enhanced oil recovery and author of more than 10 scientific publications and 1 patent of invention Е-mail: vasily.vasilevich@mail.ru
Mikhail A. SILIN graduated from Gubkin Moscow Institute of Petrochemical and Gas Industry in 1978. He is D Sc., Vice-Rector of Innovations and Commercialization of Gubkin Russian State University (National Research University) of Oil and Gas, Head of the Department of Oil and Gas Processing at Gubkin Russian State University (National Research University) of Oil and Gas. He is author of over 160 scientific publications. E-mail: silin.m@gubkin.ru
Vladimir B. GUBANOV graduated from Moscow Engineering Physics Institute. He is leading researcher of the Scientific and Research Center „Promislovaya Himiya” of Gubkin Russian State University of Oil and Gas (National Research University). He is specialist in the field of seepage studies of agents for production stimulation, enhanced oil recovery, repair and insulation works. He is author more than 80 scientific publications and 15 patents of invention. E-mail: gubanowww@gmail.com
Mikhail М. MUKHIN graduated from Gubkin Russian State University of Oil and Gas in 2007. He is Candidate of Technical Sciences, Head of Analytical Research Sector of Scientific-Educational Center „Promislovaya Himiya” of Gubkin Russian State University of Oil and Gas (National Research University). He is specialist in the fields of acid treatment, infrared spectroscopy, chromatography and mass-spectrometry. He is author of more than 20 scientific publications. E-mail: mmm.himeko@gmail.com

Abstract: Comparative experience of using various fluids in the processes of well con-struction and repairs, formation drilling and killing a well, as well as intensification of oil production and enhanced oil recovery, shows high efficiency of emulsion compositions. At final stage of oil fields development these compounds find a wide application in various enhanced oil recovery technologies.
Synthesis of surfactants which are emulsifiers component of direct and invert emulsions was carried out by sulfonation of technical fish oil (waste from the fish processing industry) with specific fraction composition of fatty acids. The possi-bility of using the obtained emulsifier as an emulsion composition component for enhanced oil recovery is shown and application efficiency is estimated

Index UDK: 622.276.64

Keywords: fish oil, surfactants, emulsions, emulsifiers of inverted emulsions, enhanced oil recovery

Bibliography:
1. Glushchenko V.N., Orlov G.A., Silin M.A. Tekhnologicheskie processy vskrytiya plastov i dobychi nefti s ispol’zovaniem obratnyh ehmul’sij [Technological processes of formation opening and oil recovery using inverse emulsions]. Moscow, Interkontakt Nauka Publ., 2008, 353 p.
2. Bailey’s Industrial Oil and Fat Products vol. 6, edited by F. Shahidi. Hoboken, 2005, New Jersey: John Wiley & Sons.
3. Tundo P., Anastas P., Black D. StC., Breen J., Collins T., Memoli S., Miyamoto J., Polya- koff M., Tumas W. Synthetic pathways and processes in green chemistry. Introductoryoverview, IUPAC, Pure Appl. Chem., 2000, Vol. 72, No. 7, pp. 1207–1228.
4. Fink J. Water-Based Chemicals and Technology for Drilling, Completion, and Workover Fluids, 2015, Waltham: Gulf Profess. Publish.
5. Gao B. and Sharma. M. Society of Petroleum Eng., 2013, J. 18: 829–840. SPE 159700-PA. doi:10.2118/159700-PA
6. Welton T.D., Bryant J. and Funkhouser G.P. SPE International Symposium on Oilfield Chemistry, Texas, 2007, SPE 105815. doi:10.2118/105815-MS.
7. Graciaa A., Lachaise J., Bourrel M., Osborne-Lee I., Schechter R.S. and Wade W.H. Society of Petroleum Eng., 1987, J. 2: 305. doi:10.2118/13030-PA.
8. Zhang J., Zhang M. and Zhang S. Fracturing Fluid, 2010, SPE 133596-MS.
9. Koukounis C., Wade W.H. and Schechter R.S. Society of Petroleum Eng., 1983, J. 23: 301— 310. SPE-8261-PA.
10. Sheng James J. Modern Chemical Enhanced Oil Recovery: Theory and Practice, 2011, Еlsеviеr, Gulf Prоfеss. Publish.
11. Lange K.R. Surfactants: A Practical Handbook, 1999, Cincinnati: Hanser Gardner Publications.
12. Caenn R., Darley H.C.H. and Gray G.R. Composition and Properties of Drilling and Completion Fluids, 2011, Waltham: Gulf Profess. Publish.
13. Mukhin M.M., Silin M.A., Magadova L.A., Rud M.I., Derkach S.R., Vasilevich V.V., Kuchina Y.A. Journal of Dispersion Science and Technology, 2015, doi: 10.1080/01932691.2015. 1088454
14. Kister E.G., Feinstein I.Z., Kasyanov N.M. Emulal — emulsifier for invert emulsion drilling muds. Burenie, 1974, no. 12, p. 15–18 (in Russian).
15. Mukhin M.M., Magadova L.A Vasilevich V.V., Fedoseev P.O., Derkach S.R., Silin M.A. Properties of fish oils used for surfectants synthesis in petroleum industry. Zashchita okruzhayushchej sredy v neftegazovom komplekse, 2015, no. 2, p. 32–37 (in Russian).

Peculiarities of phase equilibrium of nitrogen-light hydrocarbons mixture
Technical sciences

Authors: Elena B. FEDOROVA graduated from Gubkin Moscow Institute of Petrochemical and Gas Industry in 1984. She is Candidate of Technical Sciences, Associate Professor of the Department of Oil and Gas Processing Equipment of Gubkin Russian State University of Oil and Gas (National Research University). She is specialist in the field of processes and apparatus of oil and gas production and of LNG production. She is author of more than 30 scientific publications. E-mail: fedorova.e@gubkin.ru
Vyacheslav B. MEL’NIKOV graduated from Gubkin Moscow Institute of Petrochemical and Gas Industry in 1970. He is Doctor of Chemical Sciences, Professor of the Department of Oil and Gas Processing Equipment of Gubkin Russian State University of Oil and Gas (National Research University). He is specialist in the field of collection and preparation of gas and gas condensate. He is author of more than 170 scientific publications. E-mail: v.mel@mail.ru

Abstract: Thermodynamic research on phase equilibrium of natural gas components mixtures plays an important role in the technological processes design for LNG plant. As liquid-vapor equilibrium issues of natural gas systems have been studied well, at present research is concentrated on multiphase systems, containing mixtures of hydrocarbons with inorganic substances, such as water, carbon dioxide, hydrogen sulfide, nitrogen, hydrogen. Issues of phase equilibrium of binary, ternary and 4-component mixtures containing methane, ethane, propane and nit-rogen are considered. It is outlined that nitrogen-hydrocarbon mixtures could display properties of both mutually soluble substances and partially soluble ones, depending on thermodynamic conditions and components content ratio. Areas of existence of three-phase systems „liquid-liquid-vapor” were calculated. The results obtained are of great importance in LNG processes design and moderniza-tion, as well as in the development of processes of nitrogen extraction from natural gas

Index UDK: 66.011

Keywords: liquefied natural gas, LNG, phase equilibrium

Bibliography:
1. Spravochnik po fiziko-tehnicheskim osnovam kriogeniki [Handbook of cryogenics physicotechnical fundamentals]. M.P. Malkov, I.B. Danilov, A.G. Zel’dovich, A.B. Fradkov; Pod red M.P. Malkova, 3-e izd., pererab. i dop. M.: Jenergoatomizdat, 1985 (in Russian).
2. Kidnay A.J., Hiza M.J., Miller R.C. Liquid-Vapor equilibria research on systems of interest in cryogenics — A survey. Cryogenics, 1973, October, p. 575–599.
3. Hiza M.J., Miller R.C., Kidnay A.J. A Rewiew, Evaluation, and Correlation of the Phase Equilibria, Heat of Mixing, and Change in Volume on Mixing for Liquid Mixtures of Methane + Ethane. J. Phys. Chem. Ref. Data, 1979, vol. 8, no. 3, p. 799–816.
4. Mamaeva T.A., Mel’nikov V.B., Fedorova E.B. Vybor i primenenie uravnenij sostojanija dlja issledovanija parozhidkostnogo ravnovesija komponentov szhizhennogo prirodnogo gaza [Choice and application of the EOS for the research on vapor-liquid equilibria of LNG components]. AvtoGazoZapravochnyj Kompleks + Al’ternativnoe toplivo, 2014, no. 12, p. 33–40 (in Russian).
5. Llave F.M., Luks K.D., Kohn J.P. Three-phase liquid-liquid-vapor equilibria in the binary systems nitrogen + ethane and nitrogen + propane. J. Chem. Eng. Data, 1985, t. 30, 4, р. 435–438.
6. Kremer H., Knapp H. Three-phase conditions are predictable. Hydrocarbon Processing, 1983, vol. 62, p. 79–83.
7. Kremer H., Knapp H. Vapor-liquid equilibria in ternary mixtures of H2, N2, CO and CH4. Fluid Phase Equil, 1983, vol. 11, p. 289–310.
8. Mokhatab S., Mak J.Y., Valappil J.V., Wood D.A. Handbook of Liquefied Natural Gas. Oxford: Elsevier Inc., 2014, 590 p.
9. Peng D.Y. and Robinson D.B. A New Two-Constant Equation of State. Ind. & Eng. Chem., 1976, vol. 15, no. 1, p. 59–64.
10. Reid R., Prausnitz J., Sherwood T. The Properties of Gases and Liquids. L.: Himija, 1982, 592 p. (in Russian).
11. Kidnay A.J., Miller R.C., Sloan E.D., Hiza M.J. A Review and Evaluation of the Phase Equilibria, Liquid-Phase Heats of Mixing and Excess Volumes, and Gas-Phase PVT Measurements for Nitrogen + Methane. J. Phys. Chem. Ref. Data, 1985, vol. 14, no. 3, p. 681–694.
12. Lu B., Yu P., Poon D. Formation of a Third Liquid Layer in the Nitrogen—Methane—Ethane System. Nature 222, 1969, p. 768–769.

Evaluation of lewis acidity of solid oxocomplex catalysts for isomerization of light hydrocarbons
Technical sciences

Authors: Karen R. GAZAROV was born in 1984. Graduated from Gubkin Russian State University of Oil and Gas in 2007. He is post-graduate student of the Department of Industrial Ecology of Gubkin Russian State University of Oil and Gas (National Research University). He is author of 14 scientific publications. E-mail: kar-5@mail.ru
Stanislav V. MESHERYAKOV was born in 1941. Graduated from Gubkin Russian State University of Oil and Gas in 1968. He is Full Professor, Неad of the Department of Industrial Ecology of Gubkin Russian State University of Oil and Gas (National Research University). He is author of more 150 scientific publications. E-mail: stas@gubkin.ru
Robert A. GAZAROV was born in 1948. Graduated Moscow State University in 1971. Professor of the Department of Industrial Ecology of Gubkin Russian State University of Oil and Gas (National Research University). He is author of 122 science publications. E-mail: gazarov_ra@mail.ru

Abstract: A new catalyst for isomerization process of light hydrocarbons based on novel synthesized inorganic superacids has been developed. With this purpose a number of mixed heteropolyanions with a modified Keggin structure containing different transition metals (including platinum group metals) have been synthesized. The technology of preparation of superacid catalysts with a coating of mo-dified heteropolycomplexes on different carriers has been developed. Lewi acid characteristics of the developed superacid catalysts on different car- riers have been investigated

Index UDK: 66.097.3

Keywords: isomerization, light hydrocarbons, catalyst, Lewis acidity, oxocomplexes

Bibliography:
1. Herve Cauffriez, Christine Travers. Catalyst based on a halogenated alumina, its preparation and use for the isomerization of normal paraffins. Institut Francais du Petrole. US Patent. N 6297418, (2001).
2. Shakun A.N., Fedorova M.L. Effectivity of different types of catalysts and technologies of isomerization of light gasoline fractions. Catalysis in industry, no. 5, 2014, p. 29–37.
3. Xuebing Li, Johannes A.Lercher. Labile sulfate as key components in active sulfated zirconia for n-butane isomerization at low temperatures. J. of Catalysis, 2004, 229, р. 130–137.
4. Silva-Rodrigo R., Cruz-Domínguez E.L., Lugo-del Angel F.E., Navarrete-Bola˜nos J., García-Alamilla R., Olivas-Sarabia A., Melo-Banda J.A., Cruz-Netro L.C., Zamora-Ramírez G., Castillo-Mares A. Studies of sulphated mixed oxides (ZrO2—SO4—La2O3) in the isomerization of n-hexane. Catalysis Today, 2015, 250, p. 197–208.
5. Hua Song, Na Wang, Hua-Lin Song, Feng Li. La—Ni modified — Al2O3 catalyst in n-pentane hydroisomerization. Catalysis Communications 59, (2015), p. 61–64.
6. Yuandong Xu, Xia Zhang, Hongling Li. A Highly Effective Pt and H3PW12O40 Modified Zirconium Oxide Metal-Acid Bifunctional Catalyst for Skeletal Isomerisation. Catal. Lett., 2008, no. 125, p. 340–347.
7. Yuandong Xu, Xia Zhang, Hongling Li. The Support Effect over Pt-H3PW12O40 Based Metal-Acid Bifunctional Catalysts on the Catalytic Performance in n-Pentane Isomerisation. Catal. Lett., 2009, no. 129, p. 215–221.
8. Gazarov R.A., Mesheryakov S.V., Gazarov K.R. Oxocomplexes solid superacids — a new class of catalysts for isomerization of light hydrocarbons. Oil and gas technology, 2012, no. 6, 13 p.
9. Gazarov K.R., Mesheryakov S.V., Gazarov R.A. Comparative study of bronsted acildity of solid—acid catalysts for isomeriaztion of light hydrocarbons. Environmental protection in the oil and gas industry, 2017, no. 4, p. 46–49.
10. Lei T., Xu J.S., Gao Z., New Catalyst of γ-Al2O3 supported SO4/ZrO2 for n-butane isomerization. Chemistry Letters., 1999, v. 2, p. 509–511.
11. Kiselev A.V., Lygin V.I. Infrared spectra of surface compound. M.: Nauka, 1975, 175 p.
12. Medin A.S., Borovkov V.Yu., Kazansky V.B. Zeolites, 1990, v. 10, 668 p.
13. Kystov L.M. New trends in IR-spectroscopic characterization of acid and basic sites in zeolites and oxide catalysts. Topics in Catal., 1997, v. 4, p. 131–144.

Nanostructured photocatalysts based on cadmium and zinc sulfide nanoparticles deposited inside/outside natural halloysite nanotubes
Chemical sciences

Authors: Yaroslav A. CHUDAKOV graduated from Gubkin Russian State University of Oil and Gas (National Research University) in 2014. He is an engineer and post graduate student at Gubkin Russian State University of Oil and Gas (National Research University). He is author of 8 scientific publications. E-mail: chudakov.yaroslav@gmail.com
Anna Yu. KURENKOVA graduated from Novosibirsk State University in 2017. She works is junior research fellow and post graduate student in Boreskov Institute of Catalysis SB RAS. She is an expert in the field of photocatalysis on semiconductors. She is author of 5 scientific publications. E-mail: kurenkova@catalysis.ru
Fereshteh POURESMAEIL graduated from Bauman Moscow State Technical University in 2016 as a top student. He is post graduate student of the Department of Physical and Colloid Chemistry of Gubkin Russian State University of Oil and Gas (National Research University). E-mail: pouresmaeil@gubkin.ru
Anna V. STAVITSKAYA graduated from Gubkin Russian State University of Oil and Gas (National Research University) and got PhD in 2015. Is a researcher in the Department of Physical and Colloid Chemistry of Gubkin Russian State University of Oil and Gas (National Research University). Author of more than 20 scientific publications E-mail: stavitsko@mail.ru

Abstract: Novel nanophotocatalysts based on CdS or Cd(1-x)ZnxS nanoparticles less than 10 nm in size and mass concentration in catalyst of about 3–3,5 % deposited on outer and inner surface of halloysite nanotubes were synthesized and investigated. The obtained catalysts are efficient in reaction of hydrogen evolution from electrolyte solution under visible light irradiation. It was shown that the most active catalyst is a system with Cd0,3Zn0,7S nanopartilces deposited on halloysite, the hydrogen reaction rate reached 756 µmol/h·gkat

Index UDK: 544.774.4, 544.478-03

Keywords: cadmium sulfide, halloysite, photocatalysts, nanotubes, nanoparticles, hydrogen

Bibliography:
1. Lyubina T.P., Kozlova E.A. New Photocatalysts Based on Cadmium and Zinc Sulfides for Hydrogen Evolution from Aqueous Na2S—Na2SO3 Solutions under Irradiation with Visible Light. Kinetics and Catalysis, 2012, no. 53, p. 188–196.
2. Huang Y., Chen J., Zou W., Zhang L.X., Hu L., He M., Gu L., Deng J.X., Xing X.R. A review of one-dimensional TiO 2 nanostructured materials for environmental and energy applications Dalton Transactions. J. Mater. Chem. A., 2016, no. 45, p. 1160–1165.
3. Li Y., Du J., Peng S., Xie D., Lu G., Li S. Enhancement of photocatalytic activity of cadmium sulfide for hydrogen evolution by photoetching International Journal of Hydrogen Energy. J. Am. Chem. Soc., 2008, no. 33, p. 2007–2013.
4. Synthesis of CdS nanorods by an ethylenediamine assisted hydrothermal method for photocatalytic hydrogen evolution. J. Phys. Chem. C., 2009, no. 113, p. 9352–9358.
5. Peng S.Q., Huang Y.H., Li Y.X. Rare earth doped TiO2-CdS and TiO2-CdS composites with improvement of photocatalytic hydrogen evolution under visible light irradiation. Materials Science in Semiconductor Processing, 2013, no. 16, p. 62–69.
6. Vinokurov V.A., Stavitskaya A.V., Ivanov E.V., Gushchin P.A., Kozlov D.V., Kurenkova A.Y., Kolinko P.A., Kozlova E.A., Lvov Y.M. Halloysite nanoclay based CdS formulations with high catalytic activity in hydrogen evolution reaction under visible light irradiation. ACS Sustain. Chem. Eng., 2017, no. 5, p. 11316–11323.
7. Parmon V.N., Kozlova E.A. Heterogeneous semiconductor photocatalysts for hydrogen production from aqueous solutions of electron donors. Russ Chem Rev., 2017, no. 86, p. 870–906.
8. Vinokurov V.A., Stavitskaya A.V., Glotov A.P., Novikov A.A., Zolotukhina A.V., Kotelev M.S., Gushchin P.A., Ivanov E.V., Darrat Y., Lvov Y.M. Nanoparticles Formed Onto/Into Halloysite Clay Tubules: Architectural Synthesis and Applications. Chem. Rec., 2018, no. 18, p. 1–11.
9. Papoulis D., Komarneni S., Panagiotaras D., Stathatos E., Toli D., Christoforidis K.C., Fernández-García M., Li H., Yin S., Sato T., Katsuki H. Halloysite—TiO2 nanocomposites: synthesis, characterization and photocatalytic activity. Applied Catalysis B: Environmental, 2013, no. 132, p. 416–422.
10. Peng H., Liu X., Tang W., Ma R. Facile synthesis and characterization of ZnO nanoparticles grown on halloysite nanotubes for enhanced photocatalytic properties. Scientific Reports, 2017, no. 7, p. 2250.
11. Xing W., Ni L., Liu X., Luo Y., Lu Z., Yan Y., Huo P. Effect of metal ion (Zn2+, Bi3+, Cr3+, and Ni2+)-doped CdS/halloysite nanotubes (HNTs) photocatalyst for the degradation of tetracycline under visible light. Desalination and Water Treatment, 2015, no. 53, p. 794–805.
12. Markovskaya D.V., Kozlova E.A., Stonkus O.A., Saraev A.A., Cherepanoua S.V., Parmon V.N. Evolution of the state of copper-based co-catalysts of the Cd0. 3Zn0. 7S photocatalyst at the photoproduction of hydrogen under action of visible light. International Journal of Hydrogen Energy, 2017, no. 42, p. 30067–30075.
13. Abdullayev E., Joshi A., Wei W.B., Zhao Y.F., Lvov Y. Enlargement of halloysite clay nanotube lumen by selective etching of aluminum oxide. ACS Nano, 2012, no. 6, p. 7216–7226.