Articles Archive

№ 4/289, 2017

Title
Authors
Category
Distribution of Droplets by Size in Spectrum in Atomized Liquids
Technical sciences

Authors: Alexander I. KHODYREV graduated from Gubkin Moscow Institute of Petrochemical and Gas Industry in 1980. He is Doctor of Technical Sciences, Professor of the Department of Machines and Equipment for Oil and Gas industry at Gubkin Russian State University of Oil and Gas (National Research University). He is specialist in equipment for liquid injection in various implementations. He is author of 95 scientific publications. E-mail: aihod@mail.ru
Dmitry A. KHODYREV graduated from Master Program of Gubkin Russian State University of Oil and Gas in 2013. He is engineer of 1 category of the Department of Metallurgy and Nonmetallic Materials at Gubkin Russian State University of Oil and Gas (National Research University). He is specialist in equipment for atomization of liquids. He has published one scientific paper.
E-mail: greendocent@rambler.ru
Maria G. BLOKHINA graduated from Gubkin Moscow Institute of Petrochemical and Gas Industry in 1976. She is senior lecturer of the Department of Machines and Equipment for Oil and Gas Industry at Gubkin Russian State University of Oil and Gas (National Research University). She is specialist in the field mathematical modeling and computer aided design. She is author of 8 scientific publications. E-mail: mblohina@gubkin.ru

Abstract: The paper discusses the parameters that characterize the fineness of liquid atomization with centrifugal atomizers. It is shown that the parameter „average diameter” and „average zauther diameter” used by the manufacturer without specifying the adopted distribution function of droplets by diameters makes it difficult for consumers to choose nozzles available on the market. The distribu-tion functions of Rosin-Rammler and Tresh-Golovkov for centrifugal atomizers are compared, and the ratios between the characteristic diameters of the droplets spectrum for these distributions are presented. The results of the study can guide the consumers in the characteristics of the fineness of atomization claimed by the manufacturers of the injectors and cited by authors in scientific and technical literature

Index UDK: 66.069.83

Keywords: centrifugal atomizer, fineness of liquid atomization, diameter of drops, distribution function, range.

Bibliography:
1. Khodyrev A.I., Mulenko V.V. Aerosol application of the inhibitor film in the gas pipelines of small diameter. Gas Industry, 1995, no. 11, p. 18-19 (in Russian).
2. Khodyrev A.I. The development and effective use of the equipment for inhibitor protection of gas pipelines from hydrogen sulfide corrosion. Territorija neftegaz, 2010, no. 3, p. 40-52 (in Russian).
3. Khmelev V.N., Shalunov A.V., Shalunova A.V., Golyh R.N., Genne D.V. Measurement of the size of liquid droplets obtained in different modes of operation of ultrasonic atomizers. Polzunovskij vestnik, 2012, no. 3/2, p. 179-184 (in Russian).
4. Pazhi D.G., Galustov B.C. Atomizers for a fluid. M.: Himija, 1979, p. 216 (in Russian).
5. Paloposki T. Drop size distributions in sprays. Acta politecnica scandinavia, mechanical engineering series, 1994, no. 114, p.1-209.
6. Raushenbah B.V., Belyj S.A., Bespalov I.V. et al. The physical basis of the working process in combustion chambers of jet engines. L.: Mashinostroenie, 1964, p. 526 (in Russian).
7. Prudnikov A.G., Volynskij M.S. Sagalovich V.N. The processes of mixture formation and combustion in air-breathing engines. M.: Mashinostroenie, 1971, p. 355 (in Russian).
8. Borodin V.A., Ditjakin Ju.F., Kljachko L.A., Jagodkin V.I. Atomization of liquids. M.: Mashinostroenie, 1967, p. 263 (in Russian).
9. Volkov E.B., Golovkov L.G., Syricyn T.A. Liquid rocket engines. Moscow, Voenizdat, 1970, p. 592 (in Russian).
10. Korolev D.V., Naumov V.N., Suvorov K.A. Determination of particle size distribution of powder by microscopic method. Methodical instructions for laboratory work. St. Petersburg, GOU VPO SPbGTI (TU), 2005, p. 41 (in Russian).
11. Lyshevskij A.S. Regularities of fragmentation of liquid mechanical injector pressure. Novocherkassk: Novocherkassk Polytechnic Institute, 1961, p. 180 (in Russian).
12. Golovkov L.G. The distribution of drops in size at atomization of liquids centrifugal injectors. IFZh, 1964, no. 11, p. 55-61 (in Russian).
13. Trjosh G. Atomization of liquid. Voprosy raketnoj tehniki, 1955, no. 4, p. 107-127 (in Russian).
14. Trjosh G., Grossman N. To distribution law of droplets in the atomization. Voprosy raketnoj tehniki, 1955, no. 4, p. 22-25 (in Russian).
15. Khodyrev A.I. The calculation method of parameters of centrifugal injectors at oil and gas production facilities. Neft’, gaz i biznes, 2005, no. 6, p. 57-60 (in Russian).

Feasibility study of starting modes of asynchronous drive to determine parameters of sources power systems supply unit
Technical sciences

Authors: Ratibor N. KONKIN graduated from Gubkin Russian State University of Oil and Gas in 2013. He is postgraduate student of the Department of Theoretical Electrical Engineering and Electrification of Oil and Gas Industry at Gubkin Russian State University of Oil and Gas (National Research University). E-mail: konkin.r@gmail.com

Abstract: A method of experimental determination of the parameters of power sources on the basis of the measurement data obtained from a variety of steady state and transient electric drive loads is considered. Computer modeling in MATLABE Simulink and analysis of the starting modes of asynchronous drive to study the engine EMF influence on the measured parameters were performed. The section of launcher waveform of currents and voltages of the asynchronous drive was determined. This can be used to calculate the parameters of power sources

Index UDK: 621.3/31

Keywords: parameters of power supply systems, starting modes, modeling, asynchronous drive

Bibliography:
1. Mayer V.Ya., Galak I.L. Prakticheskoe Opredelenie parametrov korotkogo zamykaniya v sektsiyakh podstantsiy. Promyshlennaya energetika [Industrial power engineering], 1989, no. 6.
2. Ershov M.S., Egorov A.V., Tregubova S.I. Eksperimental’noe opredelenie parametrov korotkogo zamykaniya uzlov elektricheskoy nagruzki. Promyshlennaya energetika [Industrial power engineering], 1990, no. 11, p. 26–28.
3. Men’shov B.G., Ershov M.S., Egorov A.V. Opredelenie ekvivalentnykh parametrov pitayushchey seti dlya rascheta tokov korotkogo zamykaniya uzla nagruzki. Elektrichestvo [Electricity], 1993, no. 10, p. 19–22.
4. Belyaev A.V., Yurganov A.A. Zashchita, avtomatika i upravlenie na elektrostantsiya maloy energetiki: uchebnoe posobie: PEIPK, 2009, 72 p.
5. Egorov A.V., Ershov M.S., Konkin R.N. Opredelenie ekvivalentnykh parametrov istochnikov pitaniya promyshlennykh sistem elektrosnabzheniya. Trudy Rossiyskogo gosudarstvennogo universiteta nefti i gaza imeni I.M. Gubkina [Proceedings of Gubkin Russian State University of Oil and Gas], 2015, no. 2 (279). p. 99–110.
6. Ershov M.S., Konkin R.N. Metodika eksperimental’nogo opredeleniya parametrov istochnikov pitaniya promyshlennykh sistem elektrosnabzheniya. Promyshlennaya energetika [Industrial power engineering], 2017, no. 2, p. 34–39.
7. Konkin R.N Opredelenie ekvivalentnykh parametrov istochnikov pitaniya sistem elektrosnabzheniya. V kn.: Elektroenergetika glazami molodezhi. Trudy VI mezhdunarodnoy nauchno-tekhni-cheskoy konferentsii, 9–13 noyabrya 2015 goda, Ivanovo, v 2 t. T 1. Ivanovo: FGBOUVPO „Ivanov-skiy gosudarstvennyy energeticheskiy universitet im. V.I. Lenina”, 2015, p. 302–305
8. Tsey R., Shumafov M.M. Chislo obuslovlennosti matritsy kak pokazatel’ ustoychivosti pri reshenii prikladnykh zadach. Trudy FORA [Works of the Adygheya Republic Physical Society], 2011, no. 16, p. 61-67.
9. German-Galkin S.G. Matlab & Simulink. Proektirovanie mekhatronnykh sistem na PK. SPb.: KORONA-Vek, 2008, 368 p.
10. Usol’tsev A.A. Chastotnoe upravlenie asinkhronnymi dvigatelyami.Uchebnoe posobie. SPb: SPbGU ITMO, 2006, 94 p.
11. German-Galkin S.G., Kardonov G.A. Elektricheskie mashiny. Laboratornye raboty na PK. SPb: KORONA print, 2003, 256 p.
12. Klyuchev V.I. Teoriya elektroprivoda: uchebnik dlya vuzov. 2-e izd. pererab. i dop. M.: Energoatomizdat, 2001, 704 p.

Research of specific aspects in interaction between oil and acid compositions in porous medium
Chemical sciences

Authors: MAGADOVA graduated from Gubkin Moscow Institute of Petrochemical and Gas Industry. She is Ph.D., Professor of the Department of Chemical Engineering for Oil and Gas Industry of Gubkin Russian State University of Oil and Gas (National Research Univer- sity), director of Scientific and Research Center „Promislovaya Himiya”. She is author of 150 scientific publications, 60 patents and 4 methodological works. She specializes in the field of oil-field chemistry, chemical agents and technologies for production stimulation, enhanced oil recovery, repair and insulation works and oil treatment. E-mail: lubmag@gmail.com
Ljucija F. DAVLETSHINA graduated from Al’met’evsk State Oil Institute in 1998, she is Candidate of Technical Sciences, assistant professor of the Department of Chemical Engineering for Oil and Gas Industry of Gubkin Russian State University of Oil and Gas (National Research University). She specializes in the field of oil-field chemistry. She is author of 60 scientific publications.
E-mail: luchiad@mail.ru
Vladimir B. GUBANOV graduated from Moscow Engineering Physics Institute. He is leading researcher in the Scientific and Research Center „Promislovaya Himiya”. He specializes in the field of seepage studies of agents for production stimulation, enhanced oil recovery, repair and insulation works. He is author of 50 scientific publications and 15 patents of invention.
E-mail: gubanowww@gmail.com
Polina S. MIKHAYLOVA is a student of the Department of Chemical Engineering for Oil and Gas Industry of Gubkin Russian State University of Oil and Gas (National Research University). She is author of 5 scientific publications. E-mail: mihaylovapolly@mail.ru
Viktoria D. VLASOVA is a student of the Department of Chemical Engineering for Oil and Gas Industry of Gubkin Russian State University of Oil and Gas (National Research University). She is author of 3 scientific publications. E-mail: vica-vv@yandex.ru

Abstract: In spite of all the benefits of acid treatment and good practice the efficiency of the process decreases. One of the reasons of this is high viscosity oil emulsions and precipitation formation during acid placement as well as acid interaction with oil in reservoir conditions is one of the reasons of this.
A sample of degassed and dry crude oil from Romashkinskoye oil field was used for investigation of oil hydrocarbon behavior during interaction between oils and acid compositions. Compatibility tests in free volume were made with equal quantities of oil and acid compositions put in a test tube and mixed. After this the stability and viscosity of formed emulsions were determined. Compositions based on hydrochloric and sulfamic acids were studied.
Interaction of the acid compositions in pore volume was studied. The received data was also compared with the results of the experiments with oil, acids, water and surfactants in similar conditions

Index UDK: 622.276.63

Keywords: acid treatment, oil-acid emulsions, seepage studies

Bibliography:
1. Mordvinov V.A., Glushhenko V.N. Reservoir performance and acid composition influence on acidizing efficiency. Geologija, geofizika i razrabotka neftjanyh i gazovyh mestorozhdenij, 2002, no. 11, p. 22-26 (in Russian).
2. Davletshina L.F., Tolstyh L.I., Mikhaylova P.S. On the necessity of hydrocarbons behavior patterns researching with a view to increase of reservoir acidizing effectiveness. Territory NEFTEGAZ, 2016, vol. 4, p. 95-96 (in Russian).
3. Fedorenko V.Ju., Nigmatullin M.M., Petuhov A.S., Gavrilov V.V., Krupin S.V. Acid compositions for bottom-hole formation zone treatment. Ferric ions content optimization as applied to some oils from povolzhskiy region. Vestnik Kazanskogo tehnologicheskogo universiteta, 2011, no. 13, p. 136-140 (in Russian).
4. Amijan V.A., Ugolev V.S. Fiziko-himicheskie metody povyshenija proizvoditel’nosti skvazhin [Physicochemical methods of well’s yield increase]. Moscow, Nedra, 1970, 279 p (in Russian).
5. Kelland M.A. Promyslovaja himija v neftegazovoj otrasli [Production chemicals for the oil and gas industry] (under the ed. of Magadova L.A). Profession, 2015, no. 2, pp. 238-239 (in Russian).
6. Davletshina L.F., Mikhaylova P.S., Akzigitov E.A. Behavior of oils from one oil field while selecting acid compositions for terrigenous reservoir treatments. Trudy Rossijskogo gosudarstvennogo universiteta nefti i gaza imeni I.M. Gubkina, 2017. , no. 2/287, pp. 153-162 (in Russian).
7. Magadov R.S., Silin M.A., Gaevoj E.G., Magadova L.A., Pahomov M.D., Davletshina L.F., Mishkin A.G. Upgrading of acid composition using Neftenol K. Neft’, gaz i biznes, 2007, no. 1-2, p. 93-97 (in Russian).
8. Silin M.A., Magadova L.A., Cygankov V.A., Muhin M.M., Davletshina L.F. Kislotnye obrabotki plastov i metodiki ispytanija kislotnyh sostavov: uchebnoe posobie [Reservoir acidizing and acid system test : a textbook]. PC RGU nefti i gaza imeni I.M. Gubkina, 2011, 119 p. (in Rus- sian).
9. Vahrushev S.A., Kotenev Ju.A. Composition investigations for acid exposure to high-grade carbonate reservoir. Neftegazovye tehnologii i novye materialy. Problemy i reshenija. Sbornik nauchnyh trudov. Ufa: OOO „Monografija”, 2015, p. 252-261 (in Russian).
10. Gavrilova N.N., Nazarov V.V., Jarovaja O.V. Mikroskopicheskie metody opredelenija razmerov chastic dispersnyh materialov: ucheb.posobie [Microscopic methods of definition of particles size in dispersive materials: a textbook] Moscow, RHTU imeni D.I. Mendeleeva, 2012, 52 p. (in Russian).

Experimental validation of industrial CO2 sequestration scheme in underground pool of Devon field
Chemical sciences

Authors: Vadim N. KHLEBNIKOV graduated from Bashkir State University in 1979, he is Doctor of Technical Sciences, Professor of the Department of Physical and Colloid Chemistry of Gubkin Russian State University of Oil and Gas (National Research University). He is specialist in the field of enhanced oil recovery and development of hard-to-recover oil reserves. He is author of more than 200 scientific publications. E-mail: Khlebnikov_2011@mail.ru
Aleksandr S. MISHIN graduated from National Research Nuclear University „MEPhI” in 2005. He is engineer of the Department of Physical and Colloid Chemistry of Gubkin Russian State University of Oil and Gas (National Research University). He is specialist in the field of enhanced oil recovery and development of hard-to-recover oil reserves. He is author of more than 20 scientific publications. E-mail: aleks_mishin@mail.ru
LIANG MENG graduated from Beijing Institute of Petrochemical Technology in 2009, he is Ph.D of the Department of Physical and Colloid Chemistry of Gubkin Russian State University of Oil and Gas (National Research University). E-mail: liangmeng@mail.ru
Natalia A. SVAROVSKAYA graduated from Тomsk State University in 1971. She is Doctor of Technical Sciences, Professor of the Department of Physical and Colloid Chemistry of Gubkin Russian State University of Oil and Gas (National Research University). She is specialist in enhanced oil recovery and development of hard-to-recover oil reserves. She is author of more than 160 scientific publications. E-mail: na_sv2002@mail.ru
Natalia V. LIKHACHEVA graduated from Gubkin Russian State University of Oil and Gas. She is first-year PG student of the Department of Physical and Colloid Chemistry of Gubkin Russian State University of Oil and Gas (National Research University). Her academic interests include ecology and oil- and gas-extraction. E-mail: likhacheva.natalia.v@gmail.com

Abstract: Physical simulation of sequestration of СО2 as flue and enriched flue gas was made in the conditions of depleted reservoir filled with light crude and high-salinity water. In these circumstances it is advised to sequestrate industrial СО2 as WAG since this is an advanced method providing highly efficient displacement of residual oil and delays the breakthrough of gas. Using WAG allows to increase effective capacitance of geological trap to 25-105 %. A general procedure of sequestration of industrial greenhouse gases in geological traps is proposed

Index UDK: 502.211+622.276.344

Keywords: greenhouse gases sequestration, geological traps, depleted reservoir, water-alternated-gas injection, WAG

Bibliography:
1. Hlebnikov V.N., Zobov P.M., Hamidullin I.M. i dr. Perspektivnye regiony dlja osushhestvle- nija proektov po hraneniju parnikovyh gazov v Rossii. Bashkirskij himicheskij zhurnal, 2009, t. 16, no. 2, p. 73-80.
2. Bajmuhammetov K.S., Viktorov P.F., Gajnullin K.H., Syrtlanov A.Sh. Geologicheskoe stroenie i razrabotka neftjanyh i gazovyh mestorozhdenij Bashkortostana. Ufa: RIC ANK „Bashneft’ ”, 1997, 424 p.
3. Vafin R.V. Povyshenie jeffektivnosti tehnologii vodogazovogo vozdejstvija na plast na Alekseevskom mestorozhdenii. Neftepromyslovoe delo, 2008, no. 2, p. 33-35.
4. Vafin R.V. Metod regulirovanija tehnologiej vodogazovogo vozdejstvija na plast. Neftepro-myslovoe delo, 2008, no. 2, p. 30-32.
5. Zacepin V.V., Maksutov R.A. Sovremennoe sostojanie promyshlennogo primenenija tehno-logij vodogazovogo vozdejstvija. Neftepromyslovoe delo, 2009, no. 7, p. 13-21.
6. Polishhuk A.M., Hlebnikov V.N., Mishin A.S. i dr. Jeksperimental’noe issledovanie me-hanizma fil’tracii vodogazovyh smesej. Vestnik CKR Rosnedra, 2012, no. 6, p. 8-14.
7. Ulavlivanie i hranenie dvuokisi ugleroda. Special’nyj doklad MGJEIK. Mezhpravitel’stven-naja gruppa jekspertov po izmeneniju klimata, 2005. ISBN 92-9169-419-3. URL: https://ipcc.ch/pdf/ special-reports/srccs/srccs_spm_ts_ru.pdf (data obrashhenija: 09.10.2016).