Articles Archive

№ 2/287, 2017

Numerical modelling of soft soil stabilized by vertical drains for CaMau power plant construction project in Vietnam

Authors: Gennadiy G. VASILIEV graduated from Gubkin Russian State University of Oil and Gas in 1978. He is Doctor Science (Tech.), professor, head of the Department of Pipeline and Storage Facilities Construction and Rehabilitation at Gubkin Russian State University of Oil and Gas (National Research University). He is specialist in the field of construction and maintenance of pipeline and storage facilities. He is author of 169 scientific publications. E-mail:
Phan Anh NGUYEN graduated from Belarussian National Technical University in 2010. He is Postgraduate Student of the Department of Pipeline and Storage Facilities Construction and Rehabilitation at Gubkin Russian State University of Oil and Gas (National Research University), lecturer of PetroVietnam University. He is specialist in the field of construction and maintenance of pipeline and storage facilities. E-mail:

Abstract: The construction site of the CaMau power plant is located on a 17m thick layer of soft clay with very poor characteristics. The proposed method of increasing the load-bearing capacity of the soil is based on vacuum sealing and installation of vertical drains with surcharge in the form of a sand mound. The purpose of this paper is to construct a ground behavior model for installing vertical drainage to test the analytical solutions to the theories of Baron (1948) and Hansbo (1981) as well as application of this model under actual fill conditions on the field to determine the change in pore pressure, the degree of consolidation and forecasting the size of the draft of weak soils in the construction project of the Ka Mau station. The model is the basis for further study of the change in soil characteristics during vacuum consolidation. An acceptable coincidence was established between simulation results and analytical solutions.

Index UDK: 624.159.2

Keywords: vertical drain, consolidation, clay, saturated soil

1. Yoshikuni H., Nakanodo H. Consolidation of soils by vertical drain wells with finite hydraulic conductivity. Soil Found, 1974, vol. 2, no. 14, p. 35-46.
2. Onoue A. Consolidation by vertical drains taking well resistance and smear into considera-tion. Soil Found, 1988, vol. 4, no. 28, p. 165-174.
3. Barron R.A. Consolidation of fine-grained soils by drain wells. Transactions ASCE, 1948, no. 113, p. 718-724.
4. Hansbo S. Consolidation of fine-grained soils by prefabricated drains. Proceedings 10th International Conference on Soil Mechanics and Foundation Engineering, Stockholm, 1981, no. 3.
5. Terzaghi K. Die Berechnungder Durchlassigkeitszifferdes Tonesausdem Verlaufder Hydrodynamischen Spannungserscheinungen. Akademieder Wissenschaftenin Wien, Sitzungsberichte, Math. naturw. Klasse, part IIa, 1923, vol. 132, no. 3-4, p. 125-l38. Reprinted in From Theory to Practice in Soil Mechanics, Wiley, New York, 1960, p. 133-146.
6. Indraratna B., Redana I.W. Numerical modeling of vertical drains with smear and well resistance installed in soft clay. Can Geotech J., 2000, no. 37, p. 132-145.
7. Varaksin Serge. Theory and Practical Application of Vacuum Consolidation at the site of Camau Power Plant in Vietnam. Proc. workshop on Soft Soil Improvement and Foundation Techni-ques, Vietnam, 2007.
8. Bo M.W., Chu J., Low B.K. and Choa V. Soil improvement prefabricated vertical drain techniques. Thomson Learning. Singapore, 2003.
9. Vasil’yev G.G., Nguyen F.A. Ensuring the sustainability of oil and gas facilities in the geotechnical and hydrogeological conditions in Vietnam. Truboprovodnyy transport (teoriya i praktika), 2016, no. 5, p. 41-43 (in Russian).
10. Vasil’yev G.G., Nguyen F.A. Numerical model for thermal consolidation of the basement of a vertical steel tank on saturated soft soil. Transport i khranenie nefteproduktov i uglevodorodnogo syr’ya, 2017, no. 1, p. 5-8 (in Russian).

The application of open integration platform to the development of heterogeneous distributed software
Technical sciences

Authors: Dmitry G. LEONOV graduated from Gubkin Russian State University of Oil and Gas in 1992. Candidate of Technical Sciences, assistant professor at the Department of Automated Control Systems of Gubkin Russian State University of Oil and Gas (National Research University). Lead developer of the software suite for the gas transportation systems „Vesta”. He is author of more than 50 scientific and methodical publications. E-mail:

Abstract: The article discusses the problems of the integrated information systems development in oil and gas industry, specifically the task of gas transportation dis- patching systems components integration. The evolution of architectural and technical approaches to the integration platforms development is analyzed, advantages and limitations of object-oriented and service-oriented architectures are considered. The proposed two-level implementation of service-oriented architecture approach allows integrating distributed software suites into the enterprise information infrastructure and organizing interconnection between their internal components. The structure of open integration platform allowing the consolidation of heterogeneous software suites as well as the creation of prerequisites for distributed calculations, cloud technologies, using of thin and mobile clients is proposed. The main functions of applied programming interface stan- dardizing data formats and protocols for the open integration platform is considered.

Index UDK: 004.057:622.691

Keywords: control systems software, integration platform, distributed system, oil and gas transport

1. Grigor’ev L.I., Kostogryzov A.I. Aktual’nost’ i osnovy innovatsionnogo puti razvitiya ASDU. Avtomatizatsiya, telemekhanizatsiya i svyaz’ v neftyanoy promyshlennosti, 2016, no. 3.
2. Leonov D.G., Vasil’ev A.V. Postroenie mnogourovnevoy sistemy podderzhki prinyatiya dispetcherskikh resheniy, osnovannoe na razvitii raspredelennoy arkhitektury programmno-vychisli-tel’nogo kompleksa „Vesta”. Avtomatizatsiya, telemekhanizatsiya i svyaz’ v neftyanoy promyshlennosti, 2014, no. 6, p. 13-18.
3. Papilina T.M., Leonov D.G. Preodolenie arkhitekturnykh ogranicheniy programmno-vychisli-tel’nykh kompleksov v avtomatizirovannoy sisteme dispetcherskogo upravleniya. Neftegaz.RU, 2016, no. 1-2, p. 14-18.
4. Serrano N., Ernantes Kh., Gallardo G. Servisy, arkhitektura i unasledovannye sistemy. Otkry-tye sistemy. SUBD, 2014, no. 8, p. 20-22.
5. Stepin Yu.P. Komp’yuternaya podderzhka formirovaniya, mnogokriterial’nogo ranzhirovaniya i optimizatsii upravlencheskikh resheniy v neftegazovoy otrasli. M.: Nedra, 2016, p. 421.
6. Chistikov S.P., Lavrukhin V.K., Asanov T.A., Grigor’ev L.I., Ermolaev A.I. Tendentsii razvi-tiya integrirovannykh avtomatizirovannykh sistem upravleniya v gazodobyche. Gazovaya promyshlennost’, 2006, no. 5, p. 199-203.
7. Shvechkov V.A., Sardanashvili S.A. Servis-orientirovannaya arkhitektura kak instrument integratsii informatsionnogo obespecheniya v geterogennoy raspredelennoy ASDU ESG Rossii. Avtomatizatsiya v promyshlennosti, 2007, no. 5.
8. SOA vozrozhdaetsya. Otkrytye sistemy. SUBD, 2010, no. 9, p. 4-11.
9. Boost.Asio [Elektronnyy resurs]. URL: (data obrashcheniya: 20.02.2017).
10. ØMQ — The Guide [Elektronnyy resurs]. URL: (data obra-shcheniya: 20.02.2017).
11. RabbitMQ-Documentation [Elektronnyy resurs]. URL: (data obrashcheniya: 20.02.2017).
12. Schlumberger Software Integrated Solutions: IAM [Elektronnyy resurs]. URL: http://sis. (data obrashcheniya: 20.02.2017).
13. TOGAF, an Open Group standard [Elektronnyy resurs]. URL: subjectareas/enterprise/togaf (data obrashcheniya: 20.02.2017).
14. UniSim-Software for Process Design and Simulation [Elektronnyy resurs]. URL: https:// (data obrashcheniya: 20.02.2017).
15. Zachman J.A. A framework for information systems architecture. IBM Systems Journal, 1999, vol. 38, no. 2-3, p. 454-470.

Mathematical model of computer simulator for trunk oil pipeline dispatchers
Technical sciences

Authors: Ayrat R. KHALIULLIN is assistant lecturer of the Department of Design and Operation of Gas and Oil Pipeline Gubkin Russian State University of Oil and Gas (National Research University). He is author of 10 academic papers. The area of his professional interests includes software for gas and oil computer decision support systems, computer simulators, distributed software. Е-mail:
Yuri P. STEPIN is Doctor of Engineering, Academician of Russian Academy of Natural Sciences, international engineering high school teacher, Professor of the Department of Automated Control Systems of Gubkin Russian State University of Oil and Gas (National Research University). He is author of more than 120 academic papers. His professional interests are Markov processes, multiobjective optimization, fuzzy logic, game theory, computer decision support systems, risk-management models, automated control systems design. Е-mail:
Sergey A. SARDANASHVILI is Doctor of Engineering, associate professor, Head of Department of Design and Operation of Gas and Oil Pipeline Gubkin Russian State University of Oil and Gas (National Research University). He is author of more than 50 academic papers. His professional interests include gas and oil computer decision support systems, mathematical and methodical support for programming and computing suites and simulator complexes. Е-mail:

Abstract: The problem of mathematical modeling of computer simulator as a multicomponent realization of VPTE concept with components installed on remote computers in a network is discussed. The simulator complex is represented as a set of cooperative Markov processes with discrete states and continuous time. A random processes interaction scheme is formed, the states of processes are detailed; differential equations systems, initial conditions, normalization conditions and relations between equation solutions are made up. In addition, the article describes computer simulator operating modes, for each mode it determines evaluation of the complex functioning reliability index i.e. the availability factor. In collaboration with UML-diagrams, the mathematical functioning model of the computer simulator provides a possibility to describe its working process, to evaluate the parameters of the underlying Markov processes and to estimate the availability factor value.

Index UDK: 004.415.2; 51-74

Keywords: virtual professional training environment, computer simulator, mathematical model, Markov process, availability factor

1. Fowler M. UML Distilled A Brief Guide to the Standard Object Modeling Language, 3rd Edition. Addison-Wesley Professional, 2003, 208 p.
2. Papilina T.M., Leonov D.G., Stepin Ju.P. Modelirovanie i ocenka jeffektivnosti funkcionirovanija sistemy oblachnyh vychislenij v ASDU. Avtomatizacija, telemehanizacija i svjaz’ v neftjanoj promyshlennosti, 2016, no. 7, p. 29-33 (in Russian).
3. Handzhjan A.O. Povyshenie nadezhnosti programmnogo obespechenija informacionno-izme-ritel’nyh i upravljajushhih sistem bezopasnosti jadernyh radiacionno-opasnyh ob’ektov. Dissertacija na soiskanie uchenoj stepeni kandidata tehnicheskih nauk, Moskva, 2006 (in Russian).
4. Khaliullin A.R., Shvechkov V.A., Leonov D.G. Organizacija vzaimodejstvija programmnyh komponentov mnogopol’zovatel’skih geterogennyh raspredelennyh kompleksov modelirovanija dina-micheskih processov truboprovodnyh sistem. Trudy XIV Vserossijskogo nauchnogo seminara „Matematicheskie modeli i metody analiza i optimal’nogo sinteza razvivajushhihsja truboprovodnyh i gid-ravlicheskih sistem”. Belokuriha, Altajskij kraj, 8-13 sentjabrja 2014 g. Irkutsk: ISJeM SO RAN, 2014, p. 410 (in Russian).
5. Khaliullin A.R. Arhitekturnye reshenija i opytnaja realizacija informacionnogo obmena komponentov geterogennyh raspredelennyh kompleksov modelirovanija dinamicheskih processov truboprovodnyh system. Avtomatizacija, telemehanizacija i svjaz’ v neftjanoj promyshlennosti, 2016, no. 8, p. 17-24 (in Russian).
6. Khaliullin A.R., Shvechkov V.A., Sardanashvili S.A. Arhitekturnye reshenija realizacii upravlenija komponentami raspredelennyh kompleksov podderzhki prinjatija dispetcherskih reshenij. Trudy Rossijskogo gosudarstvennogo universiteta nefti i gaza imeni I.M. Gubkina, 2015, no. 4 (281), p. 114-128 (in Russian).
7. Ventcel’ E.S. Issledovanie operacij. M.: Sov. radio, 1972, 552 p (in Russian).
8. Stepin Y.P., Trahtengerc Je.A. Komp’juternaja podderzhka upravlenija neftegazovymi tehnologicheskimi processami i proizvodstvami. Kniga 1. M.: Vektor TiS, 2007, 384 s. Kniga 2. M.: MAKS Press, 2008, 528 p (in Russian).
9. GOST 27.002-89. Nadezhnost’ v tehnike. Osnovnye ponjatija. Terminy i opredelenija. M., 1990 (in Russian).

Behavior of oils from one oil field while selecting acid compositions for terrigenous reservoir treatments
Chemical sciences

Authors: Ljucija F. DAVLETSHINA graduated from Al’met’evskij State Oil Institute in 1998, she is Candidate of Technical Sciences, assistant professor of the Department of Chemical Engineering for Oil and Gas Industry of Gubkin Russian State University of Oil and Gas (National Research University). She specializes in the field of oil-field chemistry. She is author of 60 scientific publications.
Polina S. MIKHAYLOVA is a student of the Department of Chemical Engineering for Oil and Gas Industry of Gubkin Russian State University of Oil and Gas (National Research University). Е-mail:

Abstract: Most of fields currently turn to the late stage of development, connected with decline of production and physical-chemical change of hydrocarbons. The article states in terms of five wells that acidizing efficiency could be decreased by various interacting between acid and crude oils from explored wells. These interactions can result in emulsions or precipitations, which cause problems in acid and colmatants interactions. This process deteriorates in presence of iron compounds in the bottom-hole area. Iron compounds take place because of ageing well stock. Thus, based on investigations it should be observed that before acid treatment it is necessary to check acid and oil compatibility individually for each case.

Index UDK: 622.276.63

Keywords: acid treatment, selection of acid composition, precipitation, emulsions

1. Silin M.A., Magadova L.A., Cygankov V.A., Muhin M.M., Davletshina L.F. Reservoir acidizing and acid system test : a textbook. PC RGU nefti i gaza im. I.M. Gubkina, 2011, p. 44, 93-94 (in Russian).
2. Wong T.C., Hwang R.J., Beaty D.W., Dolan J.D., McCarty R.A., Franzen A.L. Acid sludge characterization and remediation improve well productivity and save costs in the Permian Basin. SPE, paper for presentation at the Permian Basin Oil&Gas recovery Conference, Texas, 1996, p. 414-415.
3. Shakurova Al.F., Shakurova Aj.F. Simulation of hydraulic fracturing. Oil and Gas Enginee- ring: Electronic Scientific Journal, 2014, vol. 2. Available at: authors/Shakurova/Shakurova_4.pdf (Accessed 10 January 2017). (in Russian).
4. Davletshina L.F., Tolstyh L.I., Mikhaylova P.S. On the necessity of hydrocarbons behavior patterns researching with a view to increase of reservoir acidizing effectiveness. Territory NEFTEGAZ, 2016, vol. 4, p. 95-96 (in Russian).
5. Loewen K., Chan K.S., Fraser M., Leuty B. A well stimulation acid tube clean methodology. Soc. Petrol. Eng., 1990, p. 47-1-2.
6. Taylor K.C., Nasr-El-Dln H.A., Al-Alawl M.J. Systematic study of iron control chemicals used during well stimulation. SPE journal, 1999, vol. 4, no. 1, p. 19-20.
7. Kelland M.A. Production chemicals for the oil and gas industry. Under the ed. of L.A. Magadova. Profession, 2015, no. 2, p. 238-239 (in Russian).
8. Dill W., Smolarchuk P. Iron control in fracturing and acidizing operations. JSPT, 1988, vol. 27 (May-June), no. 3, p. 76.
9. AlMubarak T. Investigation of acid-induced emulsion and asphaltene precipitation in low permeability carbonate reservoirs. Soc. Petrol. Eng, 2015. Available at: (accessed 14 January 2017).
10. Rietjens M., Mieuwpoort M. Acid-sludge: How small particles can make a big impact. The Hague, SPE European Formation Damage Conference, 1999. Available at: (accessed 20 January 2017).
11. O’Neil B., Maley D. Prevention of acid-induced asphaltene precipitation: a comparison of anionic vs. cationic surfactants. Soc. Petrol. Eng, 2015, vol. 54 (1), p. 49-50.