Расширенный поиск

- везде
- в названии
- в ключевых словах
- в аннотации
- в списках цитируемой литературы
Выпуск
Название
Авторы
Рубрика
2017/1
Влияние физического состояния СО2 на емкость глубокозалегающего водоносного горизонта при захоронении парникового газа
Науки о Земле

Авторы: Вадим Николаевич ХЛЕБНИКОВ окончил Башкирский государственный университет в 1979 г. Доктор технических наук, профессор кафедры физической и коллоидной химии РГУ нефти и газа (НИУ) имени И.М. Губкина. Специалист в области повышения нефтеотдачи и разработки трудноизвлекаемых запасов нефти. Автор более 200 научных публикаций. E-mail: Khlebnikov_2011@mail.ru
ЛЯН Мэн окончил Пекинский институт нефтехимической технологии в 2009 г. Аспирант кафедры физической и коллоидной химии РГУ нефти и газа (НИУ) имени И.М. Губкина. Научные интересы: нефте- и газодобыча. E-mail: liangmeng@mail.ru
Сергей Николаевич БАБАЕВ окончил Московский государственный университет имени М.В. Ломоносова в 1987 г. Кандидат технических наук, старший преподаватель кафедры физической и коллоидной химии РГУ нефти и газа (НИУ) имени И.М. Губкина. Специалист в области повышения нефтеотдачи и разработки трудноизвлекаемых запасов нефти. Автор более 100 научных публикаций. E-mail: trudyrgung@gubkin.ru
Наталья Валерьевна ЛИХАЧЁВА окончила Российский государственный университет нефти и газа (национальный исследовательский университет) имени И.М. Губкина в 2016 г. Аспирантка первого года обучения кафедры физической и коллоидной химии РГУ нефти и газа (НИУ) имени И.М. Губкина. Научные интересы: экология, нефте- и газодобыча.
E-mail: likhacheva.natalia.v@gmail.com

Аннотация: В условиях, приближенных к пластовым, исследовано влияние физического состояния (газ, сверхкритическое состояние, жидкость) секвестрируемого флюида (72,2-95,5 мольн. % СО2) на емкость водонасыщенных пористых сред. Показано, что минимальная емкость высокопроницаемого водоносного несцементированного пласта составляет 28-42 %, а максимальная емкость составляет 41-43 % от объема пустотного пространства пористой среды. Физическое состояние флюида и гравитационная стабилизация фронта вытеснения не оказывают влияния на максимальную объемную емкость геологической ловушки. Гравитационная стабилизация фронта вытеснения воды секвестрируемым флюидом замедляет прорыв флюида и увеличивает эффективную емкость ловушки

Индекс УДК: 502.211+622.276.344

Ключевые слова: изменение климата, секвестрация парниковых газов, геологические ловушки, глубокозалегающие водоносные горизонты

Список цитируемой литературы:
1. Парижское соглашение. Конференция по климату в Париже (2015), 30.10-12.12.2015. URL: http://unfccc.int/resource/docs/2015/cop21/rus/l09r.pdf (дата обращения: 09.10.2016).
2. Специальный доклад МГЭИК "Улавливание и хранение двуокиси углерода"//Межправительственная группа экспертов по изменению климата, 2005. ISBN 92-9169-419-3. URL: https:// ipcc.ch/pdf/special-reports/srccs/srccs_spm_ts_ru.pdf (дата обращения: 09.10.2016).
3. Технико-экономическое обоснование применения технологии сжигания топлив в химических циклах с выделением СОна основе разработанных инженерных методов расчета и обобщения результатов исследований с учетом данных по возможностям и перспективам геологического захоронения и закачки в нефтяные скважины (заключительный отчет)//Отчет по государственному контракту № 02.516.11.6041. Теплотехнический научно-исследовательский институт (ВТИ), Москва, 2008.
4. Алтунин В.В. Теплофизические свойства двуокиси углерода. — М.: Издательство стандартов, 1975. — 546 с.
5. Экспериментальное исследование механизма фильтрации водогазовых смесей/А.М. Полищук, В.Н. Хлебников, А.С. Мишин, С.В. Антонов, В.И. Кокорев, В.И. Дарищев, И.А. Ахмадейшин, К.А. Бугаев, О.В. Чубанов//Вестник ЦКР Роснедра. — 2012. — № 6. — С. 8-14.

2016/1
Оценка нефтевытесняющей способности газового агента - продукта внутрипластовой трансформации воздуха при термогазовом методе добычи нефти
Науки о Земле

Авторы: Вадим Николаевич ХЛЕБНИКОВ окончил Башкирский государственный университет в 1979 г. Доктор технических наук, профессор кафедры физической и коллоидной химии РГУ нефти и газа (национального исследовательского университета) имени И.М. Губкина. Специалист в области повышения нефтеотдачи и разработки трудноизвлекаемых запасов нефти. Автор более 200 научных публикаций. E-mail: Khlebnikov_2011@mail.ru
Александр Сергеевич МИШИН окончил Национальный исследовательский ядерный университет «МИФИ» в 2005 г. Инженер кафедры физической и коллоидной химии РГУ нефти и газа (национального исследовательского университета) имени И.М. Губкина. Специалист в области повышения нефтеотдачи и разработки трудноизвлекаемых запасов нефти. Автор более 20 научных публикаций. E-mail: aleks_mishin@mail.ru
МЭН Лян окончил Пекинский институт нефтехимической технологии в 2009 г. Аспирант кафедры физической и коллоидной химии РГУ нефти и газа (национального исследовательского университета) имени И.М. Губкина. Научные интересы: нефте- и газодобыча. E-mail: liangmeng@mail.ru>
Наталья Алексеевна СВАРОВСКАЯ окончила Томский государственный университет в 1971 г. Доктор технических наук, профессор кафедры физической и коллоидной химии РГУ нефти и газа (национального исследовательского университета) имени И.М. Губкина. Специалист в области геологии нефтяных месторождений и третичных методов добычи нефти. Автор более 160 научных публикаций. E-mail: na_sv2002@mail.ru

Аннотация: Проведено исследование нефтевытесняющей способности газового агента - продукта внутрипластовой трансформация воздуха при термогазовом методе воздействия (ТГВ) на пласты легкой нефти. Показано, что по своим нефтевытесняющим характеристикам газовый агент термогазового воздействия близок к жирному попутному нефтяному газу высокотемпературных пластов легкой нефти. Также установлено, что использование в фильтрационных экспериментах керновых моделей пласта (по ОСТ 39-195-86) не позволяет в полной мере выявить нефтевытесняющую эффективность смешивающихся газовых агентов

Индекс УДК: УДК 622.276.6

Ключевые слова: повышение нефтеотдачи, смешивающееся вытеснение, термогазовый метод добычи нефти, физическое моделирование вытеснения нефти

Список цитируемой литературы:
1. Курамшин Р.М. Особенности геологического строения и технологии разработки юрских отложений Нижневартовского свода. — М: Изд-во РМНТК Нефтеотдача, 2002. — 107 с.
2. Геология и разработка крупнейших и уникальных нефтяных и нефтегазоносных месторождений России: В 2 т. под ред. В.Е. Гавуры/А.К. Багаутдинов, С.Л. Барков, Г.К. Белевич и др. — М.: ВНИИОЭНГ, 1996. — 352 с.
3. Боксерман А.А., Ямбаев М.Ф. Метод закачки и внутрипластовой трансформации воздуха на месторождениях легкой нефти//Сб. трудов 12 Европейского симпозиума по повышению нефтеотдачи, Казань, 2003.
4. Ямбаев М.Ф. Основные особенности термогазового метода увеличения нефтеотдачи применительно к условиям сложнопостроенных коллекторов (на основе численного моделирования): Дисс. докт. техн. наук. — М., 2006.
5. Хлебников В.Н., Вежнин С.А. Перспективы применения термогазового метода повышения нефтеотдачи в условиях юрских пластов месторождений ОАО "Томскнефть«//Перспективы технологии нефтегазовой индустрии. Сб. трудов Объединенного центра исследований и разработок. — 2006. — № 2. — С. 79-84.
6. Kumar V.K., Gutierrez C., Cantrell С. 30 Years of Successful High-Pressure Air Injection: Performance Evaluation of Buffalo Field, South Dakota//Journal of Petroleum Technology. — 2011. — Vol. 63. — No. 01. — Р. 50-53.
7. Исследование термогазового метода добычи нефти. Кинетические закономерности автоокисления нефти пластов юрского возраста/В.Н. Хлебников, П.М. Зобов, С.В. Антонов, Ю.Ф. Рузанова//Башкирский химический журнал. — 2008. — Т. 15. — № 4. — С. 105-110.
8. Исследование термогазового метода добычи нефти. Влияние бикарбоната натрия на кинетические закономерности автоокисления легкой нефти/В.Н. Хлебников, П.М. Зобов, С.В. Антонов, Ю.Ф. Рузанова, Д.А. Бакулин//Башкирский химический журнал. — 2009. — Т. 16. — № 1. — С. 65-71.
9. Сопоставление кинетических закономерностей автоокисления нефти и твердого органического вещества породы Баженовской свиты/В.Н. Хлебников, П.М. Зобов, С.В. Антонов, Д.А. Бакулин, Ю.Ф. Гущина, Е.К. Нискулов//Башкирский химический журнал. — 2011. — Т. 18. — № 4. — С. 87-92.
10. Моделирование химических стадий термогазового воздействия на вязкую нефть пластов ПК сеноманского горизонта/В.Н. Хлебников, А.С. Мишин, П.М. Зобов, С.В. Антонов, Д.А. Бакулин, М.Е. Бардин, Е.К. Нискулов//Башкирский химический журнал. — 2012. — Т. 19. — № 3. — С. 12-16.
11. Айзикович О.М., Булыгин М.Г., Кораблев Л.И. Тепловой эффект реакции окисления в процессе влажного внутрипластового горения//Нефтепромысловое дело и транспорт нефти. — 1985. — № 11. — С. 4-6.
12. Yannimaras D.V., Sufi A.H., Fassihi M.R. The Case for Air Injection into Deep Light Oil Reservoirs: Proc. 6th European IOR-Simposium in Stavanger. Norway. Мау 21-23, 1991.
13. Lake L.W. Enhanced oil recovery. Englewood Cliffs, New Jersey, Prentice Hall Publ., 1989, 449 p. (Russ. ed.: Osnovi metodov uvelicheniya nefteotdachi, 2004, 449 p. Available at: www.oil-info.ru/content/view/148/59 ).
14. Полищук А.М., Хлебников В.Н., Губанов В.Б. Использование слим-моделей пласта (slim tubе) для физического моделирования процессов вытеснения нефти смешивающимися агентами. Часть 1. Методология эксперимента//Нефтепромысловое дело. — 2014. — № 5. — С. 19-24.
15. Хлебников В.Н., Губанов В.Б.? Полищук А.М. Использование слим-моделей пласта (slim tubе) для физического моделирования процессов вытеснения нефти смешивающимися агентами. Часть 2. Оценка возможности применения стандартного фильтрационного оборудования для осуществления слим-методики//Нефтепромысловое дело. — 2014. — № 6. — С. 32-38.
16. ОСТ 39-195-86. Нефть. Метод определения коэффициента вытеснения нефти водой в лабораторных условиях. Москва, Министерство нефтяной промышленности, 1986. — 20 c.
17. Yelling W.F., Metcalfe R.S. Determination and Prediction of CO2 Minimum Miscibility Pressures. JPT, 1980. — Vol. 32. — No. 1. — Р. 160-168.