Расширенный поиск

- везде
- в названии
- в ключевых словах
- в аннотации
- в списках цитируемой литературы
Выпуск
Название
Авторы
Рубрика
2017/2
Математическое моделирование функционирования тренажерного комплекса диспетчеров системы магистральных нефтепроводов
Технические науки

Авторы: Айрат Радикович ХАЛИУЛЛИН, ассистент кафедры проектирование и эксплуатации газонефтепроводов РГУ нефти и газа (НИУ) имени И.М. Губкина. Автор более 10 научных работ. Область профессиональных интересов: программное обеспечение комплексов поддержки принятия диспетчерских решений, компьютерные тренажерные комплексы, распределенные программные системы. Е-mail: khaliullin.a@gubkin.ru
Юрий Петрович СТЕПИН, доктор технических наук, профессор, академик РАЕН, международный преподаватель инженерного вуза, профессор кафедры автоматизированных систем управления РГУ нефти и газа (НИУ) имени И.М. Губкина. Автор более 120 научных и методических работ. Область профессиональных интересов: марковские случайные процессы, многокритериальная оптимизация, нечеткая логика, теория игр, компьютерная поддержка принятия решений, модели рисков менеджмента, построение автоматизированных систем управления. Е-mail: stepin.y@gubkin.ru
Сергей Александрович САРДАНАШВИЛИ, доктор технических наук, доцент, заведующий кафедрой проектированияи эксплуатации газонефтепроводов РГУ нефти и газа (НИУ) имени И.М. Губкина. Автор более 50 научных работ. Область профессиональных интересов: компьютерные системы поддержки принятия решений в диспетчерском управлении системами газо- и нефтеснабжения, математическое и методическое обеспечение отраслевых программно-вычислительных и компьютерных тренажерных комплексов. Е-mail: sardanashvili.s@gubkin.ru

Аннотация: Рассмотрено решение задач математического моделирования функционирования компьютерного тренажерного комплекса (КТК) как сложной многокомпонентной программной реализации концепции виртуальной среды профессиональной деятельности (ВСПД), отдельные компоненты которой могут быть установлены на разные удаленные в вычислительной сети компьютеры. Представляется КТК в виде совокупности взаимодействующих марковских случайных процессов с дискретными состояниями и непрерывным временем. Сформирована схема взаимодействия случайных процессов, выделены и охарактеризованы их состояния, составлены системы дифференциальных уравнений, начальные и нормировочные условия, а также соотношения, связывающие решения систем уравнений. Выделены и охарактеризованы режимы функционирования КТК, для каждого из которых сформированы оценки комплексного показателя надежности функционирования КТК — коэффициента готовности. Математическая модель функционирования КТК, дополненная структурно-временными UML-диаграммами, позволяет дать научное описание работы комплекса, оценить параметры случайных процессов, составляющих основу его функционирования, определить коэффициент готовности КТК.

Индекс УДК: 004.415.2; 51-74

Ключевые слова: виртуальная среда профессиональной деятельности, компьютерный тренажерный комплекс, математическая модель функционирования, марковский случайный процесс, коэффициент готовности

Список цитируемой литературы:
1. Fowler M. UML Distilled A Brief Guide to the Standard Object Modeling Language, 3rd Edition. — Addison-Wesley Professional, 2003. — 208 p.
2. Папилина Т.М., Леонов Д.Г., Степин Ю.П. Моделирование и оценка эффективности функционирования системы облачных вычислений в АСДУ//Автоматизация, телемеханизация и связь в нефтяной промышленности. — 2016. — № 7. — С. 29-33.
3. Ханджян А.О. Повышение надежности программного обеспечения информационно-измерительных и управляющих систем безопасности ядерных радиационно-опасных объектов. Диссертация на соискание ученой степени кандидата технических наук. — Москва, 2006.
4. Халиуллин А.Р., Швечков В.А., Леонов Д.Г. Организация взаимодействия программных компонентов многопользовательских гетерогенных распределенных комплексов моделирования динамических процессов трубопроводных систем//Труды XIV Всероссийского научного семинара „Математические модели и методы анализа и оптимального синтеза развивающихся трубопроводных и гидравлических систем”. Белокуриха, Алтайский край, 8-13 сентября 2014 г. — Иркутск: ИСЭМ СО РАН, 2014. — 410 с.
5. Халиуллин А.Р. Архитектурные решения и опытная реализация информационного обмена компонентов гетерогенных распределенных комплексов моделирования динамических процессов трубопроводных систем // Автоматизация, телемеханизация и связь в нефтяной промышленности. — 2016. — № 8.2016. — С. 17 — 24.
6. Халиуллин А.Р., Швечков В.А., Сарданашвили С.А. Архитектурные решения реализации управления компонентами распределенных комплексов поддержки принятия диспетчерских решений//Труды Российского государственного университета нефти и газа имени И.М. Губки- на. — 2015. — № 4 (281). — С. 114-128.
7. Вентцель Е.С. Исследование операций. — М.: Сов. радио, 1972. — 552 с.
8. Степин Ю.П., Трахтенгерц Э.А. Компьютерная поддержка управления нефтегазовыми технологическими процессами и производствами. Книга 1. — М.: Вектор ТиС, 2007. — 384 с. — Книга 2. — М.: МАКС Press, 2008. — 528 с.
9. ГОСТ 27.002-89. Надежность в технике. Основные понятия. Термины и определения. — М., 1990.

2015/4
Архитектурные решения реализации управления компонентами распределенных комплексов поддержки принятия диспетчерских решений
Технические науки

Авторы: Айрат Радикович ХАЛИУЛЛИН окончил магистратуру РГУ нефти и газа имени И.М. Губкина в 2013 г. Аспирант кафедры прикладной математики и компьютерного моделирования РГУ нефти и газа имени И.М. Губкина.
E-mail: a.r.khaliullin@gmail.com
Виталий Александрович ШВЕЧКОВ окончил РГУ нефти и газа имени И.М. Губкина в 2002 г. Кандидат технических наук, доцент кафедры проектирования и эксплуатации газонефтепроводов РГУ нефти и газа имени И.М. Губкина. Автор более 20 научных работ. E-mail: shvechkov.v@gubkin.ru
Сергей Александрович САРДАНАШВИЛИ окончил МИНХ и ГП имени И.М. Губкина в 1976 г. Доктор технических наук, доцент, заведующий кафедрой проектирования и эксплуатации газонефтепроводов РГУ нефти и газа имени И.М. Губкина. Специалист в области компьютерных систем поддержки принятия решений в диспетчерском управлении системами газо- и нефтеснабжения. Автор более 50 научных работ. E-mail: Sardanashvili.S@gubkin.ru

Аннотация: В статье освещено решение задачи управления распределенными компонентами программных комплексов поддержки принятия диспетчерских решений на примере тренажерного комплекса для системы магистральных нефтепроводов. Рассматривается клиент-серверное взаимодействие компонентов. Сформулированы основные функциональные задачи диспетчера компонентов распределенного комплекса. Разработана программная архитектура для диспетчеризации работы клиентских компонентов. Процесс организации решения расчетных задач сведен к пошаговому управлению взаимодействием клиентских компонентов

Индекс УДК: УДК 004; 681.518

Ключевые слова: трубопроводные системы, программные комплексы моделирования, компьютерные тренажерные комплексы, распределенные многопользовательские программные средства, клиент-серверное взаимодействие, событийная модель взаимодействия, сервис-ориентированная архитектура, диспетчеризация работы компонентов, организация решения расчетных задач

Список цитируемой литературы:
1. Таненбаум Э., Стеен М. Распределенные системы. Принципы и парадигмы. — СПб.: Питер, 2003 — 877 с.
2. Халиуллин А.Р., Швечков В.А., Леонов Д.Г. Организация взаимодействия программных компонентов многопользовательских гетерогенных распределенных комплексов моделирования динамических процессов трубопроводных систем//Труды XIV Всероссийского научного семинара „Математические модели и методы анализа и оптимального синтеза развивающихся трубопроводных и гидравлических систем”. Белокуриха, Алтайский край, 8-13 сентября 2014 г. — Иркутск: ИСЭМ СО РАН, 2014 — 410 с.
3. ГОСТ 34.003–90. Информационная технология. Комплекс стандартов на автоматизированные системы. Автоматизированные системы. Термины и определения.
4. Meier J.D. Руководство Microsoft по проектированию архитектуры приложений. Patterns & practices/Hill D., Homer A., Taylor J. и др. — 2-е изд. [Электронный ресурс]. — URL: http://download.microsoft.com/documents/rus/msdn/ры__приложений_полная книга. pdf (дата обращения: 20.07.2015).
5. Леоненков А.В. Самоучитель UML 2. — СПб.: БХВ-Петербург, 2007. — 576 с.
6. Трахтенброт Б.А., Барздинь Я.М. Конечные автоматы. Поведение и синтез — М.: Наука, 1970. — 400 с.
7. The State Machine Framework. Qt Documentation [Электронный ресурс]. — URL: http://doc.qt.io/qt-4.8/statemachine-api.html (дата обращения: 13.05.2015).