Расширенный поиск

- везде
- в названии
- в ключевых словах
- в аннотации
- в списках цитируемой литературы
Выпуск
Название
Авторы
Рубрика
2015/2
Возможности масс-спектрометрии ультравысокого разрешения в анализе гетероатомных соединений нефтяных систем
Химические науки

Авторы: Анна Вячеславовна СТАВИЦКАЯ окончила РГУ нефти и газа имени И.М. Губкина в 2011 г. Аспирантка РГУ нефти и газа имени И.М. Губкина кафедры органической химии и химии нефти. Имеет 3 научные публикации в области нефтяных дисперсных систем и методам их анализа. E-mail: stavitsko@mail.ru
Равиля Загидулловна САФИЕВА окончила Московский государственный университет имени М.В. Ломоносова в 1978 г. Доктор технических наук, главный научный сотрудник кафедры органической химии и химии нефти РГУ нефти и газа имени И.М. Губкина. Специалист в области физико-химии нефтяных дисперсных систем и методов их исследования. Автор 125 научных публикаций. E-mail: safieva@mail.ru

Аннотация: В статье описывается возможность применения масс-спектрометрии ультравысокого разрешения ионно-циклотронного резонанса в сочетании с «мягкими» методами ионизации для изучения качественного состава гетероатомных соединений нефти на молекулярном уровне. В образцах двух нефтей с различными свойствами идентифицировано 19 классов гетероатомных соединений, включая карбоновые кислоты, пиридиновые основания, пиррольные соединения, соединения с одним и двумя атомами серы в молекуле, а также гибридные соединения (SO, NS, O2S2, ONS и др.). Использование различных методов ионизации таких, как электрораспыление (ESI), фотоионизация при атмосферном давлении (APPI) позволяет изучать состав различных гетероатомных соединений высокомолекулярной части нефти, а высокая чувствительность масс-спектрометрии ультравысокого разрешения ионно-циклотронного резонанса позволяет одновременно идентифицировать несколько тысяч соединений в минимальном объеме нефти (12 мкл). Уникальность метода заключается в возможности анализировать тяжелую часть нефти (в том числе смолисто-асфальтеновые вещества). Ультравысокое разрешение и чувствительность и точность определяемых масс ионов данного метода в сочетании с простотой использования делают метод отличным инструментом для химического анализа состава многокомпонентных нефтяных систем

Индекс УДК: УДК 54.07

Ключевые слова: масс-спектрометрия ультравысокого разрешения ионно-циклотронного резонанса, гетероатомные соединения нефти, разрешающая способность, методы ионизации

Список цитируемой литературы:
1. Нефтяные кислоты и их производные. Получение и применение/Л.В. Иванова, В.Н. Кошелев, Н.А. Сокова, Е.А. Буров, О.В. Примерова//Труды Российского государственного университета нефти и газа имени И.М. Губкина. — 2013. — T. 270. — № 1. — С. 68–80.
2. Хаджиев С.Н., Шпирт М.Я. Микроэлементы в нефтях и продуктах их переработки. — М.: Наука, 2012.
3. Суб- и сверхкритичеcкие флюидные среды в некоторых задачах извлечения наполнителей из твердых матриц/Г.Ф. Мухамедович, Г.М. Ракибович, Б.Т. Ренатович, Г.Р. Фаилович, С.А. Адиевич//Вести Газовой Науки. — 2010. — Т. 11. — № 3.
4. Состав и свойства природных высокомолекулярных компонентов газоконденсатных и нефтегазоконденсатных месторождений/А.Н. Дмитриевский, Н.А. Скибицкая, Л.А. Зекель, О.К. Навроцкий, Н.В. Краснобаева, Е.Г. Доманова/ Химия твердого топлива. — 2010. — № 3. — С. 67–77.
5. Gaspar A., Zellermann E., Lababidi S., Reece J., Schrader W. Characterization of Saturates, Aromatics, Resins, and Asphaltenes Heavy Crude Oil Fractions by Atmospheric Pressure Laser Ionization Fourier Transform Ion Cyclotron Resonance Mass Spectrometry//Energy Fuels. — 2012. — No. 26. — P. 3481-3487.
6. Zhao X., Shi Q., Gray M.R., Xu C. New Vanadium Compounds in Venezuela Heavy Crude Oil Detected by Positive-ion Electrospray Ionization Fourier Transform Ion Cyclotron Resonance Mass Spectrometry//Sci. Rep. — 2014. — Vol. 4.
7. Zhang L., Zhang Y., Zhao S., Xu C., Chung K.H., Shi Q. Characterization of heavy petroleum fraction by positive-ion electrospray ionization FT-ICR mass spectrometry and collision induced dissociation: Bond dissociation behavior and aromatic ring architecture of basic nitrogen compounds//Sci. China Chem. — 2013. — Vol. 56. — No. 7. — P. 874–882.
8. Tanner R.P.R., Schaub M. Speciation of Aromatic Compounds in Petroleum Refinery Streams by Continuous Flow Field Desorption Ionization FT-ICR Mass Spectrometry//Energy Amp Fuels — ENERG FUEL. — 2005. — Vol. 19. — No. 4.
9. Klein G.C., Rodgers R.P., Marshall A.G. Identification of hydrotreatment-resistant heteroatomic species in a crude oil distillation cut by electrospray ionization FT-ICR mass spectrometry// Fuel. — 2006. — Vol. 85. — No. 14–15. — Р. 2071–2080.
10. Qian K., Edwards K.E., Dechert G.J., Jaffe S.B., Green L.A., Olmstead W.N. Measurement of Total Acid Number (TAN) and TAN Boiling Point Distribution in Petroleum Products by Electrospray Ionization Mass Spectrometry//Anal. Chem. — 2008. — Vol. 80. — No. 3. — P. 849–85.
11. Marshall A.G., Rodgers R.P. Petroleomics: chemistry of the underworld//Proc. Natl. Acad. Sci. U.S.A. — 2008. — Vol. 105. — No. 47. — P. 18090–18095.
12. A barrel load of compounds//Chemistry World. — 2010, May. — P. 46–49.
13. De Hoffmann E., Stroobant V. Mass Spectrometry: Principles and Applications. — John Wiley & Sons, 2007.
14. Quan Shi D.H. Characterization of Heteroatom Compounds in a Crude Oil and Its Saturates, Aromatics, Resins, and Asphaltenes (SARA) and Non-basic Nitrogen Fractions Analyzed by Negative-Ion Electrospray Ionization Fourier Transform Ion Cyclotron Resonance Mass Spectrometry//Energy Amp Fuels. — 2010. — Vol. 24. — P. 2545-2553.
15. Kim S., Rodgers R.P., Blakney G.T., Hendrickson C.L., Marshall A.G. Automated Electrospray Ionization FT-ICR Mass Spectrometry for Petroleum Analysis//J. Am. Soc. Mass Spectrom. — 2009. — Vol. 20. — No. 2. — P. 263–268.
16. Kim Y. H., Kim S. Improved abundance sensitivity of molecular ions in positive-ion APCI MS analysis of petroleum in toluene//J. Am. Soc. Mass Spectrom. — 2010. — Vol. 21. — No. 3. — P. 386–39.
17. Fernandez-Lima F.A., Becker C., McKenna A.M., Rodgers R.P., Marshall A.G., Rus- sell D.H. Petroleum Crude Oil Characterization by IMS-MS and FTICR MS//Anal. Chem. — 2009. — Vol. 81. — No. 24. — P. 9941–9947.
18. Panda S.K., Brockmann K.J., Benter T., Schrader W. Atmospheric pressure laser ionization (APLI) coupled with Fourier transform ion cyclotron resonance mass spectrometry applied to petroleum samples analysis: comparison with electrospray ionization and atmospheric pressure photoionization methods//Rapid Commun. Mass Spectrom. — 2011. — No. 25. — P. 2317–2326.
19. Esther Lorente C.B. The detection of high-mass aliphatics in petroleum by matrix-assisted laser desorption/ionisation mass spectrometry//Rapid Commun. Mass Spectrom. RCM. — 2012. — Vol. 26. — No. 14. — P. 1581–90.
20. Speight J.G. High Acid Crudes. — Gulf Professional Publishing, 2014.
21. Li X., Zhu J., Wu B. Characterization of Basic Nitrogen-Containing Compounds in the Products of Lube Base Oil Processing by Electrospray Ionization Fourier Transform Ion Cyclotron Resonance Mass Spectrometry//Bull. Korean Chem. Soc. — 2014. — Vol. 35. — No. 1. — P. 165–172.
22. Marshall A.G., Rodgers R.P. Petroleomics: The Next Grand Challenge for Chemical Analysis//Acc. Chem. Res. — 2003. — Vol. 37. — No. 1. — P. 53–59.
23. Yunju Cho A.A. Developments in FT-ICR MS Instrumentation, Ionization Techniques, and Data Interpretation Methods for Petroleomics — a Review//Mass Spectrom. Rev. — 2014. — Vol. in press.
24. Wang L., He C., Zhang Y., Zhao S., Chung K.H., Xu C., Hsu C.S., Shi Q. Characterization of Acidic Compounds in Heavy Petroleum Resid by Fractionation and Negative-Ion Electrospray Ionization Fourier Transform Ion Cyclotron Resonance Mass Spectrometry Analysis//Energy Fuels. — 2013. — Vol. 27. — No. 8. — P. 4555–4563.
25. Kuangnan Qian W.K.R. Resolution and Identification of Elemental Compositions for More than 3000 Crude Acids in Heavy Petroleum by Negative-Ion Microelectrospray High-Field Fourier Transform Ion Cyclotron Resonance Mass Spectrometry//Energy Amp Fuels — ENERG FUEL. — 2001. — Vol. 15. — No. 6.
26. Yingrong L., Wei W., Qiuling H., Yuxia Z., Jinghui D., Songbai T. Characterization of Basic Nitrogen Aromatic Species Obtained during Fluid Catalytic Cracking by Fourier Transform Ion Cyclotron Resonance Mass Spectrometry//Scientific Research. — 2012. — Vol. 14. — No. 2. — P. 18–24.
27. Liu P., Xu C., Shi Q., Pan N., Zhang Y., Zhao S., Chung K.H. Characterization of Sulfide Compounds in Petroleum: Selective Oxidation Followed by Positive-Ion Electrospray Fourier Transform Ion Cyclotron Resonance Mass Spectrometry//Anal. Chem. — 2010. — Vol. 82. — No. 15. — P. 6601–6606.

2014/2
Ближняя инфракрасная спектроскопия в практике мониторинга качества товарных и сырьевых потоков станции смешения бензинов
Переработка нефти и газа, нефте- и газохимия

Авторы: Равиля Загидулловна САФИЕВА окончила Московский государственный университет в 1978 г. Доктор технических наук, профессор кафедры органической химии и химии нефти РГУ нефти и газа имени И.М. Губкина. Специалист в области физико-химии нефтяных дисперсных систем и методов их исследования. Автор более 100 научных публикаций. E-mail: safieva@gubkin.ru
Ирина Владимировна ИВАНОВА окончила Казанский государственный университет имени В.И. Ульянова-Ленина в 2006 году. Соискатель кафедры органической химии и химии нефти РГУ нефти и газа имени И.М. Губкина. Специалист в области молекулярной спектроскопии. E-mail: irina20051984@rambler.ru

Аннотация: Спектроскопия ближней инфракрасной области (БИК) становится эффектив-ным и популярным аналитическим методом в нефтехимической и нефтепе-рерабатывающей промышленности, в основном, из-за надежности и удоб- ства для рутинного использования. В данной работе накоплен и систематизирован большой объем спектральных данных, полученных для сырьевых и товарных потоков станции смешения бензинов с использованием спектрометра ближнего инфракрасного диапазона с Фурье-преобразованием (FT-NIR) в режиме ON-LINE. Показана корреляция между спектральными данными и параметрами качества, а именно: октановые числа исследовательским и моторным методами, плотность, содержание: ароматических углево-дородов, бензола, олефиновых углеводородов; фракционный состав, давление насыщенных паров. Построены и валидированы калибровочные модели на данные параметры и предложены для использования в режиме реального времени. Ошибки предсказания полученных калибровочных моделей лежат в рамках воспроизводимости стандартных методов для каждого параметра

Индекс УДК: УДК 665.773.3

Ключевые слова: инфракрасный спектрометр с Фурье-преобразованием, спектроскопия ближнего инфракрасного диапазона (БИК), сырьевые потоки, товарные бензины, калибровочная модель, независимая проверка моделей

Список цитируемой литературы:
1. Barsamian A. Get the Most Out of Your NIR Analyzers. Hydrocarbon Processing, January, 2001, p. 69-72.
2. Espinosa, M.S. et Аl. On-line NIR Analysis and Advanced Control Improve Gasoline Blen-ding. Oil and Gas Journal, Oct. 17, 1994.
3. Reboucas M.V., Dos Santos J.B., Domingos D. and Massa A.R. Near-infrared spectroscopic prediction of chemical composition of a series of petrochemical process streams for aromatics production. Vibr. Spectrosc. 52, 97 (2010). oi: 10.1016/j.vibspec.2009.09.006.
4. Watari M., Ozaki Y. Du and Y. Variations in predicted values from near-infrared spectra of samples in vials by using a calibration model developed from spectra of samples in vials: causes of the variations and compensation methods. Appl. Spectrosc. 61(4), 397 (2007). doi: 10.1366/ 000370207780466244.
5. Chung H. Applications of near infrared spectroscopy in refineries and important issues to address. Appl. Spectrosc. Rev. 42(3), 251 (2007). doi: 10.1080/05704920701293778.
6. Chung H., Choi Hyuk-Jin and Ku Min-Sik. Rapid Identification of Petroleum Products by Near-Infrared spectroscopy, Bull. Korean Chem. Soc. 1999, vol. 20, no. 9.
7. Тонков М.В. Фурье-спектроскопия — максимум информации за минимум времени//Со-росовский образовательный журнал, 2001. — Т. 7. — № 1.
8. Carlos-A. Baldrich Ferrer, Luz-Angela Novoa Mantilla. Infrared spectrophotometry, a rapid and effective tool for characterization of direct distillation naphthas. CT&F, Colombia. 2005. — № 3.
9. Chung H., Ku M.S., Lee J.S. Comparison of near-infrared and mid-infrared spectroscopy for the determination of distillation property of kerosene. Vib. Spectrosc, 1999, № 20, p. 155–163.
10. Ingrid Komorizono de Oliveira, Werickson F. de Carvalho Rocha, Ronei J. Poppi Application of near infrared spectroscopy and multivariate control charts for monitoring biodiesel blends. Analytica Chimica Acta, 2009, 642, p. 217–221.
11. Monteiro M.R., Ferreira A.G. Determination of biodiesel blend levels in different diesel samples by 1H NMR. Fuel, 2009, no. 88, — p. 691–696.
12. Peinder P., Visser T. Partial least squares modeling of combined infrared, 1H NMR and 13C NMR spectra to predict long residue properties of crude oils. Vibrational spectroscopy, 2009, p. 8.
13. Narve Aske, Harald Kallevik, and Johan Sjoblom Determination of saturate, aromatic, resin, and asphaltenic (SARA) components in crude oils by means of infrared and near-infrared spectroscopy. Energy & Fuels, 2001, no. 15, p. 1304-1312.
14. Сафиева Р.З. Физикохимия нефти. — М.: Химия, 1998. — 448 с.
15. http://www.fda.gov/cder/OPS/PAT.htm.
16. Крищенко В.П. Ближняя инфракрасная спектроскопия. — Москва, 1997.
17. Burns D.A., Ciurczak E.W. Handbook of Near-Infrared Analysis. Marcel Dekker: New York, USA, 1992.
18. Белова О.А. Оперативно и достоверно//Лукойл СИНТЕЗ (корпоративная газета ОАО „ЛУКОЙЛ-Нижегороднефтеоргсинтез”), 2012. — № 49. — С. 1-2.
19. Филатов В.М., Сафиева Р.З. Хемометрические методы анализа продукции нефтепереработки и нефтехимии//Нефтепереработка и Нефтехимия. — 2009. — № 9. — С. 33-38.
20. Пурэвсурэн Сарангэрэл „Экспресс-метод анализа свойств нефтей и нефтяных фракций при их переработке”, дисс. на соиск. уч. степ.канд. техн. наук. — М.: РГУ нефти и газа им. И.М. Губкина, 2003. — 177 с.
21. Филатов В.М. „Разработка хемометрических методик экспресс-анализа показателей качества и состава нефтяных систем с применением метода ближней инфракрасной спектроскопии”, дисс. на соиск. уч. степ.канд. техн. наук. — М.: РГУ нефти и газа им. И.М. Губкина, 2010. — 117 с.
22. Балабин Р.М. „Создание экспресс-методов анализа показателей качества дистиллятных фракций основе методов колебательной спектроскопии”, дисс. на соиск. уч. степ. канд. техн. наук. — М.: РГУ нефти и газа им. И.М. Губкина, 2013. — 110 с.
23. Balabin R.M., Lomakina E.I. Support vector machine regression (SVR/LS-SVM) — an alternative to neural networks (ANN) for analytical chemistry. Comparison of nonlinear methods on near infrared (NIR) spectroscopy data. Analyst 136, 1703, 2011.
24. Balabin R.M., Safieva R.Z. Near-infrared (NIR) spectroscopy for biodiesel analysis: Fractional composition, iodine value, and cold filter plugging point from one vibrational spectrum. Energy & Fuels 25, 2373, 2011.
25. Balabin R.M., Safieva R.Z., Lomakina E.I. Gasoline classification using near infrared (NIR) spectroscopy data: Comparison of multivariate techniques. Anal. Chim. Acta 671, 27, 2010.
26. Balabin R.M., Safieva R.Z. Gasoline classification by source and type based on near infrared (NIR) spectroscopy data. Fuel 87, 1096, 2008.
27. Balabin R.M., Smirnov S.V. Variable selection in near-infrared (NIR) spectroscopy: Benchmarking of feature selection methods on biodiesel data. Anal. Chem. Acta 692, 63, 2011.
28. ASTM 1655-04 Standard Practices for Infrared Multivariate Quantitative Analysis.
29. ASTM 6122 Standard Practice for Validation of Multivariate Process Infrared Spectrophotometers.
30. www.brukeroptics.com/ www.bruker.ru.
31. Martens H., Naes T.M. Multivariate Calibration. John Wiley and Sons: New York, USA, 1989, p. 116.
32. Massart D.L. Chemometrics: a textbook, Elsevier, NY, 1988.