Расширенный поиск

- везде
- в названии
- в ключевых словах
- в аннотации
- в списках цитируемой литературы
Выпуск
Название
Авторы
Рубрика
2014/3
Корреляции вязкости и теплопроводности фторбензола в диапазоне температуры от тройной точки до 700 к при давлениях до 100 мпа
Переработка нефти и газа, нефте- и газохимия

Авторы: Борис Афанасьевич ГРИГОРЬЕВ родился в 1941 г. Окончил Грозненский нефтяной институт им. акад. М.Д. Миллионщикова в 1963 г., член-корреспондент РАН, д.т.н., профессор, заведующий кафедрой „Исследование нефтегазовых пластовых систем” РГУ нефти и газа имени И.М. Губкина. Автор более 300 научных работ в области теплофизических свойств веществ, автор учебника для вузов по тепломассообмену и ряда монографий. E-mail: trudyrgung@gubkin.ru Игорь Станиславович АЛЕКСАНДРОВ родился в 1979 г. Окончил Калининградский государственный технический университет в 2004 году, к.т.н., доцент кафедры „Теплогазоснабжение и вентиляция” Калининградского государственного технического университета. Автор более 30 научных работ в области теплофизических свойств веществ. E-mail: trudyrgung@gubkin.ru Анатолий Алексеевич ГЕРАСИМОВ родился в 1950 г. Окончил Грозненский нефтяной институт им. акад. М.Д. Миллионщикова в 1972 году, д.т.н., профессор, заведующий кафедрой „Теплогазоснабжение и вентиляция” Калининградского государственного технического университета. Автор более 100 научных работ в области теплофизических свойств веществ, включая три монографии. E-mail: trudyrgung@gubkin.ru

Аннотация: На основе надежных экспериментальных данных разработаны уравнения для расчета вязкости и теплопроводности фторбензола, применимые в диапазоне температур от тройной точки до 700 К и при давлениях до 100 МПа. Уравнения разрабатывались в переменных «температура – плотность» с использованием нелинейной оптимизационной процедуры, в основе которой лежит метод случайного поиска. В статье представлены результаты сравнения с имеющимися экспериментальными данными, а также диаграммы состояния, рассчитанные на основе полученных уравнений и позволяющие сделать вывод о хороших экстраполяционных возможностях предлагаемых уравнений. Разработанные уравнения корректно воспроизводят поверхность состояния и позволяют рассчитывать указанные теплофизические свойства с погрешностью, близкой к погрешности экспериментального исследования. В частности, средняя относительная погрешность описания вязкости новым уравнением не превышает 2 %, а теплопроводности – 1%

Индекс УДК: УДК 536.22

Ключевые слова: фторбензол, температура, плотность, теплопроводность, вязкость

Список цитируемой литературы:
1. Александров И.С., Герасимов А.А., Григорьев Е.Б. База экспериментальных данных о термодинамических свойствах галогенозамещенных бензола//Актуальные вопросы исследования пластовых систем месторождений углеводородов. — М.: ООО „ВНИИГАЗ”, 2013. — № 1 (12). — С. 199–203.
2.
Ишханов Ю.Б. Динамическая вязкость фторбензола, хлорбензола, их растворов с бензолом: дисс. канд. техн. наук. — Баку, 1984. — 174 с.
3. Lemmon E.W., Jacobsen R.T. Viscosity and thermal conductivity equations for nitrogen, oxygen, argon, and air//Int. Jour. of Thermophysics. — 2004. — V. 25. — No. 1. — P. 21–69.
4.
Александров И.С., Григорьев Е.Б., Герасимов А.А. Современный подход в разработке фундаментальных уравнений состояния технически важных рабочих веществ//Актуальные вопросы исследования пластовых систем месторождений углеводородов. Часть 2. — М.: ООО „ВНИИГАЗ”, 2011. — С. 124–137.
5.
Получение данных по Р-V-Т зависимости и теплопроводности фторбензола и разработка методов оценки их достоверности / Отчет о научно-исследовательской работе. Руководитель: Т.С. Ахундов. — Баку: Азерб. институт нефти и химии, 1983. — 54 с.
6. Olchowy G.A. A simplified representation for the thermal conductivity of fluids in the critical region/G.A. Olchowy, J.V. A Sengers//Int. J. Thermophys. — 1989. — Vol. — P. 417–426.
7.
Assael M.J. Reference Correlation of the Thermal Conductivity of Benzene from the Triple Point to 725 K and up to 500 MPa/M.J. Assael, E.K. Mihailidou, M.L. Huber and R.A. Perkins// Journal of Physical and Chemical Reference Data. — 2012. — Vol. 41. — № 4. — P. 043102-1-043102-9.

2012/2
Фундаментальные уравнения состояния н-додекана и н-тридекана
Переработка нефти и газа, нефте- и газохимия

Авторы: Борис Афанасьевич ГРИГОРЬЕВ родился в 1941 г. Окончил Грозненский нефтяной институт имени акад. М.Д. Миллионщикова в 1963 г. Член корреспондент РАН, доктор технических наук, профессор, заведующий кафедрой “исследование нефтегазовых пластовых систем” РГУ нефти и газа имени И.М.Губкина. Автор более 300 научных работ в области теплофизических свойств веществ, учебника для вузов по тепломассообмену и ряда монографий. E-mail: gba_41@mail.ru
Анатолий Алексеевич ГЕРАСИМОВ родился в 1950 г. Окончил Грозненский нефтяной институт имени акад. М.Д. Миллионщикова в 1972 г. Доктор технических наук, профессор, заведующий кафедрой “Теплогазоснабжение и вентиляция” Калининградского государственного технического университета. Автор более 100 научных работ в области теплофизических свойств веществ, 3 монографии. E-mail: aager_kstu@mail.ru
Игорь Станиславович АЛЕКСАНДРОВ родился в 1979 г. Окончил Калининградский государственный технический университет в 2004 г. Старший преподаватель кафедры “Теплогазоснабжение и вентиляция” Калининградского государственного технического университета. Автор более 20 научных работ в области теплофизических свойств веществ. E-mail: alexandrov_kgrd@mail.ru

Аннотация: Разработаны фундаментальные 14-константные уравнения состояния универсальной формы, описывающие с высокой точностью все термодинамические свойства н-додекана и н-тридекана в диапазоне температуры от тройной точки до ~700 К при давлениях до 100 МПа. Средняя погрешность описания плотности жидкой фазы на линии насыщения составляет 0,1–0,3 %, газовой фазы на линии насыщения – 0,3–1,5 %, давления насыщенного пара – 0,2–1,0 %, плотности жидкой фазы при повышенных давлениях 0,1–0,4 %, изобарной теплоемкости жидкой фазы – 0,4–0,8 %, скорости звука 0,5–1,0 %. Для н-тридекана фундаментальное уравнение получено впервые.

Индекс УДК: 536.7

Ключевые слова: температура, давление, плотность, теплоемкость, энтальпия, энтропия, уравнение состояния

Список цитируемой литературы:
1. Lemmon E.W., Huber M.L. Thermodynamic Properties of n-Dodecane//Energy & Fuels. — 2004. — V.18, No. 4. — P. 960-967.
2.
Курумов Д.С. Термические свойства н-алканов и фракций Мангышлакской нефти в жидком и газообразном состояниях: Дисс. докт. техн. наук: 05.14.05 — Теоретические основы теплотехники: Д.С. Курумов, ГНИ: Грозный, 1991. — 440 с.
3. Герасимов А.А. Калорические свойства нормальных алканов и многокомпонентных углеводородных смесей в жидкой и газовой фазах, включая критическую область: Дисс. докт. техн. наук: 05.14.05 — Теоретические основы теплотехники: А.А. Герасимов, КГТУ: Калининград, 1999. — 423 с.
4. Khasanschin T.S., Shchamialiou A.P., Poddubskij O.G. Thermodynamic properties of heavy n-alkanes in the liquid state: n-tridecane//High Temp. — High Pressures. — 2004. — V. 35-36, No. 2. — P. 227-235.
5.
TRC Thermodynamic Properties of Substances in the Ideal Gas State/K.N. Marsh, R.C. Wilhoit, M. Frenkel, D. Yin//Thermodynamics Research Center. — 1994.
6. Span R. Multiparameter Equation of State: An Accurate Source of Thermodynamic Property Data. — Berlin: Springer, 2000. — 367 p.
7. Sun L., Ely J.E. Universal equation of state for engineering application: algorithm and application//Fluid Phase Equilibria. — 2004. — V. 222-223. — P. 107-118.
8.
Александров И.С., Герасимов А.А., Григорьев Б.А. Разработка фундаментальных уравнений состояния технически важных органических рабочих веществ//Теплоэнергетика. — 2011. — № 8. — С. 67-74.
9.
Lemmon E.W., Jacobsen R.T. A new functional form and new fitting techniques for equations of state with application to pentafluoroethane (HFC-125)//J. Phys. Chem. Ref. Data. — 2005. — V. 34, No. 1. — P. 69-108.
10.
Study of the compressions of several high molecular weight hydrocarbons/W.G. Cutler [et al.]//J. Chem. Phys. — 1958. — Vol. 29, № 4. — P. 727-740.
11.
Boelhouwer, J.W.M. PVT Relations of Five Liquid n-Alkanes // Physica. — 1960. — Vol. 26, № 11. — P. 1021-1028.
12.
Snyder P.S., Winnick J. The Pressure, Volume and Temperature Properties of Liquid n-Alkanes at Elevated Pressures //Proc. 5th Symp. Thermophys. Prop. — 1970. — Vol. 5 — P. 115-129.
13.
Landau R., Wuerflinger A. PVT data of acetonitrile, undecane and dodecane to 3 kbar and −50 °C. Pressure dependence and change of volume, enthalpy and entropy PVT-Daten von acetonitril, undecan und dodecan bis 3 kbar und −50 °C. Druckabhaengigkeit der umwandlungsvolumina, enthalpien und entropien//Ber. Bunsenges. Phys. Chem. — 1980. — V. 84. — P. 895-902.
14.
Dymond J.H., Robertson J., Isdale J.D. Transport properties of nonelectrolyte liquid mixtures — III. Viscosity coefficients for n-octane, n-dodecane, and equimolar mixtures of n-octane + n-dodecane and n-hexane + n-dodecane from 25 to 100 degrees C at pressures up to the freezing pressure or 500 MPa// Int. J. Thermophys. — 1981. — Vol. 2, № 2. — P. 133-154.
15.
Dymond J.H., Robertson J., Isdale J.D. (p, rho, T) of some pure n-alkanes and binary mixtures of n-alkanes in the range 298 to 373 K and 0.1 to 500 MPa//J. Chem. Thermodyn. — 1982. — Vol. 14, № 1. — P. 51-59.
16.
Rousseaux P., Richon D., Renon H. Volumetric properties of n-dodecane up to 423.1 K and 30.58 MPa//Fluid Phase Equilibria. — 1983. — Vol. 11. — P. 169-177.
17.
Viscosity and Density of Binary Mixtures of Cyclohexane with n-Octane, n-Dodecane, and n-Hexadecane Under High Pressures/Y. Tanaka [et al.]//Int. J. Thermophys. — 1991. — Vol. 12, № 2. — P. 245-264.
18.
The viscosity and density of n-dodecane and n-octadecane at pressures up to 200 MPa and temperatures up to 473 K/D.R. Caudwell [et al.]//Int. J. Thermophys. — 2004. — Vol. 25, № 5. — P. 1339-1352.
19.
Vapor Pressures and Boiling Points of Some Paraffin, Alkylcyclopentane, Alkycyclohexane, and Alkylbenzene Hydrocarbons/C.B. Willingham [et al.]//J. Res. Natl. Bur. Stand. — 1945. — Vol. 35. — P. 219-232.
20.
Houser H.F., Van Winkle M. Vapor-liquid equilibria of naphthalene-n-dodecane, n-dodecane-butyl carbitol, and naphthalene-butyl carbitol systems at subatmospheric pressure//J Chem. Eng. Data. — 1957. — Vol. 2. — P. 12-16.
21.
Gierycz P., Rogalski V., Malanowski S. Vapour-Liquid Equilibria in Binary Systems Formed by n-Methylpyrrolidone with Hydrocarbons and Hydroxyl Derivatives//Fluid Phase Equilibria. — 1985. — Vol. 22. — P. 107-122.
22.
Allemand N., Jose J., Merlin J.C. Measurement of the Vapor Pressure of Hydrocarbons C10 to C18 n-Alkanes and n-Alkylbenzenes in the Range 3-1000 Pascal//Thermochimica Acta. — 1986. — Vol. 105. — P. 79-90.
23.
Morgan D.L. Kobayashi R. Direct Vapor Pressure Measurements of Ten n-Alkanes in the C(10)-C(28) Range//Fluid Phase Equilibria. — 1994. — Vol. 97. — P. 211-242.
24.
Vapor Pressure of Normal Alknaes from Decane to Icosane at Temperatures from 244 K to 469 K and Pressures from 0.4 Pa to 164 kPa/C. Viton [et al.]//Int. Electron. J. Phys.-Chem. Data. — 1996. — Vol. 2. — P. 215-224.
25.
Isobaric Vapor-Liquid Equilibria for Binary Systems Composed of Octane, Decane and Dodecane at 20 kPa/A. Dejoz [et al.]//J. Chem. Eng. Data. — 1996. — Vol. 41. — P. 93-96.
26.
Vapor-liquid equilibria for pentane + dodecane and heptane + dodecane at low pressures/ H.N. Maia de Oliveira [et al.]//J. Chem. Eng. Data. — 2002. — Vol. 47. — P. 1384-1387.
27.
Александров И.С., Герасимов А.А., Григорьев Е.Б. Энтальпия испарения и давление насыщенных паров н-алканов C5 — C18 вблизи тройной точки//Оборонный комплекс — научно-техническому прогрессу России. — 2010. — № 4. — С. 56-61.
28.
Dornte R.W., Smyth C.P. The dielectric polarization of liquids. X. The polarization and refraction of the normal paraffins//J. Am. Chem. Soc. — 1930. — Vol. 52. — P. 3546-3552.
29.
Bingham E.C., Fornwalt H.J. Chemical constitution and association//J. Rheology. — 1930. — Vol. l.1, № 4. — P. 372-417.
30.
The synthesis and properties of hydrocarbons of high molecular weight-IV / R.W. Schiessler [et al.]//Proc. Am. Pet. Inst. — 1946. — Vol. 3, № 26. — P. 254-302.
31.
Francis A.W. Pressure-Temperature-Liquid Density Relations of Pure Hydrocarbons//Ind. Eng. Chem. — 1957. — Vol. 10. — P. 1779-1786.
32.
Diaz Pena M., Tardajos G. Isothermal compressibilities of n-alkanes and benzene//J. Chem. Thermodyn. — 1978. — Vol. 10, № 1. — P. 19-24.
33.
Dymond J.H. Young K.J. Transport properties of nonelectrolyte liquid mixtures — I. Viscosity coefficients for n-alkane mixtures at saturation pressure from 283 to 378 K//Int. J. Thermophys. — 1980. — Vol. 1, № 4. — P. 331-344.
34.
Aicart E., Tardajos G., Diaz Pena M. Isothermal compressibility of cyclohexane-n-decane, cyclohexane-n-dodecane, and cyclohexane-n-tetradecane//J. Chem. Eng. Data. — 1981. — Vol. 26, № 1. — P. 22-26.
35.
Isobaric expansivities of the binary mixtures C3H7(OH) + CnH2n+2 (n = 11, 12) between 288.15 and 318.15 K / J. Ortega [et al.]//Thermochimica Acta. — 1988. — Vol. 131. — P. 57-64.
36.
Sasse K., Jose J., Merlin J.-C. A Static Apparatus for Measurement of Low Vapor Pressures Experimental Results on High Molecular-Weight Hydrocarbons// Fluid Phase Equilib. — 1988. — V. 42. — P. 287-304.
37.
Aminabhavi T.M., Gopalakrishna B. Density, viscosity, refractive index, and speed of sound in binary mixtures of 2-ethoxyethanol with n-alkanes (C6 to C12), 2,2,4-trimethylpentane, and cyclohexane in the temperature interval 298.15-313.15 K//J. Chem. Eng. Data. — 1995. — Vol. 40. — P. 632-641.
38.
Aminabhavi T.M., Gopalakrishna B. Densities, viscosities, refractive indices, and speeds of sound of the binary mixtures of bis(2-methoxyethyl) ether with nonane, decane, dodecane, tetradecane, and hexadecane at 298.15, 308.15, and 318.15 K//J. Chem. Eng. Data. — 1994. — Vol. 39. — P. 529-534.
39.
Aminabhavi T.M., Gopalakrishna B. Thermodynamic interactions in binary mixtures of 1-chloronaphthalene with n-alkanes//Indian J. Chem. — 2001. — Vol. 40A. — P. 53-64.
40.
Aminabhavi T.M., Patil V.B. Density, refractive index, viscosity, and speed of sound in binary mixtures of ethenylbenzene with hexane, heptane, octane, nonane, decane, and dodecane//J. Chem. Eng. Data. — 1997. — Vol. 42. — P. 641-646.
41.
Thermophysical behavior of methylbenzoate + n-alkanes mixed solvents. Application of cubic equations of state and viscosity models / B. Garcia [et al.]//Ind. Eng. Chem. Res. — 2002. — Vol. 41. — P. 4399-4408.
42.
Densities, viscosities, and related properties of some (methyl ester + alkane) binary mixtures in the temperature range from 283.15 to 313.15 K / J.L. Trenzado [et al.] // J. Chem. Eng. Data. — 2001. — Vol. 46. — P. 974-983.
43.
Термические свойства н-алканов С5 — С13 в диапазоне температуры от тройной точки до критической/А.А. Герасимов [и др.]//Оборонный комплекс — научно-техническому прогрессу России. — 2011. — №. 1. — С. 43-57.
44.
Bessieres D., Saint-Guirons H., Daridon J.-L. High pressure measurement of n-dodecane heat capacity up to 100 MPa//Calculation from Equations of State. High Press. Res. — 2000. — Vol. 18. — P. 279-284.
45.
Polikhronidi N.G., Abdulagatov I.M., Batyrova R.G. Features of isochoric heat capacity measurements near the phase transition points//Fluid Phase Equilibria. — 2002. — Vol. 201. — P. 269-286.
46.
Huffman H.M., Parks G.S., Barmore M. Thermal data on organic compounds. X. Further studies on the heat capacities, entropies and free energies of hydrocarbons//J. Am. Chem. Soc. — 1931. — Vol. 53. — P. 3876-3886.
47.
Low-Temperature Thermal Data for the Nine Normal Paraffin Hydrocarbons from Octane to Hexadecane / H.L. Finke [et al.] // J. Am. Chem. Soc. — 1954. — Vol. 76. — P. 333-341.
48.
Morawetz E. The correlation of enthalpies of vaporization of isomeric alkanes with molecular structure//J. Chem. Thermodyn. — 1972. — V. 4. — P. 145-151.
49.
Melaugh R.A., Mansson M., Rossini F.D. The energy of isomerization of n-dodecane into 2,2,4,6,6-pentamethylheptane//J. Chem. Thermodyn. — 1976. — V. 8. — P. 623-626.
50.
Boelhouwer, J.W.M. Sound velocities in and adiabatic compressibilities of liquid alkanes at various temperatures and pressures//Physica. — 1967. — Vol. 34, № 3. — P. 484-492.
51.
Neruchev Yu. A., Zotov V.V., Otpushchennikov N.F. Velocity of sound in the homologous series of n-alkanes//Russ. J. Phys. Chem. — 1969. — Vol. 43, № 11. — P. 1597-1599.
52.
Мелихов Ю.Ф. Исследование температурной и барической зависимостей скорости ультразвукак в многоатомных жидкостях//Ультразвук и термодинамические свойства вещества. — Курск: Изд-во Курского гос. пед. ин-та, 1985. — С. 81-103
53.
Khasanshin T.S., Shchemelev A.P. Sound velocity in liquid n-alkanes//J High Temp. — 2001. — Vol. 39, № 1. — P. 60-67.
54.
Doolittle A.K. Specific volumes of n-alkanes // J. Chem. Eng. Data. — 1964. — Vol. 9, № 2. — P. 275-279.
55.
Golik A.Z., Adamenko I.I., Makhno M.G. Complex apparatus for studying the density and ultrasonic velocity of liquids in a wide interval of temperature and pressure (in Russian)//J Fiz. Zhidk. Sostoyaniya. — 1982. — Vol. 10. — P. 3-7.
56.
Krafft F. Ueber Neunzehn Hohere Normalparaffine C(n)H(2n+2) und ein Einfaches Volumgesetz fur den Tropfbar Flussigen Zustand // Ber. Dtsch. Chem. Ges. — 1882. — Vol. 15. — P. 1687-1712.
57.
Raman Spectra of Hydrocarbons/M.R. Fenske [et al.]//Ann. Chem. — 1947. — Vol. 19. — P. 700-765.
58.
The synthesis and properties of hydrocarbons of high molecular weight-IV / R.W. Schiessler [et al.]//Proc. Am. Pet. Inst. — 1946. — Vol. 3, № 26. — P. 254-302.
59.
Camin D.L. Rossini F.D. Physical Properties of 14 American Petroleum Institute Research Hydrocarbons, C(9) to C(15)//J. Phys. Chem. — 1955. — Vol. 59. — P. 1173-1179.
60.
Sunner S., Svenson C. Twin Calorimeter for the Determination of Enthalpies of Vaporization of Small Samples from 300 to 420 K//Chem. Soc., Faraday Trans. 1. — 1979. — Vol. 75, № 10. — P. 2359-2365.
61.
Vogel, A.I. Physical properties and chemical constitution. Part IX. Aliphatic hydrocarbons// J. Chem. Soc. — 1946. — Vol. 146. — P. 133-139.
62.
Doolittle A.K., Peterson R.H. Preparation and physical properties of a series of n-alkanes// J. Am. Chem. Soc. — 1951. — Vol. 73. — P. 2145-2151.
63.
Hutchings R.S., Van Hook W.A. Molar volumes in the homologous series of normal alkanes at two temperatures//Fluid Phase Equilibria. — 1985. — Vol. 21. — P. 165-170.
64.
Excess molar volumes of binary mixtures of 2-hexanone with n-alkane at 298.15 K/J. Ortega [et al.]//Can. J. Chem. — 1985. — Vol. 63. — P. 3354-3356.
65.
Tardajos G., Pena M.D., Aicart E. Speed of Sound in Pure Liquids by a Pulse-Echo-Overlap Method//J. Chem. Thermodyn. — 1986. — Vol. 18. — P. 683-689.
66.
The isothermal compressibility of n-paraffin liquids at low pressures/L.D. Mansker [et al.]// J Chem. Eng. Comm. — 1987. — Vol. 57. — P. 87-93.
67.
Dynamical structures of normal alkanes, alcohols, and fatty acids in the liquid state as determined by viscosity, self-diffusion coefficient, infrared spectra, and CNMR spin-lattice relaxation time measurements/M. Iwahashi [et al.]//J. Bull. Chim. Soc. Japan. — 1990. — Vol. 63, № 8. — P. 2154-2158.
68.
Wu J., Shan Z., Asfour A.-F.A. Viscometric properties of multicomponent liquid n-alkane systems//Fluid Phase Equilibria. — 1998. — Vol. 143. — Р. 263-274.
69.
Thermodynamics of 1-alkanol + n-alkane mixtures: new data and predictions from the NTGC model/J. Peleteiro [et al.]//Fluid Phase Equilibria. — 2001. — Vol. 191. — P. 83-97.
70.
Hust J.G., Schramm R.E. Density and crystallinity measurements of liquid and solid n-undecane, n-tridecane, and o-xylene from 200 to 350 K//J. Chem. Eng. Data. — 1976. — V. 21, No. 1. — P. 7-12.
71.
Sunner S., Svensson S.C. Twin Calorimeter for the Determination of Enthalpies of Vaporizationof Small Samples from 300 to 420 K//1979, J. Chem. Soc., Faraday Trans. — 1979. — V. 75, No. 1. — P. 2359.
72. Tardajos G., Pena M.D., Aicart E. Speed of Sound in Pure Liquids by a Pulse-Echo-Overlap Method//J. Chem. Thermodyn. — 1986. — Vol. 18. — P. 683-689.
73.
Isentropic thermophysical properties of pure n-paraffins as a function of temperature and chain length/F. Plantier [et al.]//High Temp.-High Press. — 2000. — Vol. 32, № 3. — P. 305-310.
74.
Daridon J.L., Lagourette B. Ultrasonic velocity of liquid tridecane and tetradecane as a function of temperature and pressure//High Temperatures-High Pressures. — 2000. — Vol. 32. — P. 83-87.