Extended Search

- in all fields
- in the title
- in key words
- in the abstract
- in the bibliography
Issue
Name
Authors
Category
2018/4
Methods for calculating deformation-induced porosity changes
Geosciences

Authors: Valentin V. STRELCHENKO graduated from Gubkin Moscow Institute of Petrochemical and Gas Industry in 1962. He is Doctor of Technical Sciences, Professor of the Department of Well Logging of Gubkin Russian State University of Oil and Gas (National Research Univer- sity). His scientific interests are well investigation while drilling and tomographic petrophysics. He is author of more than 200 scientific publications. E-mail: strelvv@gmail.com
Dmitriy A. MELNICHUK graduated from Bauman Moscow State Technical University in 2012. He is postgraduate student of the Department of Well Logging of Gubkin Russian State University of Oil and Gas (National Research University). His scientific interests are geomechanical simulation and computational mechanics. He is author of more than 10 scientific publications.
E-mail: dmmelnichuk@gmail.com

Abstract: The paper reviews the methods for calculating deformation-induced porosity changes. Basic equations allowing to take into account porosity increments in the process of operation of oil and gas industry objects are given. It is shown that neglect of nonlinear rheological effects leads to a significant distortion of the obtained results. The priority direction of the further development of models with the purpose of increasing the accuracy of calculations is indicated

Index UDK: 539.3:539.376:532.546

Keywords: porosity, stress-strain state, poroelasticity, geomechanics

Bibliography:
1. Avchjan G.M., A.I. Matveenko, Stefankevich Z.B. Petrofizika osadochnyh porod v glubinnyh uslovijah. M.: Nedra, 1979, 224 p.
2. Basniev K.S., Dmitriev N.M., Rozenberg G.D. Neftegazovaja gidromehanika: Ucheb. posobie dlja vuzov. M.: Izhevsk: Institut komp’juternyh issledovanij, 2005, 544 p.
3. Dobrynin V.M. Fizicheskie svojstva neftegazovyh kollektorov v glubokih skvazhinah. M.: Nedra, 1965, 163 p.
4. Zhukov V.S. Ocenka izmenenij fizicheskih svojstv kollektorov, vyzvannyh razrabotkoj mestorozhdenij nefti i gaza. Gornyj informacionno-analiticheskij bjulleten’ (nauchno-tehnicheskij zhurnal), 2010, no. 6, p. 341-349.
5. Zhukov V.S., Iselidze O.V., Dahnov A.V., Ryzhov A.E. Vzaimosvjaz’ fil’tracionno-emko-stnyh svojstv i petrofizicheskih parametrov jurskih otlozhenij Shtokmanovskogo mestorozhdenija. Vesti gazovoj nauki: nauch.-tehnicheskij sb., 2010, no. 2 (5), p. 108-117.
6. Kashnikov O.Ju. Issledovanie i uchet deformacionnyh processov pri razrabotke zalezhej nefti v terrigennyh kollektorah: Dis. kand. tehn. nauk: 25.00.17. Tjumen’, 2008, 153 p.
7. Kashnikov Ju.A., Ashihmin S.G. Mehanika gornyh porod pri razrabotke mestorozhdenij uglevodorodnogo syr’ja. M.: Nedra, 2007, 486 p.
8. Kuz’min Ju.O., Zhukov V.S. Sovremennaja geodinamika i variacii fizicheskih svojstv gornyh porody, 2-e izd., ster. M.: Izdatel’stvo “Gornaja kniga”, 2012, 264 p.
9. Mel’nichuk D.A. Modelirovanie deformacionnyh izmenenij v okrestnosti neftjanoj skvazhiny. NTV “Karotazhnik”. Tver’: Izd. AIS, 2015, vyp. 9 (255), p. 79-89.
10. Mihajlov N.N., Popov S.N. Vlijanie nelinejnyh jeffektov na parametry szhimaemosti porod-kollektorov. Geologija, geofizika i razrabotka neftjanyh i gazovyh mestorozhdenij, VNIIOJeNG, 2016, no. 3, p. 50–57.
11. Nikolaevskij V. N., Basniev K. S., Gorbunov A. T., Zotov G. A. Mehanika nasyshhennyh poristyh sred. M.: Nedra, 1970, 339 p.
12. Popov S.N., Mazanov S.V., Zharikov M.G. Razrabotka geomehanicheskoj modeli dlja prognoza izmenenija fil’tracionno-emkostnyh svojstv kollektorov treshhinno-porovogo tipa v processe snizhenija plastovogo davlenija (na primere achimovskih otlozhenij mestorozhdenij nefti i gaza kraj- nego severa). Geologija, geofizika i razrabotka neftjanyh i gazovyh mestorozhdenij, 2015, no. 6, p. 48-56.
13. Strel’chenko V.V. Geofizicheskie issledovanija skvazhin: Uchebnik dlja vuzov. M.: OOO “Nedra-Biznescentr”, 2008, 551 p.
14. Shhipanov A.A. Matematicheskoe modelirovanie dvuhfaznoj fil’tracii v deformiruemoj treshhinovato-poristoj srede: Dis. kand. fiz.-mat. nauk: 05.13.18. Perm’, 2002, 214 p.
15. Albrecht D., Reitenbach V. Investigations on fluid transport properties in the North-German Rotliegend tight gas sandstones and applications. Journal of Environmental Earth Sciences, 2015, issue 10/2015.
16. Cao Y., Deng J., Yu B., Tan Q., Ma C. Analysis of sandstone creep and wellbore instability prevention. Journal of Natural Gas Science and Engineering, 2014, vol. 19, p. 237-243.
17. Chen Z., Huan G., Ma Y. Computational methods for multiphase flows in porous media. Philadelphia: Society for industrial and applied mathematics, 2006.
18. Cheng A. H.-D. Poroelasticity. Springer, 2016.
19. Fjær E., Holt R.M., Raaenetal A.M., Raaen A.M., Risnes R. Petroleum related rock mecha- nics, 2 edition, Elsevier, 2008.
20. Hassanzadegan A., Blocher G., Zimmermann G., Milsch H. Thermoporoelastic properties of Flechtinger sandstone. International Journal of Rock Mechanics & Mining Sciences, 2012, 49, p. 94-104.
21. Jaeger J.C., Cook N.G.W., Zimmerman R. Fundamentals of rock mechanics. Blackwell Publishing, 2009.
22. Lewis R.W., Schrefler B.A. The finite element method in the static and dynamic deformation and consolidation of porous media, 2 edition, Chichester: Wiley, 1998.
23. Schutjens P., Heidug W. On the pore volume compressibility and its application as a petrophysical parameter. 9-th Biennial International Conference & Exposition on Petroleum Geophysics, 2012, p. 1-17.
24. Tsai L.S., Hsieh Y.M., Weng M.C., Huang T.H., Jeng, F.S. Time-dependent deformation behaviors of weak sandstones. International Journal of Rock Mechanics & Mining Sciences, 2008, vol. 45, p. 144–154.
25. Verruijt A. Theory and problems of poroelasticity. Delft University of Technology, 2013.
26. Wang H.F. Theory of linear poroelasticity with applications to geomechanics and hydrogeo- logy. Princeton: Princeton University Press, 2000.
27. Yale D.P., Nabor G.W. et al. (1993). Application of variable formation compressibility for improved reservoir analysis: SPE 26647, Society of Petroleum Engineers, p. 435.
28. Yang S., Jiang Y. Triaxial mechanical creep behavior of sandstone. Mining Science and Technology, 2010, 20, p. 339-349.
29. Zheng H., Feng X.-T., Hao X. A creep model for weakly consolidated porous sandstone including volumetric creep. International Journal of Rock Mechanics & Mining Sciences, 2010, vol. 78, p. 99-107.
30. Zimmerman R.W. Compressibility of sandstones. Developments in Petroleum Science, Elsevier: Amsterdam, 1991, vol. 29.
31. Zoback M.D. Reservoir Geomechanics. Cambridge, UK: Cambridge University Press, 2007.