Extended Search

- in all fields
- in the title
- in key words
- in the abstract
- in the bibliography
Issue
Name
Authors
Category
2018/4
Model of evaluation of fire safety at fuel and energy complex facilities using temporal characteristics from graphs of strategic planning using automated control system
Technical sciences

Authors: Ilya V. SAMARIN graduated from Gubkin Russian State University of Oil and Gas in 2006. He is Candidate of Technical Sciences, assistant professor of the Department of Automation of Technological Processes of Gubkin Russian State University of Oil and Gas (National Research University). He is specialist in the field of automation and management. He is author of more than 60 scientific publications. E-mail: ivs@gubkin.pro.
Andrey Yu. STROGONOV graduated from Gubkin Russian State University of Oil and Gas in 2006. He is postgraduate of the Department of Automation of Technological Processes of Gubkin Russian State University of Oil and Gas (National Research University). His research interests include automation of assessment of efficiency of fire safety management and improvement of automation of intellectual support of management of fire and explosion protection. He is author of 2 scientific publications.
E-mail: andreystrogonov@gubkin.ru.

Abstract: This paper considers the model of fire safety (FS) evaluation at facilities of the fuel and energy complex using their temporal characteristics. The tools of strategic planning are proposed to assess the efficiency of the FS management. This model allows to calculate the aggregate quality indicator for the selected purpose of the study. The main objective is to ensure FS at facilities of the fuel and energy complex. The quality indicator is presented as a target function. With the help of hierarchies for detail different expressions of the performance indicator for FS activities of different scale were received. Physical values of the current runtime of the FS activities was applied for calculations. The proposed model could allow to get accurate real-time information about the state of FS activities for decision-maker. These data can be obtained during operation of automated process control system. The model evaluation from this study is one of the tools of support of the the automated system of fire and explosion protection of the facilities of the fuel and energy complex

Index UDK: 658.5

Keywords: automation, mathematical model, modeling, aggregate indicator, performance indicator, target function, dynamic mode, hierarchy, strategic planning, management support, decision support systems, automated control systems, automated systems of fire and explosion protection, fire safety, object of fire safety, fuel and energy complex

Bibliography:
1. Dawoud S. M. Fire protection in the petroleum industry. SPE Annual Technical Con-ference and Exhibition (11-14 November, 2007, Anaheim, California, USA). DOI: 10.2118/110521-ms.
2. Antonsen S., Skarholt K., Ringstad A.J. The role of standardization in safety management— A case study of a major oil & gas company. Safety science, 2012, vol. 50, no. 10, p. 2001-2009. DOI: 10.1016/j.ssci.2011.11.001.
3. Samarin I.V., Strogonov A.,Yu., Sharova I.Ya., Fomin A.N. Evolution of approaches to automation and management of technological processes and productions in the industry and their role in ensuring effective planning and successful development of the modern enterprise. Estestvennyye i tehnicheskiye nauki [Natural and Technical Sciences], 2018, no. 8 (122), p. 187-203 (in Russian).
4. Abrosimov А.А., Topolskiy N.G., Fedorov А.V. Avtomatizirovanniyye systemy pozharovzrivobezopasnosti neftepererabatyvayushchikh proizvodstv [Computer-aided fire and explosion safety systems of petroleum refineries]. Moscow, State Fire Academy of the Ministry of Internal Affairs of Russia Publ., 1999, 239 p. (in Russian).
5. Butuzov S.Yu., Kryuchkov A.V., Samarin I.V. Method of quantitative calculation of the total factor impact of personnel stability special software of the automated systems of fire and explosion. Pozharovzryvobezopasnost [Fire and Explosion Safety], 2018, vol. 27, no. 7-8, p. 60-66 (in Russian).
6. Kruchkov A.V. Universal set of interface semantic unit in the special software. Tekhnologii tekhnosfernoj bezopasnosti [Technology of technosphere safety], 2016, no. 1 (65), p. 237-241 (in Russian).
7. Samarin I.V. Formalization of the problem of the justification of the medium-term action plan to build the automated control system of strategic planning at the enterprise [Innovatsii i investitsii. Innovation and Investment], 2014, no. 4, p. 177-183 (in Russian).
8. Samarin I.V. ACS strategic planning at the enterprise: refinement of methodological and instrumental basics of planning schemes. Sovremennaya nauka: aktualnyye problemy teorii i praktiki. Seriya: Yestestvennyye i tekhnicheskiye nauki [Modern Science: Actual Problems of Theory and Practice. Series: Natural and Technical Science], 2017, no. 2, p. 31-44 (in Russian).
9. Alekhin E.M., Brushlinsky N.N., Sokolov S.V., Wagner P. Russian simulation for strategic planning. Fire International, 1996, no. 154, p. 32-33.
10. Saaty T.L. Prinyatie reshenij. Metod analiza ierarhij [Decision making. Hierarchy analysis method]. Moscow, Radio and communication, 1993, 278 p. (in Russian).
11. Samarin I.V., Fomin A.N. Strategic planning at the enterprise: application of a method of the analysis of hierarchies to analyze target system installations. Innovatsii i investitsii [Innovation and Investment], 2014, no. 6, p. 132-141 (in Russian).
12. Sukharev M.G., Arsenev-Obraztsov S.S., Zhukova T.M. Osnovy matematicheskogo i kompyuternogo modelirovaniya v zadachakh neftegazovogo kompleksa [Fundamentals of mathematical and computer modeling in the problems of oil and gas complex]. Moscow, MAKS Press Publ., 2010, 120 p. (in Russian).
13. Gelfand I.M. Lekcii po linejnoj algebra [Lectures on linear algebra]. Moscow, Dobrosvet, 2006, 320 p. (in Russian).
14. Zorich V.A. Matematicheskij analiz. Chast I. [Mathematical analysis. Part 1]. Moscow, MCNMO, 2017, 576 p. (in Russian).
15. Moiseyev N.N. Matematicheskie zadachi sistemnogo analiza: Uchebnoe posobie [Mathematical tasks of the system analysis]. Moscow, Librokom, 2013, 532 p.