Extended Search

- in all fields
- in the title
- in key words
- in the abstract
- in the bibliography
Methods for calculating deformation-induced porosity changes

Authors: Valentin V. STRELCHENKO graduated from Gubkin Moscow Institute of Petrochemical and Gas Industry in 1962. He is Doctor of Technical Sciences, Professor of the Department of Well Logging of Gubkin Russian State University of Oil and Gas (National Research Univer- sity). His scientific interests are well investigation while drilling and tomographic petrophysics. He is author of more than 200 scientific publications. E-mail: strelvv@gmail.com
Dmitriy A. MELNICHUK graduated from Bauman Moscow State Technical University in 2012. He is postgraduate student of the Department of Well Logging of Gubkin Russian State University of Oil and Gas (National Research University). His scientific interests are geomechanical simulation and computational mechanics. He is author of more than 10 scientific publications.
E-mail: dmmelnichuk@gmail.com

Abstract: The paper reviews the methods for calculating deformation-induced porosity changes. Basic equations allowing to take into account porosity increments in the process of operation of oil and gas industry objects are given. It is shown that neglect of nonlinear rheological effects leads to a significant distortion of the obtained results. The priority direction of the further development of models with the purpose of increasing the accuracy of calculations is indicated

Index UDK: 539.3:539.376:532.546

Keywords: porosity, stress-strain state, poroelasticity, geomechanics

1. Avchjan G.M., A.I. Matveenko, Stefankevich Z.B. Petrofizika osadochnyh porod v glubinnyh uslovijah. M.: Nedra, 1979, 224 p.
2. Basniev K.S., Dmitriev N.M., Rozenberg G.D. Neftegazovaja gidromehanika: Ucheb. posobie dlja vuzov. M.: Izhevsk: Institut komp’juternyh issledovanij, 2005, 544 p.
3. Dobrynin V.M. Fizicheskie svojstva neftegazovyh kollektorov v glubokih skvazhinah. M.: Nedra, 1965, 163 p.
4. Zhukov V.S. Ocenka izmenenij fizicheskih svojstv kollektorov, vyzvannyh razrabotkoj mestorozhdenij nefti i gaza. Gornyj informacionno-analiticheskij bjulleten’ (nauchno-tehnicheskij zhurnal), 2010, no. 6, p. 341-349.
5. Zhukov V.S., Iselidze O.V., Dahnov A.V., Ryzhov A.E. Vzaimosvjaz’ fil’tracionno-emko-stnyh svojstv i petrofizicheskih parametrov jurskih otlozhenij Shtokmanovskogo mestorozhdenija. Vesti gazovoj nauki: nauch.-tehnicheskij sb., 2010, no. 2 (5), p. 108-117.
6. Kashnikov O.Ju. Issledovanie i uchet deformacionnyh processov pri razrabotke zalezhej nefti v terrigennyh kollektorah: Dis. kand. tehn. nauk: 25.00.17. Tjumen’, 2008, 153 p.
7. Kashnikov Ju.A., Ashihmin S.G. Mehanika gornyh porod pri razrabotke mestorozhdenij uglevodorodnogo syr’ja. M.: Nedra, 2007, 486 p.
8. Kuz’min Ju.O., Zhukov V.S. Sovremennaja geodinamika i variacii fizicheskih svojstv gornyh porody, 2-e izd., ster. M.: Izdatel’stvo “Gornaja kniga”, 2012, 264 p.
9. Mel’nichuk D.A. Modelirovanie deformacionnyh izmenenij v okrestnosti neftjanoj skvazhiny. NTV “Karotazhnik”. Tver’: Izd. AIS, 2015, vyp. 9 (255), p. 79-89.
10. Mihajlov N.N., Popov S.N. Vlijanie nelinejnyh jeffektov na parametry szhimaemosti porod-kollektorov. Geologija, geofizika i razrabotka neftjanyh i gazovyh mestorozhdenij, VNIIOJeNG, 2016, no. 3, p. 50–57.
11. Nikolaevskij V. N., Basniev K. S., Gorbunov A. T., Zotov G. A. Mehanika nasyshhennyh poristyh sred. M.: Nedra, 1970, 339 p.
12. Popov S.N., Mazanov S.V., Zharikov M.G. Razrabotka geomehanicheskoj modeli dlja prognoza izmenenija fil’tracionno-emkostnyh svojstv kollektorov treshhinno-porovogo tipa v processe snizhenija plastovogo davlenija (na primere achimovskih otlozhenij mestorozhdenij nefti i gaza kraj- nego severa). Geologija, geofizika i razrabotka neftjanyh i gazovyh mestorozhdenij, 2015, no. 6, p. 48-56.
13. Strel’chenko V.V. Geofizicheskie issledovanija skvazhin: Uchebnik dlja vuzov. M.: OOO “Nedra-Biznescentr”, 2008, 551 p.
14. Shhipanov A.A. Matematicheskoe modelirovanie dvuhfaznoj fil’tracii v deformiruemoj treshhinovato-poristoj srede: Dis. kand. fiz.-mat. nauk: 05.13.18. Perm’, 2002, 214 p.
15. Albrecht D., Reitenbach V. Investigations on fluid transport properties in the North-German Rotliegend tight gas sandstones and applications. Journal of Environmental Earth Sciences, 2015, issue 10/2015.
16. Cao Y., Deng J., Yu B., Tan Q., Ma C. Analysis of sandstone creep and wellbore instability prevention. Journal of Natural Gas Science and Engineering, 2014, vol. 19, p. 237-243.
17. Chen Z., Huan G., Ma Y. Computational methods for multiphase flows in porous media. Philadelphia: Society for industrial and applied mathematics, 2006.
18. Cheng A. H.-D. Poroelasticity. Springer, 2016.
19. Fjær E., Holt R.M., Raaenetal A.M., Raaen A.M., Risnes R. Petroleum related rock mecha- nics, 2 edition, Elsevier, 2008.
20. Hassanzadegan A., Blocher G., Zimmermann G., Milsch H. Thermoporoelastic properties of Flechtinger sandstone. International Journal of Rock Mechanics & Mining Sciences, 2012, 49, p. 94-104.
21. Jaeger J.C., Cook N.G.W., Zimmerman R. Fundamentals of rock mechanics. Blackwell Publishing, 2009.
22. Lewis R.W., Schrefler B.A. The finite element method in the static and dynamic deformation and consolidation of porous media, 2 edition, Chichester: Wiley, 1998.
23. Schutjens P., Heidug W. On the pore volume compressibility and its application as a petrophysical parameter. 9-th Biennial International Conference & Exposition on Petroleum Geophysics, 2012, p. 1-17.
24. Tsai L.S., Hsieh Y.M., Weng M.C., Huang T.H., Jeng, F.S. Time-dependent deformation behaviors of weak sandstones. International Journal of Rock Mechanics & Mining Sciences, 2008, vol. 45, p. 144–154.
25. Verruijt A. Theory and problems of poroelasticity. Delft University of Technology, 2013.
26. Wang H.F. Theory of linear poroelasticity with applications to geomechanics and hydrogeo- logy. Princeton: Princeton University Press, 2000.
27. Yale D.P., Nabor G.W. et al. (1993). Application of variable formation compressibility for improved reservoir analysis: SPE 26647, Society of Petroleum Engineers, p. 435.
28. Yang S., Jiang Y. Triaxial mechanical creep behavior of sandstone. Mining Science and Technology, 2010, 20, p. 339-349.
29. Zheng H., Feng X.-T., Hao X. A creep model for weakly consolidated porous sandstone including volumetric creep. International Journal of Rock Mechanics & Mining Sciences, 2010, vol. 78, p. 99-107.
30. Zimmerman R.W. Compressibility of sandstones. Developments in Petroleum Science, Elsevier: Amsterdam, 1991, vol. 29.
31. Zoback M.D. Reservoir Geomechanics. Cambridge, UK: Cambridge University Press, 2007.

Prospects of using downhole georadar for geonavigation while drilling oil and gas wells

Authors: Valentin V. STRELCHENKO graduated from the Moscow Institute of Petrochemical and Gas Industry named after Academician I.M. Gubkina in 1962. Professor of the Department of Geophysical Information Systems of the Russian State University of Oil and Gas (National Research University) named after I.M. Gubkina, Doctor of Technical Sciences Research interests: seismic survey integration, GIS and GTI for oil and gas exploration on the shelf, well drilling research, methane extraction from coal beds, tomographic petrophysics. The author and co-author of over two hundred published works, among them 5 monographs, textbooks and tutorials, 48 copyright inventions and patents. E-mail: strelvv@gmail.com
Ivan V. KUZNETSOV graduated from the Geological Faculty of SSU N.G. Chernyshevsky, specialty «Geology of oil and gas» in 2000. Deputy Director General for Geological and Technological Support of NPO CISS LLC. Research interests: control and optimization of technological processes of well construction, including geophysical research of wells, geological and technological research, remote monitoring, optimization of the trajectory of directional wells. Author and co-author of more than ten published works on relevant topics. E-mail: kuznetsov@nposngs.ru
Ilya S. KOZHEVNIKOV graduated from the Faculty of Physics of the Saratov State University named after V.G. Chernyshevsky in 2009. General Director of NPF Geoscan LLC. Research interests: geological and technological research of wells and well logging in the drilling process, automation of recognition of technological operations, optimization of technological processes of well construction. Author and co-author of five published works of the relevant topics. E-mail: S.Kozhevnikov@gazpromgeofizika.ru
Victor Y. CHIRKOV graduated from the Faculty of Physics of the Saratov State University named after VG Chernyshevsky in 2006. Leading Specialist LLC NPF «Geoscan». Research interests: geological and technological research of wells and GIS in the drilling process, the development of equipment for monitoring technological processes of well construction, conducting geophysical and geological and geochemical studies. Author and co-author of more than ten published works on relevant topics.
E-mail: vychirkov@sngs-geo.ru

Abstract: The analysis of the current state of exploration of the geological environment by borehole georadars is made on the basis of which the prospects for using the available modern technical solutions and techniques for processing and interpreting the information are given. These are adaptated to oil and gas fields during well construction. The main physico-geological models of productive layers, characteristic for the geological structure of gas, gas-condensate and oil deposits, are considered. In the process of work, modeling was used, including the use of special physical models. Based on the results of the research, conclusions were drawn about the most optimal way of development and introduction of a new technology, i.e. the creation of an instrumentation and methodological complex for geonavigation of well bores using georadars

Index UDK: 622.276.031:532.11 (571.56)

Keywords: georadiolocation, geonavigation, horizontal wells, GIS, GIS-drilling, water-oil contact, gas-water contact

1. Shtun’ S.Yu., Rakitin M.V. Mozhno li obognat’ zarubezhnye kompanii v oblasti GIS-bureniya (MWD&LWD)? Burenie i neft’, 2016, no. 10, p. 16-20.
2. Gorbachev Yu.N. Geofizicheskie issledovaniya skvazhin. M.: Nedra, 1990, 398 p.
3. Epov M.I., Glinskikh V.N. Elektromagnitnyy karotazh: modelirovanie i inversiya. Novosibirsk: Akademicheskoe izdatel’stvo «Geo», 2005, 100 p.
4. Kozhevnikov S.V., Duzin V.I. Kazhdomu tipu modeli — svoy klass karotazha. Nefteservis. 2008, no. 1 (8), p. 52-54.
5. Finkel’shteyn M.I., Kutev V.A., Zolotarev V.P. Primenenie radiolokatsionnogo podpoverkhnostnogo zondirovaniya v inzhenernoy geologii. M.: Nedra, 1986, 128 p.
6. Vladov M.L., Starovoytov A.V. Vvedenie v georadiolokatsiyu [Tekst]: Uchebnoe posobie — M.: Izdatel’stvo MGU, 2004, 153 p.
7. Kutev V., Karpukhin V., Finkel’shteyn M. Podpoverkhnostnaya radiolokatsiya. M.: Radio i Svyaz’, 1994, 216 p.
8. Voprosy podpoverkhnostnoy radiolokatsii/pod red. A.Yu. Grineva. M.: Radiotekhnika, 2005, 416 p.
9. Epov M.I., Mironov V.L., Muzalevskiy K.V. Sverkhshirokopolosnoe elektromagnitnoe zondirovanie neftegazovogo kollektora. Novosibirsk, Izdatel’stvo SO RAN, 2011, 114 p.
10. Popov S.B., Yarmakhov I.G. Matematicheskoe modelirovanie pri zondirovanii okoloskvazhinnogo prostranstva priborami so sverkhkorotkimi elektromagnitnymi impul’sami//Preprinty IPM im. M.V. Keldysha, 2013, no. 10, 32 p. URL:http://library.keldysh.ru/preprint.asp?id=2013-10 (data obrashcheniya 25.02.2015)
11. Epov M.I., Savin I.V., Mironov V.L. Spektroskopicheskie kharakteristiki dielektricheskoy pronitsaemosti vlazhnykh gornykh porod//Materialy XII Mezhdunar. nauch. konf. «Reshetnevskie chteniya» (Krasnoyarsk, 10-12 noyabrya 2008 g.), p. 116-117.
12. Epov M.I., Mironov V.L., Bobrov P.P., Savin I.V., Repin A.V. Issledovanie dielektricheskoy pronitsaemosti neftesoderzhashchikh porod v diapazone chastot 0,05-16 GGts. Geologiya i geofizika, 2009, vol. 50, no. 5, p. 630-647.
13. Frequency Spectrum Change of Borehole Radar Signals and Blind Separation. S. Ebihara, M. Kiso. Proceedings of the Tenth International Conference on Ground Penetrating Radar. Delft, The Netherlands, 21-24 June, 2004, p. 257-260.
14. Hue Y.-K., Teixeira F.L., San Martin L.E., Bittar M. Modelling of EM Logging Tools in Arbitrary 3-D Borehole Geometries Using PML-FDTD. IEEE Transaction on Geoscience and Remote Sensing, 2005, vol. 2, no. 1, p. 78-81.
15. Ebihara S., Hashimoto Y. MoM Analysis of Dipole Antennas in Crosshole Borehole Radar and Field Experiments. IEEE Transactions on Geoscience and Remote Sensing, 2007, no. 10, p. 2435-2450.
16. Kerimov A., Kopeikin V. The inverse problem for GPR of impulse type via optimal control theory. Proceedings of 7th International Conference on GPR. Lawrence, 1998, vol. 1, p. 309-312.
17. Ground Penetrating Radar / edited by David J. Daniels. London, 2004.
18. Ebihara S., Nagoya K., Abe N., Toida M. Experimental studies for monitoring water-level by dipole-antenna array radar fixed in the subsurface. Near Surface Geophysics, 2006, p. 89-96.
19. Miwa T., Sato M., Niitsuma H. Enhancement of Reflected Waves in Single-Hole Polarimetric Borehole Radar Measurement. IEEE Trans. On Antennas and Propagation, 2000, vol. 49, no. 9, p. 1430-1437.
20. Thierbach R. Analysis of a Borehole Radar in Cross-Hole Mode. IEEE Transactions on Geoscience and Remote Sensing, 1991, vol. 29, no. 6, p. 899-904.
21. Ebihara S. Analysis of Eccentered dipole antenna for borehole radar. IEEE Transactions on Geoscience and Remote Sensing, 2009, vol. 47, no. 4, p. 1073-1088.
22. Ellefsen K.J., Abraham J.D., Wright D.L., Mazzellaz A.T. Numerical study of electromagnetic waves generated by a prototype dielectric logging tool. Geophysics, 2004, vol. 69, no. 1, p. 64-77.
23. Ebihara S. Directional Borehole Radar With Dipole Antenna Array Using Optical Modulators. IEEE Transactions on Geoscience and Remote Sensing, 2004, vol. 42, no. 1, p. 45-58.
24. Hanaoka H., Ebihara S., Note M., Nakatsuka T. Estimation of Electromagnetic Parameters by Linear Dipole Array in a Borehole. Proceedings of the 12th International Conference on Ground Penetrating Radar. University of Birmingham, United Kingdom, June 16-19, 2008.
25. Hansen T.B. The Far Field of a Borehole Radar and Its Reflection at a Planar Interface. IEEE Trans. On Geoscience and Remote sensing, 1999, vol. 37, no. 4, p. 1940-1950.
26. Chen Y.-H., Coates R.T., Chew W.C. FDTD Modeling and Analysis of a Broadband Antenna Suitable for Oil-Field Imaging While Drilling. IEEE Transactions on Geoscience and Remote Sensing, 2002, vol. 40, no. 2, p. 434-442.
27. Xia J. Method and apparatus for logging underground formations using radar, 1996. September 3. U.S. Patent 5 552-786.
28. Sixin L., Motoyuki S. Electromagnetic Logging Technique Based on Borehole Radar. IEEE Transactions on Geoscience and Remote Sensing, 2002, vol. 40, no. 9, p. 2083-2092.
29. Takayama T., Sato M. A Novel Direction-Finding Algorithm for Directional Borehole Radar. IEEE Transactions on Geoscience and Remote Sensing, 2007, vol. 45, no. 8, p. 2520-2528.