Extended Search

- in all fields
- in the title
- in key words
- in the abstract
- in the bibliography
Issue
Name
Authors
Category
2018/4
Formation of principles of optimum development and functioning of gas transmission systems
Technical sciences

Authors: Bogdan V. BUDZULYAK graduated from Ivano-Frankovsk University of Oil and Gas in 1970 and from Russian Presidential Academy of National Economy in 1995. Doctor of Technical Sciences, President of the Self-Regulatory Organization “Association of costructors of gas and oil complexes”, Professor of the Department of Construction and Repair of Gas and Oil Pipelines and Storage Facilities of Gubkin Russian State University of Oil and Gas (National Research University), member (academician) of the Academy of Mining Sciences. He is author of more than 200 scientific publications. E-mail: ebaruk@asgink.ru
Dmitry N. LEVITSKIY graduated from Gubkin Moscow Institute of Petrochemical and Gas Industry in “Mechanical Engineering, Metal-Cutting Machines” (1975). He is Doctor of Engineering, professor, Head of the Department of Theoretical Mechanics at Gubkin Russian State University of Oil and Gas (National Research University). He is author of 5 inventions, over 110 scientific works on problems of theoretical and applied mechanics. E-mail: levitskiy.d@gubkin.ru
Alexey S. LOPATIN graduated from Gubkin Moscow Institute of Petrochemical and Gas Industry (1979). He is Doctor of Engineering, professor, Head of the Department of Thermodynamics and Heat Engines at Gubkin Russian State University of Oil and Gas (National Research University). He is author of 5 patents and more than 350 scientific, educational and methodical works.
E-mail: Lopatin.a@gubkin.ru
Alexander S. KUZNECHIKOV graduated from te Gubkin Russian State University of Oil and Gas in 2001, he is Senior Lecturer at Gubkin Russian State University of Oil and Gas (National Research University). He is author of 23 publications in the field of shock and wave processes in pipeline systems, education, standardization and systems of quality management. E-mail: kas@gubkin.ru

Abstract: The most important problems of the gas transmission system of Russia are ensuring the required volumes of transportation of gas and uninterrupted operation of supply of natural gas to consumers, increase in reliability of operation and minimization of power costs of transport of gas. These are solved in the process of design, construction, operation, reconstruction and modernization of the system and its main objects. The solution of the main tasks faced by the national gas transmission system is based on the study and analysis of thermogasdynamic processes occurring in the main objects and the power producing equipment used. It requires the knowledge of the structure, the principles of construction, the operation and control of the gas transmission system, the actual and planned operating modes of the gas transmission system and its main objects, the devices and schemes of the operation of the main objects, the design and characteristics of the used power producing equipment, the mathematical description of the working processes in the main objects and power producing equipment of the gas mains, methods of determination of thermodynamic and thermophysical properties of the working bodies of the power producing equipment and the systems of the main transport of gas

Index UDK: 622.691.4

Keywords: gas transmission system; gas transport; power expenses; system; natural gas; principles of development

Bibliography:
1. Vertepov A.G., Lopatin A.S., Pokutnyj A.V. Primenenie indikatorov ehnergoehffektivnosti dlya gazotransportnoj sistemy Rossii. Gazovaya promyshlennost’, 2018, no. 1 (763), p. 85.
2. Ispol’zovanie vozobnovlyaemyh istochnikov ehnergii dlya povysheniya ehnergoehffektivnos- ti ESG Rossii. V.V. Bessel’, A.S. Lopatin, A.A. Belyaev, V.G. Kucherov. ZHurnal Neftegaz.ru, 2013, no. 10, p. 12-20.
3. EHnergosberegayushchie tekhnologii pri magistral’nom transporte prirodnogo gaza. B.P. Por- shakov, A.S. Lopatin, A.F. Kalinin, S.M. Kupcov, K.H. SHotidi. M.: Izd. centr RGU nefti i gaza imeni
I.M. Gubkina, 2014, 417 p.
4. Celevaya kompleksnaya programma po sozdaniyu otraslevoj sistemy diagnosticheskogo ob- sluzhivaniya gazotransportnogo oborudovaniya kompressornyh stancij RAO Gazprom (do 2000g.). M.: IRC Gazprom, 1997.
5. Osobennosti resursosberegayushchej sistemy ehkspluatacii oborudovaniya kompressornyh stancij. A.S. Lopatin, A.F. Kalinin, D.N. Levitskij, D.A. Belyaev. Dokl. Mezhd. nauch.-tekhn. konf. “Inzhenernoe iskusstvo v razvitiicivilizacii” (Moskva, oktyabr’, 2003). M.: MGTU imeni N.EH. Bau- mana, 2004, p. 140-141.
6. Formirovanie edinoj otraslevoj sistemy diagnosticheskogo obsluzhivaniya (OSDO) oborudo- vaniya RAO “Gazprom”. V.V. Remizov, A.D. Sedyh, S.P. Zarickij, A.S. Lopatin, M.A. Bronovec. Nauchno-tekhn. sbornik IRC Gazprom, ser. “Diagnostika oborudovaniya i truboprovodov”, 1996, no. 4-6, p. 7-22.
7. Diagnosticheskoe obsluzhivanie magistral’nyh gazoprovodov. A.M. Angalev, B.N. Antipov, S.P. Zarickij, A.S. Lopatin. M.: MAKS Press, 2009, 112 p.
8. ZHitomirskij B.L., Lopatin A.S. Kadrovoe obespechenie sistemy upravleniya tekhnicheskim sostoyaniem i celostnost’yu magistral’nyh gazoprovodov. Territoriya Neftegaz, 2017, no. 3, p. 18-21.
9. Sistema nepreryvnogo tekhnicheskogo obsluzhivaniya i remonta gazotransportnogo oborudo- vaniya kompressornyh stancij SINTOR. A.S. Lopatin, D.N. Levitskij, S.P. Zarickij, K.V. Frejman,
10. B.V. Frejman i dr. M.: RGU nefti i gaza imeni I.M. Gubkina, 2005, 80 p.

2018/3
Сalculation of anti-icing system of heat-exchange section for integrated air-cleaning system of gas turbine engine
Geosciences

Authors: Bogdan V. BUDZULYAK graduated from Ivano-Frankovsk University of Oil and Gas in 1970 and from Russian Presidential Academy of National Economy in 1995. Doctor of Technical Sciences, President of the Self-Regulatory Organization «Association of costructors of gas and oil complexes», Professor of the Department of Construction and Repair of Gas and Oil Pipelines and Storage Facilities of Gubkin Russian State University of Oil and Gas (National Research University), member (academician) of the Academy of Mining Sciences. He is author of more than 100 scientific publications. E-mail: ebaruk@asgink.ru
Alexander F. KALININ graduated from Gubkin Moscow Institute of Oil and Gas Industry in 1976. Doctor of Technical Sciences, Professor of the Department of Thermo-dynamics and Heat engines of Gubkin Russian State University of Oil and Gas (National Research University). He is author of more than 110 scientific publications. E-mail: kalinine.a@gubkin.ru
Artem Y. FEDOSEEV graduated from Bauman Moscow State Technical University in 2012. He is currently working on his thesis for Candidate of Technical Sciences of the Department of Thermodynamics and Heat Engines of Gubkin Russian State University of Oil and Gas (National Research University) He is author of 10 scientific publications. E-mail: artemyfed@yandex.ru

Abstract: Protection of the inlet air-cleaning system of the gas turbine engine from ice formation is an important aspect of the operation of the gas-compressor unit during the autumn-winter operation period. The article presents a comparative analysis of the existing methods for the implementation of anti-icing systems, describes their advantages and disadvantages. A method for thermal and hydraulic calculations of a modernized anti-icing system using a heat-exchange section is presented. Gas pumping unit GPA-C-16 is used as an example for the calculation and design sketching

Index UDK: 621.45.03

Keywords: gas turbine engine, air-cleaning system, anti-icing system, thermal design, heat-exchange section

Bibliography:
1. Vanchin A.G., Romonenkov S.V., Fedoseev A.Y. Anti-icing system for air inlet system of gas compressor unit with gas turbine engine. Patent RF, 2017, no. 174364.
2. Gavra G.G., Mihailov P.M., Ris V.V. Thermal and hydraulic calculation of heat exchangers for compressor plants. Leningrad, 1982, 72 p.
3. State Standard 8732-78. Seamless hot-deformed steel pipes. Range of sizes. Moscow, Standinform Publ., 1979, 9 p. (in Russian).
4. Idelchik I.E. Reference book on hydraulic resistance. Moscow, Mashinostroenie, 1992, 672 p.
5. Ponkin V.N., Giltcov E.I., Kesel B.A., Kornoukhov A.A. The set of technical solutions to increase the efficiency of gas compressor units. Gas turbine technology, 2009, no 2, p. 18–22.
6. Company Standard STO Gazprom 2-2.1-226-2008. Technical requirements for air inlet system for gas compressor units. Moscow, Gazprom Publ., 2008, 22 p. (in Russian).
7. Kalinin A.F., Kupcov S.M., Lopatin A.S., Shotidi K.H Theoretical foundations of heat engineering. Thermodynamics and heat transfer in the technological processes of the oil and gas industry. Moscow, Gubkin Russian State University of Oil and Gas, 2016, 348 p.
8. Troshin A.K., Kupcov S.M., Kalinin A.F. Thermodynamic and thermophysical properties of working bodies of thermal power plants. Moscow, MPA-Press, 2006, 78 p.
9. Fedoseev A.Y. Increase of efficiency of anti-icing system of air inlet system of GPA-C-16. Gas turbine technology, 2017, no. 5, p. 22-26.
10. Schroth T. Customized filter concepts for intake air filtration in gas turbines and turbocom-pressors. Diesel & Gas Turbine Worldwide, October 1993, p. 38-40.