Extended Search

- in all fields
- in the title
- in key words
- in the abstract
- in the bibliography
Nanostructured photocatalysts based on cadmium and zinc sulfide nanoparticles deposited inside/outside natural halloysite nanotubes
Chemical sciences

Authors: Yaroslav A. CHUDAKOV graduated from Gubkin Russian State University of Oil and Gas (National Research University) in 2014. He is an engineer and post graduate student at Gubkin Russian State University of Oil and Gas (National Research University). He is author of 8 scientific publications. E-mail: chudakov.yaroslav@gmail.com
Anna Yu. KURENKOVA graduated from Novosibirsk State University in 2017. She works is junior research fellow and post graduate student in Boreskov Institute of Catalysis SB RAS. She is an expert in the field of photocatalysis on semiconductors. She is author of 5 scientific publications. E-mail: kurenkova@catalysis.ru
Fereshteh POURESMAEIL graduated from Bauman Moscow State Technical University in 2016 as a top student. He is post graduate student of the Department of Physical and Colloid Chemistry of Gubkin Russian State University of Oil and Gas (National Research University). E-mail: pouresmaeil@gubkin.ru
Anna V. STAVITSKAYA graduated from Gubkin Russian State University of Oil and Gas (National Research University) and got PhD in 2015. Is a researcher in the Department of Physical and Colloid Chemistry of Gubkin Russian State University of Oil and Gas (National Research University). Author of more than 20 scientific publications E-mail: stavitsko@mail.ru

Abstract: Novel nanophotocatalysts based on CdS or Cd(1-x)ZnxS nanoparticles less than 10 nm in size and mass concentration in catalyst of about 3–3,5 % deposited on outer and inner surface of halloysite nanotubes were synthesized and investigated. The obtained catalysts are efficient in reaction of hydrogen evolution from electrolyte solution under visible light irradiation. It was shown that the most active catalyst is a system with Cd0,3Zn0,7S nanopartilces deposited on halloysite, the hydrogen reaction rate reached 756 µmol/h·gkat

Index UDK: 544.774.4, 544.478-03

Keywords: cadmium sulfide, halloysite, photocatalysts, nanotubes, nanoparticles, hydrogen

1. Lyubina T.P., Kozlova E.A. New Photocatalysts Based on Cadmium and Zinc Sulfides for Hydrogen Evolution from Aqueous Na2S—Na2SO3 Solutions under Irradiation with Visible Light. Kinetics and Catalysis, 2012, no. 53, p. 188–196.
2. Huang Y., Chen J., Zou W., Zhang L.X., Hu L., He M., Gu L., Deng J.X., Xing X.R. A review of one-dimensional TiO 2 nanostructured materials for environmental and energy applications Dalton Transactions. J. Mater. Chem. A., 2016, no. 45, p. 1160–1165.
3. Li Y., Du J., Peng S., Xie D., Lu G., Li S. Enhancement of photocatalytic activity of cadmium sulfide for hydrogen evolution by photoetching International Journal of Hydrogen Energy. J. Am. Chem. Soc., 2008, no. 33, p. 2007–2013.
4. Synthesis of CdS nanorods by an ethylenediamine assisted hydrothermal method for photocatalytic hydrogen evolution. J. Phys. Chem. C., 2009, no. 113, p. 9352–9358.
5. Peng S.Q., Huang Y.H., Li Y.X. Rare earth doped TiO2-CdS and TiO2-CdS composites with improvement of photocatalytic hydrogen evolution under visible light irradiation. Materials Science in Semiconductor Processing, 2013, no. 16, p. 62–69.
6. Vinokurov V.A., Stavitskaya A.V., Ivanov E.V., Gushchin P.A., Kozlov D.V., Kurenkova A.Y., Kolinko P.A., Kozlova E.A., Lvov Y.M. Halloysite nanoclay based CdS formulations with high catalytic activity in hydrogen evolution reaction under visible light irradiation. ACS Sustain. Chem. Eng., 2017, no. 5, p. 11316–11323.
7. Parmon V.N., Kozlova E.A. Heterogeneous semiconductor photocatalysts for hydrogen production from aqueous solutions of electron donors. Russ Chem Rev., 2017, no. 86, p. 870–906.
8. Vinokurov V.A., Stavitskaya A.V., Glotov A.P., Novikov A.A., Zolotukhina A.V., Kotelev M.S., Gushchin P.A., Ivanov E.V., Darrat Y., Lvov Y.M. Nanoparticles Formed Onto/Into Halloysite Clay Tubules: Architectural Synthesis and Applications. Chem. Rec., 2018, no. 18, p. 1–11.
9. Papoulis D., Komarneni S., Panagiotaras D., Stathatos E., Toli D., Christoforidis K.C., Fernández-García M., Li H., Yin S., Sato T., Katsuki H. Halloysite—TiO2 nanocomposites: synthesis, characterization and photocatalytic activity. Applied Catalysis B: Environmental, 2013, no. 132, p. 416–422.
10. Peng H., Liu X., Tang W., Ma R. Facile synthesis and characterization of ZnO nanoparticles grown on halloysite nanotubes for enhanced photocatalytic properties. Scientific Reports, 2017, no. 7, p. 2250.
11. Xing W., Ni L., Liu X., Luo Y., Lu Z., Yan Y., Huo P. Effect of metal ion (Zn2+, Bi3+, Cr3+, and Ni2+)-doped CdS/halloysite nanotubes (HNTs) photocatalyst for the degradation of tetracycline under visible light. Desalination and Water Treatment, 2015, no. 53, p. 794–805.
12. Markovskaya D.V., Kozlova E.A., Stonkus O.A., Saraev A.A., Cherepanoua S.V., Parmon V.N. Evolution of the state of copper-based co-catalysts of the Cd0. 3Zn0. 7S photocatalyst at the photoproduction of hydrogen under action of visible light. International Journal of Hydrogen Energy, 2017, no. 42, p. 30067–30075.
13. Abdullayev E., Joshi A., Wei W.B., Zhao Y.F., Lvov Y. Enlargement of halloysite clay nanotube lumen by selective etching of aluminum oxide. ACS Nano, 2012, no. 6, p. 7216–7226.