Extended Search

- in all fields
- in the title
- in key words
- in the abstract
- in the bibliography
Study of stabilizing and dispersing ability of humic-clay complexes toward oil pollution of aquaous media
Chemical sciences

Authors: Natalia Yu. GRECHISCHEVA graduated from MSU named after M.V. Lomonosov in 1992. She is Candidate of chemical Sciences. Associate Professor of the Department of industrial ecology of Gubkin Russian State University (National Research University) of Oil and Gas. She is specialist in the chemistry of humic substances and their application in environmental technologies. She is author of over 60 scientific publications. E-mail: yanat2@mail.ru
Vladimir A. HOLODOV graduated from MSU named after M.V. Lomonosov in 1998. He is Candidate of biological Sciences. Leading researcher of the laboratory of biology and biochemistry soil of Dokuchaev Soil Institute. He is specialist in the field of light fractions of soil organic matter, interaction of humic substances with minerals and pesticides. He is author of over 50 publications.
E-mail: vkholod@mail.ru
Irina V. PERMINOVA graduated from MSU named after M.V. Lomonosov in 1982. She is Doctor of chemical Sciences, Professor, leading researcher of the Department of medici- nal chemistry and fine organic synthesis, faculty of the chemistry of Moscow state University named after M.V. Lomonosov. She has been working in the field of humic substances research for over twenty-five years. She is author of over 270 publications. E-mail: iperm@org.chem.msu.ru
Aksana M. PARFENOVA graduated from MSU named after M.V. Lomonosov in 1969. She has been Researcher at the Department of colloid chemistry at the faculty of chemistry, of Moscow state University named after M.V. Lomonosov since 1973. She is specialist in the field of colloid chemistry and author of more than 110 publications. E-mail: parf@colloid.chem.msu.ru
Mihail S. KOTELEV graduated from Gubkin Russian State University of Oil and Gas in 2010. He is Candidate of chemical Sciences. Junior researcher of the Department of physical and colloid chemistry of Gubkin Russian State University (National Research University) of Oil and Gas. The focus of his research is the use of extremophilic and autotrophic microorganisms in biotechnology. He is author of 16 scientific works. E-mail: kain@inbox.ru

Abstract: The prospects of using humic-clay complexes (HCC) as stabilizing agents for natural water-oil emulsions, the formation of which contributes to the natural process of self-purification of aqueous systems are shown. The most effective is the use of organo stabilizers with surface modified by coal humic substances. Evaluation of the effectiveness of the dispersing ability of these complexes also allows to consider the possibility of using them as natural dispersants. The use of such humic-clay complexes does not pose the risk of secondary pollution in cotrast to the use of molecular surfactants

Index UDK: 547.992.2

Keywords: humic-clay complexes, humic substances, stabilizer, stabilization of emulsions of oil, natural dispersant

1. Mericidi I.A., Ivanovskij V.A., Prohorov A.N. Tehnika i tehnologii lokalizacii i likvidacii razlivov nefti i nefteproduktov (Equipment and technologies of localization and liquidation of oil spills and oil products). Saint Petersburg, 2008, 824 p. (in Russian).
2. Fingas M. Oil spill science and technology. U.S.: Elsevier, 2011, 567 p.
3. Barron M.G., Carls M.G., Short J.W., Rice S.D. Photoenhanced toxicity of aqueous phase and chemically dispersed weathered Alaska north slope crude oil to pacific herring eggs and larvae. Environ. Tox. Chem., 2003, v. 22, p. 650–660.
4. Kirby M.F., Lyons B.P., Barry J., Law R.J. The toxicological impacts of oil and chemically dispersed oil: UV mediated phototoxicity and implications for environmental effects, statutory testing and response strategies. Mar. Pollut. Bull., 2007, p. 464–488.
5. Sun J., Zheng X. A review of oil-suspended particulate matter aggregation — a natural process of cleansing spilled oil in the aquatic environment. J. Environ. Monit., 2009, v. 11, p. 1801–1809.
6. Muschenheim D.K., Lee K. Removal of oil from the sea surface through particulate interactions: review and prospectus. Spill Sci. Technol. Bull., 2002, v. 8, no. 1, p. 9–18.
7. Owens E.H., Taylor E., Humphrey B. The persistence and character of stranded oil on coarse-sediment beaches: review. Mar. Pollut. Bull., 2008, v. 56, p. 14–26.
8. Owens E.H., Lee K. Interaction of oil and mineral fines on shorelines: review and assessment. Mar. Pollut. Bull., 2003, v. 47, p. 397–405.
9. Vignati E., Piazza R., Lockhart T.P. Pickering emulsions: interfacial tension, colloidal layer morphology, and trapped-particle motion. Langmuir, 2003, v. 19, no. 17, p. 6650–6656.
10. Lee K. Oil-particle interactions in aquatic environments: influence on the transport, fate, effect and remediation of oil spills. Spill Sci. Technol. Bull., 2002, v. 8, no. 1, p. 3–8.
11. Torres L.G., Iturbe R., Snowden M.J., Chowdhry B.Z., Leharne S.A. Can Pickering emulsion formation aid the removal of creosote DNAPL from porous media? Chemosphere, 2008, v. 71, is. 1, p. 123–132.
12. Torres L.G., Iturbe R., Snowden M.J., Chowdhry B.Z., Leharne S.A. Preparation of o/w emulsions stabilized by solid particles and their characterization by oscillatory rheology Colloids and Surfaces A.: Physicochem. Eng. Asp., 2007, v. 302, is. 1-3, p. 439–448.
13. Mao Z., Xu H., Wang D. Molecular mimetic self-assembly of colloidal particles. Adv. Functional Materials, 2010, v. 20, is. 7, p. 1053–1074.
14. Lee K., Stoffyn-Egli P., Tremblay G.H., Owens E.H., Sergy G.A., Guenette C.C., Prin- ce R.C. Oil-mineral aggregate formation on oiled beaches: Natural attenuation and sediment relocation. Spill Sci. Technol. Bull., 2003, v. 8, no. 3, p. 285–296.
15. Zhang H., Khatibi M., Zheng Y., Lee K., Li Z., Mullin J.V. Investigation of OMA formation and the effect of minerals. Mar. Poll. Bull., 2010, v. 60, no. 11, p. 1433–1441.
16. Khelifa A., Stoffyn-Egli P., Hill P.S., Lee K. Characteristics of oil droplets stabilized by mineral particles: the effect of oil types and temperature. Spill Sci. Technol. Bull., 2002, v. 8, no. 1, p. 19–30.
17. Venkataraman P., Jingjian T., Etham F. Attachment of a hydrophobically modified biopo-lymer at the oil-water interface in the treatment of oil spills. ACS Appl. Mater. Interfaces, 2013, v. 5, p. 3572–3580.
18. Perminova I.V. Grechishcheva N.Yu., Petrosyan V.S. Relationships between structure and binding affinity of humic substances for polycyclic aromatic hydrocarbons: relevance of molecular descriptors. Environ. Sci. Technol., 1999, v. 33, pp. 3781–3787.
19. Orlov D.S. Himija pochv (Chemistry of soils). Moscow, 1992, 259 p. (in Russian).
20. Kovalevskij D.V., Permin A.B., Perminova I.V., Petrosjan V.S. The choice of conditions of registration for quantitative 13C NMR spectra of humic acids. Vestnik Moskovskogo Universiteta. Cerija 2. Himija. [The Moscow University Herald. Series 2]. Chemistry, 2000, T. 41, no. 1, p. 39–42 (in Russian).
21. Grechishheva N.Yu., Holodov V.A., Vahrushkina I.A., Perminova I.V., Meshcheriakov S.V. Using a model organo-mineral complexes on the basis of humic acids and kaolinite to study the sorption processes of PAHs aquatic and soil environments. Zashhita okruzhajushhej sredy v neftega-zovom komplekse [Environmental protection in oil and gas complex], 2012, no. 5, p. 21–25 (in Russian).
22. Balcke G.U., Kulikova N.A., Hesse S., Perminova I.V., Frimmel F.H. Adsorption of humic substances onto kaolin clay related to their structural features. Soil Sci. Soc. Am. J., 2002, v. 66, p. 1805–1812.
23. Kholodov V.A., Milanovskiy E.Y., Konstantinov A.I., Tyugai Z.N., Yaroslavtseva N.V., Perminova I.V. Irreversible sorption of humic substances causes a decrease in wettability of clay surfaces as measured by a sessile drop contact angle method. J. Soils Sediments, 2017. doi: 10.1007/ s11368-016-1639-3
24. Lee K., Stoffyn-Egli P., Wood P.A., Lunel T. Formation and structure of oil-mineral fines aggregates in coastal environments. Proceedings of the 21st AMOP technical seminar. Ottawa, ON: Environment Canada, 1998, p. 911–921.
25. Lee K., Stoffyn-Egli P. Characterization of oil-mineral aggregates. Proceedings of interna-tional oil spill conference. Washington, DC: American Petroleum Institute, 2001, p. 991–996.
26. Swirling flask dispersant effectiveness test, revised standard dispersant toxicity test, and bio-remediation agent effectiveness. Protection of environment. The Code of Federal Regulations of the United States of America. EPA, Washington, 2010, T. 40, part 300, Appendix C., 534 p.