Extended Search

- in all fields
- in the title
- in key words
- in the abstract
- in the bibliography
Fracture reorientation in horizontal wells with multistage hydraulic fracturing

Authors: Regina D. KANEVSKAYA graduated from Gubkin Russian State University of Oil and Gas in 1983. She is Professor, Head of the Department of Applied Mathematics and Computer Modeling of Gubkin Russian State University (National Research University) of Oil and Gas. She is author more than 100 scientific works, including 3 monographs. She has prepared 6 Ph.D students. E-mail: pmkm2014@yandex.ru
Andrei A. PIMENOV graduated from Gubkin Russain State University of Oil and Gas in 2012. He completed graduate studies at the Department of Applied Mathematics and Computer Modeling at Gubkin State University of Oil and Gas 2012-2015. He is leading engineer of the Dept. of Oilfields Development at OOO „BashNIPIneft”. E-mail: Andrej_pimenov@mail.ru

Abstract: geomechanical problem of determining the stress-strain state of the formation with hydraulic fractures is described. An algorithm for solving this problem based on the displacement discontinuity method, allowing to consider in detail both the hydraulic fracture, and natural fractures in the formation is proposed. The stress-strain state is calculated for the reservoir in the vicinity of horizontal well borehole with multistage hydraulic fracturing. The conditions when the reorientation of cracks multistage hydraulic fracturing is possible are determined. Hydrodynamic simulations allowing to estimate the production of horizontal wells with multi-stage fracturing with different wellbore and fracture system configuration are performed

Index UDK: 51.72; 622.276.66

Keywords: geomechanical model, multistage hydraulic fracturing, hydraulic fracture reorientation, stress-strain state of reservoir, displacement discontinuity method

1. http://www.eia.gov/todayinenergy/detail.php?id=25372 (Accessed 01.09.2016).
2. Barenblatt G.I. On certain problems of the theory of elasticity arising in the studies of the mechanism of the hydraulic fracturing of the oil-bearing strata. Prikladnaya Matematika i Mekhanika [Applied Mathematics and Mechanics (PMM)], 1956, vol. 20, no. 4, p. 475–486 (in Russian).
3. Zheltov Yu., Christianovich S. About hydraulic fracturing oil layer. Izvestiya USSR. Ac. Sci. Techn. Sci., 1955, no. 5, p. 3–41 (in Russian).
4. Perkins T.K., Kern L.R. Widths of hydraulic fractures. J. Petrol. Technol, 1961, vol. 13, no. 9, p. 937–949.
5. Hubbert M.K., Willis D.G. Mechanics of Hydraulic Fracturing. Transactions of Society of Petroleum Engineers of AIME, 1957, vol. 210, p. 153–168.
6. Terzaghi, K. The shearing resistance of saturated soils. Proc. Int. Conf. Soil Mech. Found. Eng. 1st, 1936, p. 54–55.
7. Biot M.A. General Theory of Three Dimensional Consolidation. Journal of Applied Physics, 1941, vol. 12, no. 2, p. 155–161.
8. Biot M.A. Mechanics of Deformation and Acoustic Propagation. Journal of Applied Physics, 1962, vol. 33, no. 4, p. 1482–1498.
9. Nikolaevskii V.N. Sobranie trudov. Geomehanika. T. 1. Razrushenie i dilatansiya. Neft i gaz. T. 1 [Complete works. Geomechanics Vol. 1: Destruction and dilatancy. Oil and Gas. Vol. 1], Moscow.: IKI, 2010, 640 p.
10. De Boer R. Theory of porous media. Highlights in historical development and current state. Berlin: Springer, 2000, 634 p.
11. Crouch S.L., Starfield A.M. Metody granichnyh elementov v mehanike tverdogo tela. Moscow.: MIR, 1987, 328 p.
12. Banerjee P.K., Butterfield R. Metody granichnyh elementov v prikladnyh naukah. Moscow.: MIR, 1984, 494 p.
13. Economides M.J., Nolte K.G. Reservoir Stimulation. Third Edition. Wiley, 2000, 856 p.
14. Maltsev V.V., Asmandiyarov R.N., Baikov V.A., Usmanov T.S., Davletbaev A.Y. Testing of auto hydraulic-fracturing growth of the linear oilfield development system of Priobskoye oil field. Neftyanoe khozyaystvo-Oil Industry, 2012, no. 5, p. 70–73 (Russian).