Extended Search

- in all fields
- in the title
- in key words
- in the abstract
- in the bibliography
Issue
Name
Authors
Category

Authors: Alexander N. KULIKOV graduated from Ufa State Petroleum Technological University in 1980. He is Ph.D., Head of Production Chemistry Laboratory, Scientific Educational Center of Gubkin Russian State University (National Research University) of Oil and Gas. Hi is author of over 50 scientific publications. E-mail: ANK-_1@mail.ru
Lyubov A. MAGADOVA graduated from Gubkin Moscow Institute of Petrochemical and Gas Industry in 1975. She is Ph.D., Professor of the Department of Oil and Gas Processing of Gubkin Russian State University (National Research University) of Oil and Gas. She is author of over 160 scientific publications. E-mail: magadova0108@himeko.ru
Kira A. POTESHKINA graduated from Gubkin Russian State University of Oil and Gas in 2012. She is leading engineer of the Production Chemistry Laboratory, Scietific Educational Center of Gubkin Russian State University (National Research University) of Oil and Gas. She is author of over 20 scientific publications. E-mail: poteshkina.kira@yandex.ru
Dmitriy Ju. ELISEEV graduated from Almetyevsk Petroleum Institute in 1998. He is Ph.D., Нead divisional manager of the Research and Education Center of the Department of Chemical Engineering for Oil and Gas Industry of Gubkin Russian State University (National Research University) of Oil and Gas. He is author 50 published scientific papers and three patents.
E-mail: eliseev.d@gubkin.ru
Mikhail A. SILIN graduated from Gubkin Moscow Institute of Petrochemical and Gas Industry in 1978. He is Doctor of Chemical Sciences, Vice-Rector of Iinnovations and Commercialization of Gubkin Russian State University (National Research University) of Oil and Gas, Head of the Department of Chemical Engineering for Oil and Gas Industry. He is an author of over 160 scientific publications. E-mail: silin.m@gubkin.ru

Abstract: The article presents ways to improve water inflow control technologies in production wells and repair and insulation works in injectors. These consist in cost reduction by eliminating the pre-lifting pump from the well. Such work on water shut control in producing wells is recommended to be carried out simultaneously with preparation for the current repair. An integrated technology including water shut off works, killing and acid stimulation of wells is offered. “IMR” is proposed as a plugging composition. The expediency of insulation works in injection wells to eliminate behind-casing flow using diverter technology is shown. It is recommended to temporarily isolate the productive layer by such compositions. The technology of temporary producing formation isolation with guar gel and other reagents is offered

Index UDK: 622.276.72

Keywords: low-waste water control technology, killing of a well, residual resistance factor, rain-technology, temporary plugging productive formation, mutual neutralization

Bibliography:
1. Kulikov A.N., Nigmatullina P.G. The question of optimizing the choice on the objects of water shut off works in water-oil deposits of Western Siberia. Interval, 2008. no. 6, р. 36-40.
2. Kulikov A.N., Dvorkin V.I. Hydrodynamic features of the development of water-oil deposits and its impact on the efficiency of technical measures. Electronic Journal „Investigated in Russia”, 2005, no. 84, р. 879-888.