Extended Search

- in all fields
- in the title
- in key words
- in the abstract
- in the bibliography
Issue
Name
Authors
Category
2018/1
Preparation of X-ray tomography data for fluidodynamics modeling in low-permeable rocks
Geosciences

Authors: Andrey A. ABROSIMOV graduated from Gubkin Russian State University of Oil and Gas in 2013. He is Candidate of Technical Sciences, engineer of the Department of Oil Field Development and Operation of Gubkin Russian State University of Oil and Gas (National Re-search University). His research interests include X-Ray tomography, petrophysics oil and gas reservoirs. He is author of more than 20 scientific publications and 3 copyright certificates. E-mail: abrosimov.aa@inbox.ru
Yevgenyi V. SHELYAGO (b. 1985) graduated from Gubkin Russian State University of Oil and Gas in 2008, engineer of the Department of Oil Field Development and Operation of Gubkin Russian State University of Oil and Gas (National Research University). Specialist in reservoir physics and enhanced oil recovery. He is author of more than 30 scientific publications.
E-mail: thelgp@yandex.ru
Irena V. YAZYNINA graduated from Lomonosov Moscow State University in 1975. He is Candidate of Technical Sciences, assistant professor of the Department of Oil Field Deve-lopment and Operation of Gubkin Russian State University of Oil and Gas (National Research University). Specialist in reservoir physics and enhanced oil recovery. She is author of more than 50 scientific publications.
E-mail: yazynina@mail.ru

Abstract: Using X-ray tomography data to calculate rock properties is a promising direction in petrophysics. However, when calculating filtration characteristics, researchers face various problems and limitations, one of which is insufficient resolution of X-ray tomographs, which does not allow registering pores and channels that are smaller than the resolving capacity of the device. This leads to the fact that the model of pore space loses its connection, and therefore it becomes impossible to carry out mathematical modeling at the pore scale by evaluating the filtration characteristics of rocks. The algorithm for restoring the connectivity of the pore space model is described. This allows modeling fluids and calculating the reservoir properties of rocks in conditions of restricted resolution of X-ray tomography. The working capacity of the proposed method is checked. Thus, the proposed method of preparing X-ray tomography data allows obtaining the result quickly and without additional studies, which ultimately expands the field of application of X-ray tomography

Index UDK: 552.1:53

Keywords: X-ray tomography, pore space, permeability, low-permeability reservoir, petrophysical relationships

Bibliography:
1. Abrosimov A.A. Х-ray tomography for study of oil and gas reservoir systems. Trudy RGU nefti i gaza imeni I.M. Gubkina [Proceedings of Gubkin Russian State University of Oil and Gas], 2015, no. 4/281, p. 5-15 (in Russian).
2. Beljakov M.A., Jazynina I.V., Abrosimov A.A. The impact of secondary dolomitization on properties of oil and gas reservoirs. Neftjanoe hozjajstvo [Oil Industry>], 2015, no. 6, p. 24-27 (in Russian).
3. Zhuravlev A.V., Vevel’ Ja.A. Possibilities of use of computer microtomography in micropale-ontological and lithological studies. Neftegazovaja geologija. Teorija i praktika [Oil and gas geology. Theory and practice], 2012, t. 7, no. 2, p. 1-13 (in Russian).
4. Romm E.S. Structure models of rocks pore space. L.: Nedra, 1985, 240 p.
5. Hozjainov M.S. Vajnberg Je.I. Computational microtomography is a new information technology for non-destructive investigation of the internal microstructure of geological rocks. Geoinformatika [Geoinformatics], 1992, no. 1, p. 42-50 (in Russian).
6. Chugunov S.S., Kazak A.V., Cheremisin A.N. Integration of X-ray micro-computed tomography and focused-ion-beam scanning electron microscopy data for pore-scale characterization of Bazhenov formation, Western Siberia. Neftjanoe hozjajstvo [Oil Industry], 2015, no. 10, p. 44-49 (in Russian).
7. Jazynina I.V., Sheljago E.V., Abrosimov A.A., Veremko N.A., Grachev N.E., Senin D.S. No-vel approach to core sample MCT research for practical petrophysics problems solution. Neftjanoe hozjajstvo [Oil Industry], 2017, no. 1, p. 19-23 (in Russian).
8. Jazynina I.V., Sheljago E.V., Abrosimov A.A., Veremko N.A., Grachev E.A., Bikulov D.A. Testing a new approach to petrophysical trend determination from X-Ray tomography. Neftjanoe hozjajstvo [Oil Industry], 2017, no. 2, p. 36-40 (in Russian).
9. Dong H., Blunt M. Pore-network extraction from micro-computerized-tomography images. Physical Review E80, 2009, no. 036307.
10. Garcia X., Akanji L.T., Blunt M.J., Matthai S.K., Latham J.P. Numerical study of the effects of particle shape and polydispersity on permeability. Physical Review E80, 2009, no. 021304.
11. Qingrong Xiong, Todor G. Baychev, Andrey P. Jivkov Review of pore network modelling of porous media: Experimental characterisations, network constructions and applications to reactive transport. Journal of Contaminant Hydrology, 2016, no. 192, p. 101-117.

2015/4
Х-ray tomography for study of oil and gas reservoir systems
Geosciences

Authors: Andrey A. ABROSIMOV graduated from Gubkin Russian State University of Oil and Gas in 2013. He is postgraduate student of the Department of Geophysical Information Systems of Gubkin Russian State University of Oil and Gas. He specializes in the field of petrophysics of oil and gas reservoirs. He is author of 6 scientific publications and 2 patents.
E-mail: Andreich.gis@gmail.com

Abstract: The article discusses the effect of lithological and petrophysical heterogeneity and pore space structure on reservoir properties (RP) of rocks and, in particular, we studied the effect on reservoirs using X-ray computed tomography (CT). The study of the internal structure of reservoir systems of magmatic and sedimentary rocks shows the influence of lithology on their morphology. The clastic and crystalline differences pertaining to both porous and complex type collectors are considered among sedimentary rocks. The influence of lithological and petrophysical heterogeneity of the studied sample and its size on the values of the parameters of reservoir properties and, porosity in particular, is shown. The functional dependence of the transfer of the values of thin section for a microobject to its reservoir value is suggested

Index UDK: УДК 552.086

Keywords: tomography, heterogeneity, scale factor, porosity

Bibliography:
1. Hanin A.A. Porody-kollektory nefti i gaza i ih izuchenie. M.: Nedra, 1969, 368 p.
2. Gimatudinov Sh.K., Shirkovskij A.I. Fizika neftjanogo i gazovogo plasta. M.: Nedra, 1982, 311 p.
3. Mihajlov N.N. Fizika neftjanogo i gazovogo plasta. M.: MAKS Press, 2008, 448 p.
4. Kotjahov F.I. Fizika neftjanyh i gazovyh kollektorov. M.: Nedra, 1977, 287 p.
5. Amiks D., Bass D., Uajting R. Fizika neftjanogo plasta. M.: Gostoptehizdat, 1962, 572 p.
6. Proshljakov B.K., Ga’janova T.I., Pimenov Ju.G. Kollektorskie svojstva osadochnyh porod na bol’shih glubinah. M.: Nedra, 1987, 200 p.
7. Gudok N.S., Bogdanovich N.N., Martynov V.G. Opredelenie fizicheskih svojstv neftesoderzhashhih porod (uchebnoe posobie). M.: Nedra, 2007, 592 p.
8. Malinin V.F., Kosolapov A.F. Sposob opredelenija struktury porovogo prostranstva gornyh porod. AS № 697884 (SSSR). Opubl. v B.I., 1965.
9. Kulikova N.G. Sposob nasyshhenija parovogo prostranstva estestvennyh pli iskusstvennyh obrazcov gornyh porod. AS № 922425 (SSSR). Opubl. v B.I., 1966.
10. Bagrinceva K.I. Uslovija formirovanija i svojstva karbonatnyh kollektorov nefti i gaza. M.: RGGU, 1999 (II), 285 p.
11. Dobrynin V.M. Deformacii i izmenenija fizicheskih svojstv kollektorov nefti i gaza. M.: Nedra, 1970, 150 p.
12. Bagrinceva K.I. Treshhinovatost’ osadochnyh porod. M.: Nedra, 1982, 256 p.
13. Dzeban’ I.P. Akusticheskij metod vydelenija kollektorov s vtorichnoj poristost’ju. M.: Nedra, 1981, 160 p.
14. Sidorchuk A.I., Ryskal’ O.E. Prognozirovanie i ocenka treshhinnoj poristosti po kompleksu novyh metodov GIS. NTV „Karotazhnik”, 2003, no. 113, p. 141-151.
15. Smehov E.M. Treshhinovatost’ gornyh porod i treshhinnye kollektory. L.: Gosudarstvennoe nauchno-tehnicheskoe izdatel’stvo neftjanoj i gorno-toplivnoj literatury. 1962. — 254 p.
16. Belonovskaja L.G., Gmid L.P. Rol’ treshhinovatosti v formirovanii jomkostno-fil’tracionnogo prostranstva slozhnyh kollektorov. Neftegazovaja geologija. Teorija i praktika, 2007, no. 2, p. 30–48.
17.
Chernyshev S.I. Treshhiny gornyh porod. M.: Nauka, 1983, 240 p.
18. Viktorin V.D. Vlijanie osobennostej karbonatnyh kollektorov na jeffektivnost’ razrabotki neftjanyh zalezhej. M.: Nedra, 1988, 149 p.
19. Dmitrievskij A.N. Sistemnyj litologo-geneticheskij analiz neftegazonosnyh osadochnyh bassejnov. M.: Nedra, 1983, 230 p.
20. Terent’ev V.F., Kolmakov A.G., Kurganova Ju.A. Teorija i praktika povyshenija nadezhnosti i rabotosposobnosti konstrukcionnyh metallicheskih materialov: uchebnoe posobie. Ul’janovsk: UlGTU, 2010, 268 p.
21. Protod’jakonov M.M., Chirkov S.E. Treshhinovatost’ i prochnost’ gornyh porod v massive. M.: Nauka, 1964, 69 p.