Extended Search

- in all fields
- in the title
- in key words
- in the abstract
- in the bibliography
Nanostructured photocatalysts based on cadmium and zinc sulfide nanoparticles deposited inside/outside natural halloysite nanotubes
Chemical sciences

Authors: Yaroslav A. CHUDAKOV graduated from Gubkin Russian State University of Oil and Gas (National Research University) in 2014. He is an engineer and post graduate student at Gubkin Russian State University of Oil and Gas (National Research University). He is author of 8 scientific publications. E-mail: chudakov.yaroslav@gmail.com
Anna Yu. KURENKOVA graduated from Novosibirsk State University in 2017. She works is junior research fellow and post graduate student in Boreskov Institute of Catalysis SB RAS. She is an expert in the field of photocatalysis on semiconductors. She is author of 5 scientific publications. E-mail: kurenkova@catalysis.ru
Fereshteh POURESMAEIL graduated from Bauman Moscow State Technical University in 2016 as a top student. He is post graduate student of the Department of Physical and Colloid Chemistry of Gubkin Russian State University of Oil and Gas (National Research University). E-mail: pouresmaeil@gubkin.ru
Anna V. STAVITSKAYA graduated from Gubkin Russian State University of Oil and Gas (National Research University) and got PhD in 2015. Is a researcher in the Department of Physical and Colloid Chemistry of Gubkin Russian State University of Oil and Gas (National Research University). Author of more than 20 scientific publications E-mail: stavitsko@mail.ru

Abstract: Novel nanophotocatalysts based on CdS or Cd(1-x)ZnxS nanoparticles less than 10 nm in size and mass concentration in catalyst of about 3–3,5 % deposited on outer and inner surface of halloysite nanotubes were synthesized and investigated. The obtained catalysts are efficient in reaction of hydrogen evolution from electrolyte solution under visible light irradiation. It was shown that the most active catalyst is a system with Cd0,3Zn0,7S nanopartilces deposited on halloysite, the hydrogen reaction rate reached 756 µmol/h·gkat

Index UDK: 544.774.4, 544.478-03

Keywords: cadmium sulfide, halloysite, photocatalysts, nanotubes, nanoparticles, hydrogen

1. Lyubina T.P., Kozlova E.A. New Photocatalysts Based on Cadmium and Zinc Sulfides for Hydrogen Evolution from Aqueous Na2S—Na2SO3 Solutions under Irradiation with Visible Light. Kinetics and Catalysis, 2012, no. 53, p. 188–196.
2. Huang Y., Chen J., Zou W., Zhang L.X., Hu L., He M., Gu L., Deng J.X., Xing X.R. A review of one-dimensional TiO 2 nanostructured materials for environmental and energy applications Dalton Transactions. J. Mater. Chem. A., 2016, no. 45, p. 1160–1165.
3. Li Y., Du J., Peng S., Xie D., Lu G., Li S. Enhancement of photocatalytic activity of cadmium sulfide for hydrogen evolution by photoetching International Journal of Hydrogen Energy. J. Am. Chem. Soc., 2008, no. 33, p. 2007–2013.
4. Synthesis of CdS nanorods by an ethylenediamine assisted hydrothermal method for photocatalytic hydrogen evolution. J. Phys. Chem. C., 2009, no. 113, p. 9352–9358.
5. Peng S.Q., Huang Y.H., Li Y.X. Rare earth doped TiO2-CdS and TiO2-CdS composites with improvement of photocatalytic hydrogen evolution under visible light irradiation. Materials Science in Semiconductor Processing, 2013, no. 16, p. 62–69.
6. Vinokurov V.A., Stavitskaya A.V., Ivanov E.V., Gushchin P.A., Kozlov D.V., Kurenkova A.Y., Kolinko P.A., Kozlova E.A., Lvov Y.M. Halloysite nanoclay based CdS formulations with high catalytic activity in hydrogen evolution reaction under visible light irradiation. ACS Sustain. Chem. Eng., 2017, no. 5, p. 11316–11323.
7. Parmon V.N., Kozlova E.A. Heterogeneous semiconductor photocatalysts for hydrogen production from aqueous solutions of electron donors. Russ Chem Rev., 2017, no. 86, p. 870–906.
8. Vinokurov V.A., Stavitskaya A.V., Glotov A.P., Novikov A.A., Zolotukhina A.V., Kotelev M.S., Gushchin P.A., Ivanov E.V., Darrat Y., Lvov Y.M. Nanoparticles Formed Onto/Into Halloysite Clay Tubules: Architectural Synthesis and Applications. Chem. Rec., 2018, no. 18, p. 1–11.
9. Papoulis D., Komarneni S., Panagiotaras D., Stathatos E., Toli D., Christoforidis K.C., Fernández-García M., Li H., Yin S., Sato T., Katsuki H. Halloysite—TiO2 nanocomposites: synthesis, characterization and photocatalytic activity. Applied Catalysis B: Environmental, 2013, no. 132, p. 416–422.
10. Peng H., Liu X., Tang W., Ma R. Facile synthesis and characterization of ZnO nanoparticles grown on halloysite nanotubes for enhanced photocatalytic properties. Scientific Reports, 2017, no. 7, p. 2250.
11. Xing W., Ni L., Liu X., Luo Y., Lu Z., Yan Y., Huo P. Effect of metal ion (Zn2+, Bi3+, Cr3+, and Ni2+)-doped CdS/halloysite nanotubes (HNTs) photocatalyst for the degradation of tetracycline under visible light. Desalination and Water Treatment, 2015, no. 53, p. 794–805.
12. Markovskaya D.V., Kozlova E.A., Stonkus O.A., Saraev A.A., Cherepanoua S.V., Parmon V.N. Evolution of the state of copper-based co-catalysts of the Cd0. 3Zn0. 7S photocatalyst at the photoproduction of hydrogen under action of visible light. International Journal of Hydrogen Energy, 2017, no. 42, p. 30067–30075.
13. Abdullayev E., Joshi A., Wei W.B., Zhao Y.F., Lvov Y. Enlargement of halloysite clay nanotube lumen by selective etching of aluminum oxide. ACS Nano, 2012, no. 6, p. 7216–7226.

Possibility of ultrahigh resolution mass-spectrometry application to analyze petroleum hetero-atomic compounds
Chemical sciences

Authors: Anna V. STAVITSKAYA graduated from Gubkin Russian State University of Oil and Gas in 2011. She is postgraduate student at Gubkin Russian State University of Oil and Gas, Department of Organic Chemistry and Petroleum Chemistry. She has autho- red 3 scientific publications in the field of chemistry of oil disperse systems and methods of research. E-mail: stavitsko@mail.ru
Ravilya Z. SAFIEVA graduated from Lomonosov Moscow State University in 1978. She is Doctor of Science (Technology) and chief researcher of the Department of Organic Chemistry and Petroleum Chemistry of Gubkin Russian State University of Oil and Gas. She has authored 125 scientific publications in the field of physical chemistry of the oil disperse systems and methods of research. E-mail: safieva@mail.ru

Abstract: The paper describes the possibility of ultra-high resolution ion-cyclotron resonance mass spectrometry (FT–ICR–MS) application in conjunction with the «soft» ionization techniques for molecular level characterization of petroleum hetero-atomic compounds. Two petroleum samples were analyzed and 19 classes of hetero-atomic compounds with CcHhNnOoSs composition were discovered, including carboxylic acid, pyridine bases, pyrrole-type compounds, compounds with one and two sulfur atoms in the molecule, as well as hybrid compound (SO, NS, O2S2, ONS and others). Different ionization techniques such as electrospray (ESI) and atmospheric pressure photoionization (APPI) allow us to study the composition of petroleum high molecular compounds while the high sensitivity of the method enables to simultaneously identify thousands of compounds in minimum volume of petroleum (12 mkl). The uniqueness of the method is the ability to analyze the heavy part of petroleum (including resinasphaltene substances). The ultra-high resolution, sensitivity and accuracy of the method combined with simplicity of use make the method an excellent tool for petrochemical analysis

Index UDK: УДК 54.07

Keywords: ion cyclotron resonance mass spectrometry, petroleum hetero-atomic compounds, resolution, ionization techniques

1. Ivanova L.V., Koshelev V.N., Sokova N.A., Burov Е.А., Primerova О.V. Petroleum acids and its derivatives. Production and application (review). Trudi Rossiiskogo Gosudarstvennogo Yniversiteta nefti i gaza im. I.M. Gubkina, vol. 270, no. 1, p. 68-80, 2013. (In Russian).
2. Hajiyev S.N., Shpirt M.J. Microelements in petroleum and products of its refinery. М.: Nauka, 2012. (In Russian).
3. Mukhamedovich G.F., Rakibovich G.M., Renatovich B.T., Failovich G.R., Adievich S.A. Sub- and supercritical fluids in some problems of fillers extraction from solid matrices. Vesti gazovoi nauki, vol. 11, no. 3, 2010. (In Russian).
4. Demetrius A.N., Skibitskaya N.A., Zekel L.A., Nawrocki D.C., Krasnobaeva N.V., Doma- nova E.G. The composition and properties of natural high-molecular components of gas condensate and oil and gas fields, Chimiya tverdogo topliva, 2010, vol. 3, p. 67–77.
5. Gaspar A., Zellermann E., Lababidi S., Reece J., Schrader W. Characterization of Saturates, Aromatics, Resins, and Asphaltenes Heavy Crude Oil Fractions by Atmospheric Pressure Laser Ionization Fourier Transform Ion Cyclotron Resonance Mass Spectrometry//Energy Fuels, 2012, no. 26, p. 3481-3487.
6. Zhao X., Shi Q., Gray M.R., Xu C. New Vanadium Compounds in Venezuela Heavy Crude Oil Detected by Positive-ion Electrospray Ionization Fourier Transform Ion Cyclotron Resonance Mass Spectrometry//Sci. Rep., Jun. 2014, vol. 4.
7. Zhang L., Zhang Y., Zhao S., Xu C., Chung K. H., Shi Q. Characterization of heavy petroleum fraction by positive-ion electrospray ionization FT-ICR mass spectrometry and collision induced dissociation: Bond dissociation behavior and aromatic ring architecture of basic nitrogen compounds// Sci. China Chem., Jun. 2013, vol. 56, no. 7, p. 874–882.
8. Tanner R.P.R., Schaub M. Speciation of Aromatic Compounds in Petroleum Refinery Streams by Continuous Flow Field Desorption Ionization FT-ICR Mass Spectrometry//Energy Amp Fuels — ENERG FUEL, 2005, vol. 19, no. 4.
9. Klein G.C., Rodgers R.P., Marshall A.G. Identification of hydrotreatment-resistant heteroatomic species in a crude oil distillation cut by electrospray ionization FT-ICR mass spectrometry// Fuel, Oct. 2006, vol. 85, no. 14–15, p. 2071–2080.
10. Qian K., Edwards K.E., Dechert G.J., Jaffe S.B., Green L.A., Olmstead W.N. Measurement of Total Acid Number (TAN) and TAN Boiling Point Distribution in Petroleum Products by Electrospray Ionization Mass Spectrometry//Anal. Chem., 2008, vol. 80, no. 3, p. 849–85.
11. Marshall A.G., Rodgers R.P. Petroleomics: chemistry of the underworld//Proc. Natl. Acad. Sci. U.S.A., Nov. 2008, vol. 105, no. 47, p. 18090–18095.
12. A barrel load of compounds//Chemistry World, May 2010, p. 46–49.
13. De Hoffmann E., Stroobant V. Mass Spectrometry: Principles and Applications. — John Wiley & Sons, 2007.
14. Quan Shi D.H. Characterization of Heteroatom Compounds in a Crude Oil and Its Saturates, Aromatics, Resins, and Asphaltenes (SARA) and Non-basic Nitrogen Fractions Analyzed by Negative-Ion Electrospray Ionization Fourier Transform Ion Cyclotron Resonance Mass Spectrometry//Energy Amp Fuels, 2010, vol. 24, p. 2545-2553.
15. Kim S., Rodgers R.P., Blakney G.T., Hendrickson C.L., Marshall A.G. Automated Electrospray Ionization FT-ICR Mass Spectrometry for Petroleum Analysis//J. Am. Soc. Mass Spectrom, Feb. 2009, vol. 20, no. 2, p. 263–268.
16. Kim Y.H., Kim S. Improved abundance sensitivity of molecular ions in positive-ion APCI MS analysis of petroleum in toluene//J. Am. Soc. Mass Spectrom, Mar. 2010, vol. 21, no. 3, p. 386–39.
17. Fernandez-Lima F.A., Becker C., McKenna A.M., Rodgers R.P., Marshall A.G., Rus- sell D.H. Petroleum Crude Oil Characterization by IMS-MS and FTICR MS//Anal. Chem., 2009, vol. 81, no. 24, p. 9941–9947.
18. Panda S.K., Brockmann K.J., Benter T., Schrader W. Atmospheric pressure laser ionization (APLI) coupled with Fourier transform ion cyclotron resonance mass spectrometry applied to petroleum samples analysis: comparison with electrospray ionization and atmospheric pressure photoionization methods//Rapid Commun. Mass Spectrom, 2011, no. 25, p. 2317–2326.
19. Esther Lorente C.B. The detection of high-mass aliphatics in petroleum by matrix-assisted laser desorption/ionisation mass spectrometry//Rapid Commun. Mass Spectrom. RCM, 2012, vol. 26, no. 14, P. 1581–90.
20. Speight J.G. High Acid Crudes. — Gulf Professional Publishing, 2014.
21. Li X., Zhu J., Wu B. Characterization of Basic Nitrogen-Containing Compounds in the Products of Lube Base Oil Processing by Electrospray Ionization Fourier Transform Ion Cyclotron Resonance Mass Spectrometry//Bull. Korean Chem. Soc., 2014, vol. 35, no. 1, p. 165–172.
22. Marshall A.G., Rodgers R.P. Petroleomics: The Next Grand Challenge for Chemical Analysis//Acc. Chem. Res., 2003, vol. 37, no. 1, p. 53–59.
23. Yunju Cho A.A. Developments in FT-ICR MS Instrumentation, Ionization Techniques, and Data Interpretation Methods for Petroleomics — a Review//Mass Spectrom. Rev., 2014, vol. in press.
24. Wang L., He C., Zhang Y., Zhao S., Chung K.H., Xu C., Hsu C.S., Shi Q. Characterization of Acidic Compounds in Heavy Petroleum Resid by Fractionation and Negative-Ion Electrospray Ionization Fourier Transform Ion Cyclotron Resonance Mass Spectrometry Analysis//Energy Fuels, Aug. 2013, vol. 27, no. 8, p. 4555–4563.
25. Kuangnan Qian W.K.R. Resolution and Identification of Elemental Compositions for More than 3000 Crude Acids in Heavy Petroleum by Negative-Ion Microelectrospray High-Field Fourier Transform Ion Cyclotron Resonance Mass Spectrometry//Energy Amp Fuels — ENERG FUEL, 2001, vol. 15, no. 6.
26. Yingrong L., Wei W., Qiuling H., Yuxia Z., Jinghui D., Songbai T. Characterization of Basic Nitrogen Aromatic Species Obtained during Fluid Catalytic Cracking by Fourier Transform Ion Cyclotron Resonance Mass Spectrometry//Scientific Research., 2012, vol. 14, no. 2, p. 18–24.
27. Liu P., Xu C., Shi Q., Pan N., Zhang Y., Zhao S., Chung K.H. Characterization of Sulfide Compounds in Petroleum: Selective Oxidation Followed by Positive-Ion Electrospray Fourier Transform Ion Cyclotron Resonance Mass Spectrometry//Anal. Chem., Aug. 2010, vol. 82, no. 15, p. 6601–6606.