Extended Search

- in all fields
- in the title
- in key words
- in the abstract
- in the bibliography
Issue
Name
Authors
Category
2018/2
Peculiarities of phase equilibrium of nitrogen-light hydrocarbons mixture
Technical sciences

Authors: Elena B. FEDOROVA graduated from Gubkin Moscow Institute of Petrochemical and Gas Industry in 1984. She is Candidate of Technical Sciences, Associate Professor of the Department of Oil and Gas Processing Equipment of Gubkin Russian State University of Oil and Gas (National Research University). She is specialist in the field of processes and apparatus of oil and gas production and of LNG production. She is author of more than 30 scientific publications. E-mail: fedorova.e@gubkin.ru
Vyacheslav B. MEL’NIKOV graduated from Gubkin Moscow Institute of Petrochemical and Gas Industry in 1970. He is Doctor of Chemical Sciences, Professor of the Department of Oil and Gas Processing Equipment of Gubkin Russian State University of Oil and Gas (National Research University). He is specialist in the field of collection and preparation of gas and gas condensate. He is author of more than 170 scientific publications. E-mail: v.mel@mail.ru

Abstract: Thermodynamic research on phase equilibrium of natural gas components mixtures plays an important role in the technological processes design for LNG plant. As liquid-vapor equilibrium issues of natural gas systems have been studied well, at present research is concentrated on multiphase systems, containing mixtures of hydrocarbons with inorganic substances, such as water, carbon dioxide, hydrogen sulfide, nitrogen, hydrogen. Issues of phase equilibrium of binary, ternary and 4-component mixtures containing methane, ethane, propane and nit-rogen are considered. It is outlined that nitrogen-hydrocarbon mixtures could display properties of both mutually soluble substances and partially soluble ones, depending on thermodynamic conditions and components content ratio. Areas of existence of three-phase systems „liquid-liquid-vapor” were calculated. The results obtained are of great importance in LNG processes design and moderniza-tion, as well as in the development of processes of nitrogen extraction from natural gas

Index UDK: 66.011

Keywords: liquefied natural gas, LNG, phase equilibrium

Bibliography:
1. Spravochnik po fiziko-tehnicheskim osnovam kriogeniki [Handbook of cryogenics physicotechnical fundamentals]. M.P. Malkov, I.B. Danilov, A.G. Zel’dovich, A.B. Fradkov; Pod red M.P. Malkova, 3-e izd., pererab. i dop. M.: Jenergoatomizdat, 1985 (in Russian).
2. Kidnay A.J., Hiza M.J., Miller R.C. Liquid-Vapor equilibria research on systems of interest in cryogenics — A survey. Cryogenics, 1973, October, p. 575–599.
3. Hiza M.J., Miller R.C., Kidnay A.J. A Rewiew, Evaluation, and Correlation of the Phase Equilibria, Heat of Mixing, and Change in Volume on Mixing for Liquid Mixtures of Methane + Ethane. J. Phys. Chem. Ref. Data, 1979, vol. 8, no. 3, p. 799–816.
4. Mamaeva T.A., Mel’nikov V.B., Fedorova E.B. Vybor i primenenie uravnenij sostojanija dlja issledovanija parozhidkostnogo ravnovesija komponentov szhizhennogo prirodnogo gaza [Choice and application of the EOS for the research on vapor-liquid equilibria of LNG components]. AvtoGazoZapravochnyj Kompleks + Al’ternativnoe toplivo, 2014, no. 12, p. 33–40 (in Russian).
5. Llave F.M., Luks K.D., Kohn J.P. Three-phase liquid-liquid-vapor equilibria in the binary systems nitrogen + ethane and nitrogen + propane. J. Chem. Eng. Data, 1985, t. 30, 4, р. 435–438.
6. Kremer H., Knapp H. Three-phase conditions are predictable. Hydrocarbon Processing, 1983, vol. 62, p. 79–83.
7. Kremer H., Knapp H. Vapor-liquid equilibria in ternary mixtures of H2, N2, CO and CH4. Fluid Phase Equil, 1983, vol. 11, p. 289–310.
8. Mokhatab S., Mak J.Y., Valappil J.V., Wood D.A. Handbook of Liquefied Natural Gas. Oxford: Elsevier Inc., 2014, 590 p.
9. Peng D.Y. and Robinson D.B. A New Two-Constant Equation of State. Ind. & Eng. Chem., 1976, vol. 15, no. 1, p. 59–64.
10. Reid R., Prausnitz J., Sherwood T. The Properties of Gases and Liquids. L.: Himija, 1982, 592 p. (in Russian).
11. Kidnay A.J., Miller R.C., Sloan E.D., Hiza M.J. A Review and Evaluation of the Phase Equilibria, Liquid-Phase Heats of Mixing and Excess Volumes, and Gas-Phase PVT Measurements for Nitrogen + Methane. J. Phys. Chem. Ref. Data, 1985, vol. 14, no. 3, p. 681–694.
12. Lu B., Yu P., Poon D. Formation of a Third Liquid Layer in the Nitrogen—Methane—Ethane System. Nature 222, 1969, p. 768–769.

2015/4
Peculiarities of natural gas treatment in LNG production
Technical sciences

Authors: Elena B. FEDOROVA graduated from Gubkin Moscow Institute of Petrochemical and Gas Industry in 1984. She is Candidate of Technical Sciences, associate professor of the Department of Oil and Gas Processing Equipment of Gubkin Russian State University of Oil and Gas. She is specialist in the field of processes and apparatus of oil and gas processing, and of LNG production. She author of more than 20 scientific publications. E-mail: fedorova.e@gubkin.ru
Vyacheslav B. MEL’NIKOV graduated from Gubkin Moscow Institute of Petrochemical and Gas Industry in 1970. He is Doctor of Chemical Sciences, professor of the Department of Oil and Gas Processing Equipment of Gubkin Russian State University of Oil and Gas. He is specialist in the field of collection and preparation of gas and gas condensate. He is author of more than 170 scientific publications. E-mail: v.mel@mail.ru

Abstract: Before natural gas enters the liquefaction unit at the LNG plant it should be prepared to meet the requirements for the content of hydrogen sulfide, carbon dioxide, mercaptans, mercury, water, and other impurities. For this purpose input slug catchers, acid gas removal units, dehydration units and mercury removal units are placed in the train. The article gives an overview of Russian and foreign publications on new technologies of gas purification and dehydration for LNG production. The classification and short description of processes for acid gases removal from natural gas, including absorption, adsorption and membrane processes are presented. Absorption processes include chemical absorption with amine solutions, physical absorption, and mixed solvents absorption. Characteristics of various types of molecular sieves for dehydration units are given. The existing and prospective technologies of mercury removal process by chemical adsorption are described. Particular attention is paid to the gas pre-treatment technologies for small-scale LNG production

Index UDK: УДК 661.91-404

Keywords: liquefaction of natural gas, LNG, acid gas removal, gas dehydration, mercury removal, small-scale LNG production

Bibliography:
1. Mokhatab S., Mak J.Y., Valappil J.V., Wood D.A. Handbook of Liquefied Natural Gas. Oxford: Elsevier Inc., 2014, 624 p.
2. Fedorova Е.B. State-of-the-art and development of the Global LNG Industry: technologies and equipment. М.: Gubkin Russian State University of Oil and Gas, 2011, 159 p. (in Russian).
3. Klinkenbijl J.M., Dillon M.L., Heyman E.C. Gas Pre-Treatment and their Impact on Liquefaction Processes//Proceedings of the 78th Annual Gas Processors Association (GPA) Con-vention, 1999. URL: https://www.gpaglobal.org/publications (Accessed 05.06.2015).
4. Kalat Jari H.R., Khomarloo P., Assa K. A new approach for sizing finger-type (multiple-pipe) slug catchers//Gas Processing, 2015, no. 05/06, p. 53-60.
5. Waldmann I.B., Haylock T. Removal Requirements//LNG Industry, 2014, no. 10, p. 59-62.
6. Lapidus A.L., Golubeva I.A., Zhagfarov F.G. Gazohimiya. (Gas Chemistry). М.: Gubkin Russian State University of Oil and Gas, 2013, 405 p. (in Russian).
7. Tehnologija pererabotki prirodnogo gaza i gazokondensata: Spravochnik: v 2 ch. (Natural Gas and Gas Condensate Processing Tecnology. Handbook in 2 parts). M.: Nedra-Biznescentr, 2002, ch. I, 517 p. (in Russian).
8. Ortiz-Vega D., Dowdle J., Cristancho D., Badhwar A. Accurate rate-based modelling of acid gas and mercaptan removal using hybrid solvents. Hydrocarbon Processing, 2015, no. 6, p. 53-56.
9. Burr B, Lyddon L. A comparison of physical solvents for acid gas removal. Proceedings of the 87th Annual GPA Convention. Grapevine, Texas, 2008. URL: https://www.gpaglobal.org/publications (Accessed 05.09.2015).
10. Golubeva I.A., Bakanev I.A. Zavod po proizvodstvu SPG proekta Sahalin-2 („Sahalin EHnerdzhi Investment Kompani Ltd”). Neftepererabotka i neftekhimiya, 2015, no. 6, p. 27-37.
11. Kidnay A.J., Parrish W.R., McCartney D.G. Fundamentals of natural gas processing. 2nd edition. London, New York: CRC Press. Taylor&Francis Group, 2011, 464 p.
12. Mak J., Graham C. Coping under pressure//LNG Industry, 2015, no.7/8, p. 39-44.
13. Kohl A., Nielsen R. Gas Purification. 5th edition. Houston, TX, USA.: Gulf Publishing Company, 1997. 1395 p.
14. Blachman M., McHuge T. Sour gas dehydration technology and alternatives. LRGCC 2000: conference proceedings: 50 Laurance Reid Gas Conditioning Conference. Norman, Okla.: The University, 2000.
15. Molecular Sieve Desiccant Dehydrator For Natural Gas. www2.emersonprocess.com. 06.2013. URL: http://www2.emersonprocess.com/siteadmincenter/PM%20Valve%20Automation%20 Documents/Bettis/Brochure/MolecularSieve.pdf. (Accessed 16.09.2015).
16. Farag Hassan A.A., Ezzat M.M., Amer H., Nashed A.W. Natural gas dehydration by desiccant materials. Alexandria Engineering Journal, 2011, v. 50, p. 431-439.
17. Qualls W.R., Watkins J., Radtke D. A Tale of Two Sieves. Proceedings of the International Conference GASTECH, 2011.
18. Terrigeol A. Molecular sieves in gas processing: Effects and consequences by contaminants. www.hydrocarbonprocessing.com. URL: http://www.hydrocarbonprocessing.com/Article/3137897/ Gas-Processing-or-LNG-Amines/Molecular-sieves-in-gas-processing-Effects-and-consequences-by-co-ntaminants.html. (Accessed 18.07.2015).
19. Northrop S., Sundaram N. Modified cycles, adsorbents improve gas treatment, increase mol-sieve life//Oil and Gas Journal. 08/24/2008. URL: http://www.ogj.com/articles/print/volume-106/issue-29/processing/modified-cycles-adsorbents-improve-gas-treatment-increase-mol-sieve-life.html (Acces- sed 18.07.2015).
20. Abbott J., Oppenshaw P. Mercury Removal Technology and Its Applications// Proceedings of the 81st Annual GPA Convention, Dallas, TX, USA, 2002. URL: https://www.gpaglobal.org/publi-cations (Accessed 05.09.2015).
21. Eckersley N. Advanced mercury removal technologies. www.hydrocarbonprocessing.com. URL: http://www.hydrocarbonprocessing.com/Article/2594500/Search/Advanced-mercury-removal-technologies.html?Keywords=mercury+removal&PageMove=1. (Accessed 10.09.2015).
22. Carnell P.J.H, Row V.A. Quelling quicksilver// LNG Industry, 2014, no. 5, р. 63-67.
23. Markovs J., Clarc K. Optimized Mercury Removal in Gas Plants//Proceedings of the 84th Annual GPA Convention, San-Antonio, 2005. URL: https://www.gpaglobal.org/publications (Accessed 05.09.2015).
24. Stiltner J. Mercury Removal From Natural Gas and Liquid Streams//Proceedings of the 81st Annual GPA Convention, Dallas, TX, USA, 2002. URL: https://www.gpaglobal.org/publications (Accessed 08.09.2015).
25. Ruddy T., Pennybaker K. State Of Mercury Removal Technology// Procedings of the 86th Annual GPA Convention, San-Antonio, TX, USA, 2007. URL: https://www.gpaglobal.org/publications (Accessed 05.09.2015).
26. Alper H. Disengagement of Aerosol Mercury from LNG. LNG Industry, 2014, no. 10, р. 55-58.
27. Alper H. Coalescing mercury contaminants. LNG Industry, 2015, no. 4, р. 49-52.
28. Goodghild J., Lind T., Melville A. Pretreatment System Modifications for Improving CO2 Removal in the Feedgas for 3 Gas Utility Peak-Shaving Plants. Proceedings of the International Conference LNG-17, Houston, TX, USA, 2013. URL: http://www.gastechnology.org/Training/Pages/ LNG17-conference/LNG-17-Conference.aspx (Accessed 10.09.2015).
29. Small Scale LNG. 2012-2015 Triennium Work Report// Paris : International Gas Union, June 2015, 84 p. URL: http://www.igu.org/sites/default/files/node-page-field_file/SmallScaleLNG.pdf (Ac-cessed 10.07.2015 г.).
30. Shirokova G.S., Elistratov M.V. Tehnologicheskie zadachi kompleksnoj ochistki prirodnogo gaza dlja poluchenija SPG (Technology aspects of natural gas treatment for liquefaction). Gazovaja promyshlennost’, 2011, Specvypusk „Proizvodstvo, transportirovka, hranenie i ispol’zovanie szhizhennogo prirodnogo gaza”, p. 11-15 (in Russian).
31. Zhou J., Meyer H., Leppin D. Hibrid Membrane/Absorbtion Process For Acid Gas Removal in FLNG Applications//Proceedings of the International Conference LNG-17, Houston, TX, USA, 2013. URL: http://www.gastechnology.org/Training/Pages/LNG17-conference/LNG-17-Conference. aspx (Accessed 10.09.2015).
32. Lin W., Xiong X., Gu A. Natural Gas Pressurized Process Adopting MR Refrigeration and CO2 Removal by Anti-sublimation. Proceedings of the International Conference LNG-17, Houston, TX, USA, 2013. URL: http://www.gastechnology.org/Training/Pages/LNG17-conference/LNG-17-Conference.aspx (Accessed 10.09.2015).

2015/2
Thermodynamic rationale of low-temperature distillation of natural gas with мethane for LNG production
Technical sciences

Authors: Darya S. KHOROSHILOVA graduated from Gubkin Russian State University of Oil and Gas in 2012 specializing in chemical engineering of natural energy sources and car- bon materials. In 2014 she graduated from the Masters program at Gubkin Russian State University of Oil and Gas specializing in processes and technology liquefied natural gas production. E-mail: dashakhoroshilova@mail.ru.
Vyacheslav B. MEL’NIKOV is Professor of the Department of Equipment of Oil and Gas Processing at Gubkin Russian State University of Oil and Gas. He is Doctor of Chemical Sciences. E-mail: v.mel@mail.ru.
Natalya P. MAKAROVA is Assistant Professor of the Department of Equipment of Oil and Gas Processing at Gubkin Russian State University of Oil and Gas, Candidate of Chemical Sciences. E-mail: natalyamakarova@mail.ru

Abstract: The article describes the main methods of separation of associated and natural gases into the individual components. Basic ways of implementing low-tempera-ture distillation process with various ways of supplying cold. The article shows the algorithm for choosing the optimal thermobaric parameters for column of demethanization gas. Were found the optimum parameters of the process gas demethanization Kruzenshternskoye field

Index UDK: УДК 533.2

Keywords: distillation, separation of hydrocarbon gases, demethanization, distillation column.

Bibliography:
1. Nikolaev V.V., Busygina N.V., Busygin I.G. Osnovnye processy fizicheskoj i fiziko-himicheskoj pererabotki gaza. M.: OAO „Izdatel’stvo „Nedra”, 1998, 184 р.
2. Murin V.I., Kislenko N.N., Surkov Ju.V. i dr. Tehnologija pererabotki prirodnogo gaza i kondensata: Spravochnik: V 2 ch. M.: OOO „Nedra-Biznescentr”, 2002, Ch. 1, 517 р.
3. Lapidus A.L., Golubeva I.A., Zhagfarov F.G. Gazohimija chast’ I. Pervichnaja pererabotka uglevodorodnyh gazov. M.: RGU nefti i gaza im. I.M. Gubkina, 2004.
4. Bekirov T.M. Usovershenstvovanie processov nizkotemperaturnoj pererabotki neftjanogo gaza. M.: VNIIOJeNG, 1982, 34 p.
5. Bekirov T.M. Pervichnaja pererabotka prirodnyh gazov. M.: Himija, 1987, 256 p.
6. Shumjackij Ju.I. Promyshlennye adsorbcionnye processy. M.: KolosS, 2009.
7. Generalov M.B. Mashinostroenie. Jenciklopedija. Mashiny i apparaty himicheskih i neftehi-micheskih proizvodstv. T. IV-12. M.: Mashinostroenie, 2004, 471 p.
8. TU 51-03-03-85 „Gaz gorjuchij, prirodnyj szhizhennyj. Toplivo dlja dvigatelej vnutrennego sgoranija”, utv. Ministerstvom gazovoj promyshlennosti 19.07.1985.

2014/4
Basic problems of small-scale production and consumption of liquefied natural gas
Technical sciences

Authors: Elena B. FEDOROVA graduated Gubkin Moscow Institute of Oil-Chemical and Gas Industry in 1984. Candidate of Technical Sciences, associate professor of the Engineering Mechanics Department of Gubkin Russian State University of Oil and Gas. Specialist in the field of processes and apparatus of oil and gas producing, and of LNG production. She is the author of more than 20 scientific publications. E-mail: fedorova.e@gubkin.ru
Vyacheslav B. MEL’NIKOV graduated Gubkin Moscow Institute of Oil-Chemical and Gas Industry in 1970. Doctor of Chemical Sciences, professor of the Engineering Mechanics Department of Gubkin Russian State University of Oil and Gas. Specialist in the field of collection and preparation of gas and gas condensate. He is the author of more than 170 scientific publications. E-mail:v.mel@mail.ru

Abstract: Small-scale production of liquefied natural gas (LNG) occupies a significant place in the structure of the Global LNG industry, but in Russia the development of small-scale production is at an early stage. The article shows the possibility of providing Russia regions with energy based on small-scale LNG, the experience of Russian regions. The problems and prospects of small-scale LNG are identified. It is shown that the creation of the LNG infrastructure should be based on a comprehensive approach that takes into account the socio-economic and industrial features of the region

Index UDK: 661.91

Keywords: liquefied natural gas, LNG, gasification, small-scale LNG, LNG as a fuel

Bibliography:
1. IGU World LNG Report — 2014 edition. URL: http://www.igu.org /sites/default/files/node-page-field_file/IGU%20-%20World%20LNG%20Report%20-%202014%20Edition.pdf (accessed 18 November 2014).
2. Pchelintsev D. State support to using of liquefied natural gas in Russia! Avtogazozapravochnyy kompleks+Al’ternativnoe toplivo, 2003, no. 2, p. 3 (in Russian).
3. Serdyukov S., Khodorkov I. Prospects of LNG technology and business demonstration zone creation in Russia. Sanct-Petersburg and Leningrad region. Avtogazozapravochnyy kompleks+Al’ternativnoe toplivo, 2003, no. 1, p. 56-59 (in Russian).
4. Belyaev A., Mashkantsev М., Fokin G., Fursenko S. Prospects of development of natural gas liquefaction technology on Gazprom’s facilities. Avtogazozapravochnyy kompleks+Al’ternativnoe toplivo, 2005, no. 6, p. 44-47 (in Russian).
5. Fedorova Е.B. State-of-the-art and development of the Global LNG Industry: technologies and equipment. — М.: Gubkin Russian State University of Oil and Gas, 2011, 159 p. (in Russian).
6. LNG Blue Corridors. http://lngbc.eu/ (accessed 12 December 2014).