Extended Search

- in all fields
- in the title
- in key words
- in the abstract
- in the bibliography
Issue
Name
Authors
Category
2020/1
Prediction of thermodynamic properties and phase behavior of reservoir fluids for the design of oil and gas fields
Geosciences

Authors: Anatoly A. GERASIMOV graduated from the Grozny’s oil Institute named after academician M.D. Millionshikov in 1972, doctor of technical sciences, Professor of the Department of the “Heat and gas supply and ventilation” of Kaliningrad State Technical University. The author of more than 100 scientific works in the field of thermophysical properties of substances, including three monographs. E-mail: aager_kstu@mail.ru
Boris A. GRIGORIEV graduated from the Grozny’s oil Institute named after academician M.D. Millionshikov in 1963, the member of the Russian Academy of Sciences, doctor of technical sciences, Professor, head of the Department of the “Study of oil and gas reservoir systems” of Gubkin Russian State University of Oil and Gas (National Research Univer- sity). The author of more than 300 scientific works in the field of thermophysical properties of substances, the author of a textbook on heat and mass transfer for high schools and several monographs. E-mail: gba_41@mail.ru
Evgeny B. GRIGORIEV graduated from the Grozny’s oil Institute named after acade- mician M.D. Millionshikov in 1990. Assistant Professor, doctor of technical sciences. Leading Researcher of the Department of the “Study of oil and gas reservoir systems” of Gub- kin Russian State University of Oil and Gas (National Research University). Specialist in the field of thermophysical properties of working fluids and coolants. The author of more than 100 scientific works in the field of thermophysical properties of substances, including three monographs. E-mail: egb_8691@mail.ru
Igor S. ALEXANDROV graduated from the Kaliningrad State Technical University in 2004, candidate of technical sciences, Assistant Professor, head of the Department of the “Heat and gas supply and ventilation” of Kaliningrad State Technical University. The author of more than 80 scientific works in the field of thermophysical properties of substances. E-mail: alexandrov_kgrd@mail.ru

Abstract: This article proposes methods for calculating the thermodynamic properties and phase equilibria of reservoir fluids based on both empirical multi-constant equations of state and theoretically based equations obtained in the framework of the statistical theory of associated fluid (SAFT). The article also proposes an alternative technique based on the author’s generalized PC-SAFT equation of state. The article presents the results of comparative calculations of the thermodynamic properties of model hydrocarbon mixtures, as well as real reservoir systems based on the proposed methods. The most accurate calculation of thermodynamic properties in the single-phase region was shown by the multiconstant model. In particular, the accuracy of density calculation is 3-4 times higher than according to cubic equations of state. When testing this model regarding the calculation of phase equilibria, limitations were established that recommend its use for light gas condensates, in which the molar mass of the residue does not exceed 140 g/mol and the relative density of the residue does not exceed 0,730. For reservoir fluids that do not satisfy the condition described above, it is proposed to calculate phase equilibria using a model based on the author’s PC-SAFT equation of state that can be used to calculate phase equilibria and near the freezing point of the mixture, where cubic and multi-constant equations can lead to nonphysical phase diagram

Index UDK: 622.276

Keywords: density, heat capacity, saturation pressure, equation of state, reservoir fluid, oil, gas condensate

Bibliography:
1. Span R. Multiparameter Equation of State: An Accurate Source of Thermodynamic Property Data. Berlin: Springer, 2000, 367 p.
2. Kunz O., Klimeck R., Wagner W., Jaeschke M. The Gerg-2004 Wide-Range Equation of State for Natural Gases and Other Mixtures. Dusseldorf, 2007, 535 p.
3. Alexandrov I., Gerasimov A., Grigor’ev B. Generalized Fundamental Equation of State for Normal Alkanes (C5 — C50). Int. J. Thermophys, 2013, vol. 34, p. 1865-1905.
4. Grigoriev B., Alexandrov I., Gerasimov A. Generalized equation of state for the cyclic hydrocarbons over a temperature range from the triple point to 700 K with pressures up to 100 MPa. Fluid Phase Equilibria, 2016, vol. 418, p. 15-36.
5. Ke-Le Yan, Liu Huang, Sun Chang-Yu et. al. Measurement and calculation of gas compressibility factor condensate gas and natural gas under pressure up to 116 MPa. J. Chem. Thermodynamics, 2013, vol. 63, p. 38-43.
6. Huang Liu, Sun Chang-Yu, Yan Ke-Le, et. al. Phase behavior and compressibility factor of two China gas condensate samples at pressures up to 95 MPa//Fluid Phase Equilibria, 2013, vol. 337, p. 363-369.
7. Shariati A., Peters C.J., Moshfeghian M. Bubble-point pressures of some selected methane + synthetic C6+ mixtures. J. Chem. Eng. Data, 1998, vol. 43, p. 280-282.
8. Aleksandrov I.S., Grigor’ev B.A. Modelirovanie termodinamicheskih svojstv i fazovogo pove-deniya uglevodorodov i slozhnyh uglevodorodnyh smesej na osnove novogo PC-SAFT uravneniya sos-toyaniya. Nauchno-tekhnicheskij sbornik. Vesti gazovoj nauki. Sovremennye podhody i perspektivnye tekhnologii v proektah osvoeniya neftegazovyh mestorozhdenij rossijskogo shel’fa. M.: “Gazprom VNIIGAZ”, 2018, no. 4 (36), p. 237-248.
9. Otchet o NIR “Matematicheskoe modelirovanie fazovogo povedeniya plastovyh uglevodo-rodnyh smesej v kriticheskoj oblasti. opredelenie plotnostej sosushchestvuyushchih faz”. M.: RGU nefti i gaza (NIU) imeni I.M. Gubkina, 2018, 50 p.

2014/3
Correlation of viscosity and thermal conductivity of fluorobenzene over a temperature range from the triple point to 700 k with pressures up to 100 mpa
Oil and gas processing, chemistry of oil and gas

Authors: Boris A. GRIGORIEV was born in 1941. He graduated from the Acad. M.D. Millionshtchikov Grozny Oil Institute in 1963. He is corresponding member of the Russian Academy of Sciences, Professor, Head of the Department of Study of Petroleum Reservoir Systems at Gubkin Russian State University of Oil and Gas. He is author of over 300 scientific papers in the field of thermo-physical properties of materials, author of the textbook for high schools on Heat and Mass Transfer, and a series of monographs. E-mail: trudyrgung@gubkin.ru
Igor S. ALEXANDROV was born in 1979. He graduated from Kaliningrad State Technical University in 2004. He is Ph.D., Associate Professor of the Department of Heat and Gas Supply and Ventilation at Kaliningrad State Technical University. He is author of more than 30 scientific papers in the field of thermo-physical properties of substances. E-mail: trudyrgung@gubkin.ru
Anatoly A. GERASIMOV was born in 1950. He graduated from the Acad. M.D. Millionshtchikov Grozny Oil Institute in 1972. He is Professor, Head of the Department Heat and Gas Supply and Ventilation at Kaliningrad State Technical University. He is author of over 100 scientific papers in the field of thermo-physical properties of substances, including three monographs. E-mail: trudyrgung@gubkin.ru

Abstract: Based on the most reliable experimental data, the equations for calculation of viscosity and thermal conductivity of fluorobenzene have been developed. The proposed equations can be applied over a temperature range from the triple point to 700 k with pressures up to 100 MPa. The equations were developed in variables «temperature-density» using a nonlinear optimization procedure based on the random search method. The article presents the results of the comparison with the available experimental data. In addition, the article presents diagrams that calculated based on the new equations and showing the good extrapolation behavior of the proposed equations. The proposed equations correctly reproduce the surface of state and allow the calculation of thermophysical properties with accuracy that is close to the experimental error. The estimated uncertainties of viscosity calculated using the new equation do not exceed 2 %, and of thermal conductivity – 1 %.

Index UDK: УДК 536.22

Keywords: fluobenzene, temperature, density, thermal conductivity, viscosity

Bibliography:
1. Alexandrov I.S., Gerasimov A.A., Grigor’ev E.B. Baza eksperimental’nykh dannykh o termodinamicheskikh svoystvakh galogenozameshchennykh benzola [Experimental database of thermodynamic properties of halogenated benzenes]. Sbornik nauchnykh statey. Aktual’nye voprosy issledovaniya plastovykh sistem mestorozhdeniy uglevodorodov [Relevant issues of studies of field hydrocarbon formation: collection of scientific articles]. M.: „Gasprom VNIIGAS”, 2013, no. 1 (12). pp. 199–203.
2.
Ishhanov Yu.B. Dinamicheskaya vyazkost’ ftorbenzola, khlorbenzola, ikh rastvorov s benzolom. Cand., Diss. [Dynamic viscosity of fluorobenzene, chlorobenzene, their mixtures with benzene. Cand. Diss.]. Baku, 1984, 174 p. (in Russian).
3. Lemmon E.W., Jacobsen R.T. Viscosity and thermal conductivity equations for nitrogen, oxygen, argon, and air. Int. Jour. of Thermophysics, 2004, v. 25, no. 1, p. 21–69.
4.
Alexandrov I.S., Grigor’ev B.A., Gerasimov A.A. Sovremennyy podkhod v razrabotke fundamental’nykh uravneniy sostoyaniya tekhnicheski vazhnykh rabochikh veshchestv [A modern approach to the development of fundamental equations of state for technically important working substances]. Sbornik nauchnykh statey. Aktual’nye voprosy issledovaniya plastovykh sistem mestorozhdeniy uglevodorodov [Relevant issues of studies of field hydrocarbon formation: collection of scientific articles. Part 2.]. M.: „Gasprom VNIIGAS”, 2011, pp. 124–137.
5.
Olchowy G.A. A simplified representation for the thermal conductivity of fluids in the critical region. G.A. Olchowy, J.V. A Sengers. Int. J. Thermophys, 1989, p. 417–426.
6. Assael M.J. Reference Correlation of the Thermal Conductivity of Benzene from the Triple Point to 725 K and up to 500 MPa. M.J. Assael, E.K. Mihailidou, M.L. Huber and R.A. Perkins. Journal of Physical and Chemical Reference Data, 2012, vol. 41, no. 4, p. 043102-1-043102-9.

2012/2
Fundamental equations of state for n-dodecane and n-tridecane
Oil and gas processing, chemistry of oil and gas

Authors: Boris A. GRIGORIEV was born in 1941. He graduated from the Grozny Oil Institute named after Acad. M.D. Millionshtchikov in 1963. He is Correspondent Member of the Russian Academy of Sciences, Doctor of Technical Sciences, professor, Head of the Department of Study of Oil and Gas Reservoir Systems at Gubkin Russian State University of Oil and Gas. He has published over 300 scientific papers in the field of thermophysical properties of materials, a textbook for university students on heat and mass transfer, and several monographs. E-mail: gba_41@mail.ru
Anatoly A. GERASIMOV was born in 1950. He graduated from the Grozny Oil Institute named after Acad. M.D. Millionshtchikov in 1972. He is Doctor of Technical Sciences, professor, Head of the Department of Heat and Gas Supply and Venting at the Kaliningrad State Technical University. He has published over 100 scientific papers in the field of thermophysical properties of substances and 3 monographs. E-mail: aager_kstu@mail.ru
Igor S. ALEXANDROV was born in 1979. He graduated from the Kaliningrad State Technical University in 2004. He is Senior Lecturer of the Department of Heat and Gas Supply and Venting at the Kaliningrad State Technical University. He has published over 20 scientific papers in the field of thermophysical properties of substances. E-mail: alexandrov_kgrd@mail.ru

Abstract: Fundamental 14-constant equations of state of universal form, describing accurately all the thermodynamic properties of n-dodecane and n-tridecane in the temperature range from triple point up to ~700 K at pressures up to 100 Mpa are developed. The average error in the description of the density of the liquid phase on the saturation line is 0,1-0,3 % of the gas phase on the saturation line — 0,3-1,5 %, the saturated vapor pressure — 0,2-1,0 %, the density of the liquid phase at elevated pressures of 0,1-0,4 %, isobaric heat capacity of the liquid phase — 0,4-0,8 %, the speed of sound 0,5-1,0 %. For n-tridecane a fundamental equation is obtained for the first time.

Index UDK: 536.7

Keywords: pressure, density, heat capacity, enthalpy, entropy, equation of state

Bibliography: