Extended Search

- in all fields
- in the title
- in key words
- in the abstract
- in the bibliography
Issue
Name
Authors
Category
2017/4
Experimental validation of industrial CO2 sequestration scheme in underground pool of Devon field
Chemical sciences

Authors: Vadim N. KHLEBNIKOV graduated from Bashkir State University in 1979, he is Doctor of Technical Sciences, Professor of the Department of Physical and Colloid Chemistry of Gubkin Russian State University of Oil and Gas (National Research University). He is specialist in the field of enhanced oil recovery and development of hard-to-recover oil reserves. He is author of more than 200 scientific publications. E-mail: Khlebnikov_2011@mail.ru
Aleksandr S. MISHIN graduated from National Research Nuclear University „MEPhI” in 2005. He is engineer of the Department of Physical and Colloid Chemistry of Gubkin Russian State University of Oil and Gas (National Research University). He is specialist in the field of enhanced oil recovery and development of hard-to-recover oil reserves. He is author of more than 20 scientific publications. E-mail: aleks_mishin@mail.ru
LIANG MENG graduated from Beijing Institute of Petrochemical Technology in 2009, he is Ph.D of the Department of Physical and Colloid Chemistry of Gubkin Russian State University of Oil and Gas (National Research University). E-mail: liangmeng@mail.ru
Natalia A. SVAROVSKAYA graduated from Тomsk State University in 1971. She is Doctor of Technical Sciences, Professor of the Department of Physical and Colloid Chemistry of Gubkin Russian State University of Oil and Gas (National Research University). She is specialist in enhanced oil recovery and development of hard-to-recover oil reserves. She is author of more than 160 scientific publications. E-mail: na_sv2002@mail.ru
Natalia V. LIKHACHEVA graduated from Gubkin Russian State University of Oil and Gas. She is first-year PG student of the Department of Physical and Colloid Chemistry of Gubkin Russian State University of Oil and Gas (National Research University). Her academic interests include ecology and oil- and gas-extraction. E-mail: likhacheva.natalia.v@gmail.com

Abstract: Physical simulation of sequestration of СО2 as flue and enriched flue gas was made in the conditions of depleted reservoir filled with light crude and high-salinity water. In these circumstances it is advised to sequestrate industrial СО2 as WAG since this is an advanced method providing highly efficient displacement of residual oil and delays the breakthrough of gas. Using WAG allows to increase effective capacitance of geological trap to 25-105 %. A general procedure of sequestration of industrial greenhouse gases in geological traps is proposed

Index UDK: 502.211+622.276.344

Keywords: greenhouse gases sequestration, geological traps, depleted reservoir, water-alternated-gas injection, WAG

Bibliography:
1. Hlebnikov V.N., Zobov P.M., Hamidullin I.M. i dr. Perspektivnye regiony dlja osushhestvle- nija proektov po hraneniju parnikovyh gazov v Rossii. Bashkirskij himicheskij zhurnal, 2009, t. 16, no. 2, p. 73-80.
2. Bajmuhammetov K.S., Viktorov P.F., Gajnullin K.H., Syrtlanov A.Sh. Geologicheskoe stroenie i razrabotka neftjanyh i gazovyh mestorozhdenij Bashkortostana. Ufa: RIC ANK „Bashneft’ ”, 1997, 424 p.
3. Vafin R.V. Povyshenie jeffektivnosti tehnologii vodogazovogo vozdejstvija na plast na Alekseevskom mestorozhdenii. Neftepromyslovoe delo, 2008, no. 2, p. 33-35.
4. Vafin R.V. Metod regulirovanija tehnologiej vodogazovogo vozdejstvija na plast. Neftepro-myslovoe delo, 2008, no. 2, p. 30-32.
5. Zacepin V.V., Maksutov R.A. Sovremennoe sostojanie promyshlennogo primenenija tehno-logij vodogazovogo vozdejstvija. Neftepromyslovoe delo, 2009, no. 7, p. 13-21.
6. Polishhuk A.M., Hlebnikov V.N., Mishin A.S. i dr. Jeksperimental’noe issledovanie me-hanizma fil’tracii vodogazovyh smesej. Vestnik CKR Rosnedra, 2012, no. 6, p. 8-14.
7. Ulavlivanie i hranenie dvuokisi ugleroda. Special’nyj doklad MGJEIK. Mezhpravitel’stven-naja gruppa jekspertov po izmeneniju klimata, 2005. ISBN 92-9169-419-3. URL: https://ipcc.ch/pdf/ special-reports/srccs/srccs_spm_ts_ru.pdf (data obrashhenija: 09.10.2016).

2017/1
Influence of the physical state of CO2 on the capacity of a deeplying aquifer under sequestration of greenhouse gas
Geosciences

Authors: Vadim N. KHLEBNIKOV graduated from Bashkir State University in 1979, Doctor of Technical Sciences, Professor of the Department of Physical and Colloid Chemistry of Gubkin Russian State University (National Research University) of Oil and Gas. Specialist in the field of enhanced oil recovery and development of hard-to-recover oil reserves. He is author of more than 200 scientific publications. E-mail: Khlebnikov_2011@mail.ru
LIANG Meng graduated from Beijing Institute of Petrochemical Technology in 2009, Ph.D of the Department of Physical and Colloid Chemistry of Gubkin Russian State University (National Research University) of Oil and Gas. Research interests: oil and gas production. E-mail: liangmeng@mail.ru
Sergei N. BABAYEV graduated from Lomonosov Moscow State University in 1987. Candidate of Technical Sciences, Senior professor of department of physical and colloid chemistry of Gubkin Russian State University (National Research University) of Oil and Gas. Expert in enhanced oil recovery methods, methods of oil extraction in tight formations. Author of more than 100 scientific articles. E-mail: trudyrgung@gubkin.ru
Natalia V. LIKHACHEVA graduated from Gubkin Russian State University (National Research University) of Oil and Gas in 2016. First-year PG student of department of physical and colloid chemistry. Academic interests: ecology, oil- and gas-extraction.
E-mail: likhacheva.natalia.v@gmail.com

Abstract: Under approximate reservoir conditions the present study examined effect of the physical state (gas, supercritical state, liquid) of sequestered fluid (72,2- 95,5 mol. % CO2) on capacity of the water-saturated porous media. It is shown that the minimum capacity of highly permeable unconsolidated aquifer formation is 28-42 %, and the maximum capacity is 41-43 % of the volume of void space of porous medium. The physical state of fluid and gravity stabilization of the displacement front does not affect the maximum volume capacity of geological traps. Gravity stabilization of water displacement front by sequestered fluid delays fluid breakthrough and increases effective capacity of trap.

Index UDK: 502.211+622.276.344

Keywords: climate change, greenhouse gases sequestration, geological traps, deep-lying aquifers

Bibliography:
1. Paris Agreement. UN Climate Change Conference Paris 2015, 30.10-12.12.2015. Available at: URL: http://unfccc.int/resource/docs/2015/cop21/rus/l09r.pdf (accessed 9 October 2016) (in Russian).
2. IPCC Special Report "Carbon dioxide capture and storage"//Intergovernmental Panel on Climate Change, 2005. ISBN
92-9169-419-3. URL: https:// ipcc.ch/pdf/special-reports/srccs/srccs_spm_ts_ru.pdf (accessed 9 October 2016) (in Russian).
3. Tehniko-jekonomicheskoe obosnovanie primenenija tehnologii szhiganija topliv v himi- cheskih ciklah s vydeleniem CO2 na osnove razrabotannyh inzhenernyh metodov rascheta i obob- shhenija rezul’tatov issledovanij s uchetom dannyh po vozmozhnostjam i perspektivam geologicheskogo zahoronenija i zakachki v neftjanye skvazhiny (zakljuchitel’nyj otchet). Governments contract report. No. 02.516.11.6041. All-Russia Thermal Engineering Institute (VTI), Moscow, 2008 (in Russian).
4. Altunin V.V. Teplofizicheskie svojstva dvuokisi ugleroda [Thermal properties of carbon dio- xide]. M.: Izdatel’stvo standartov, 1975, 546 p. (in Russian).
5. Polishchuk A.M., Khlebnikov V.N., Mishin A.S., Antonov S.V., Kokorev V.I., Darischev V.I., Ahmadeyshin I.A., Bugaev K.A., Chubanov O.V. Experimental investigation of water-gas mixture filtration mechanism. Vestnik CKR Rosnedra [Bulletin of the CDC Rosnedra], 2012, no. 6, p. 8-14 (in Russian).

2016/1
Assessment of oil-displacing ability of gas under thermogas oil recovery
Geosciences

Authors: Vadim N. KHLEBNIKOV graduated from Bashkir State University in 1979. He is Doctor of Technical Sciences, Professor of the Department of Physical and Colloid Chemistry of Gubkin Russian State University (National Research University) of Oil and Gas. He is specialist in the field of enhanced oil recovery and development of hard-to-recover oil reserves. He is author of more than 200 scientific publications. E-mail: Khlebnikov_2011@mail.ru
Aleksandr S. MISHIN graduated from National Research Nuclear University «MEPhI» in 2005. He is Engineer of the Department of Physical and Colloid Chemistry of Gubkin Russian State University (National Research University) of Oil and Gas. He is specialist in the field of enhanced oil recovery and development of hard-to-recover oil reserves. He is author of more than 20 scientific publications. E-mail: aleks_mishin@mail.ru
MENG Liang graduated from Beijing Institute of Petrochemical Technology in 2009, he is Ph.D student of the Department of Physical and Colloid Chemistry of Gubkin Russian State University (National Research University) of Oil and Gas. Research interests: oil and gas production. E-mail: liangmeng@mail.ru
Natalya A. SVAROVSKAYA graduated from Тomsk State University in 1971. She is Doctor of Technical Sciences, Professor of the Department of Physical and Colloid Chemistry of Gubkin Russian State University (National Research University) of Oil and Gas. She is specialist in the field of petroleum geology and tertiary oil recovery. She is author of more than 160 scientific publications.
E-mail: na_sv2002@mail.ru

Abstract: A study was conducted to determine oil displacing ability of gas agent produced from in-situ transformation of air during thermal stimulation of light oil reservoirs. It is shown that the oil displacing characteristics of the gas agent of thermos-gas EOR method are close to those of fatty associated petroleum gas in high temperature reservoirs of light oil. It has also been found that the use of core formation models in flooding experiments (according to OST 39-195-86) does not allow to fully reveal the efficiency of miscible gas oil-displacing agents

Index UDK: УДК 622.276.6

Keywords: enhanced oil recovery, miscible displacement, thermos-gas oil recovery method, physical simulation of oil displacement

Bibliography:
1. Kuramshin R.M. Osobennosti geologicheskogo stroeniya i tehnologii razrabotki yurskih otlojenii Nijnevartovskogo svoda [Features of the geological structure and development technology of Jurassic sediments Nizhnevartovsk dome]. Moscow, RMNTK Nefteotdacha Publ., 2002, 107 p.
2. Bagautdinov A.K., Markov S.L., Belevich G.K. and et al. Geologiya i razrabotka krupneishih i unikalnih neftyanih i neftegazonosnih mestorojdenii Rossii [Geology and development of large unique oil and gas fields in Russia]. Moscow, VNIIOENG Publ., 1996, 352 p.
3. Bokserman A.A. and Yambaev M.F. The method of injection and in situ transformation of air in fields of light oil. Proc. 12 th European Symposium on improved Oil Recovery. Kazan, Russia, 2003 (in Russian).
4. Yambaev M.F. Osnovnie osobennosti termogazovogo metoda uvelicheniya nefteotdachi primenitelno k usloviyam slojnopostroennih kollektorov (na osnove chislennogo modelirovaniya). Dokt, Diss. [The main features of thermal gas EOR applied in the conditions of complex reservoirs (on the basis of numerical modeling). Doct, Diss.], Moscow, 2006, 153 p.
5. Khlebnikov V.N. and Vezhnin S.A. Perspektivi primeneniya termogazovogo metoda povisheniya nefteotdachi v usloviyah yurskih plastov mestorojdenii OAO «Tomskneft» [Prospects of application of thermo-gas method for enhanced oil recovery in the conditions of Jurassic reservoir in fields «Tomskneft»]. Trudy Obedinennogo centra issledovanii i razrabotok «Perspektivi tehnologii neftegazovoi industrii» [Proc. of the Joint research and development center «Prospects of technology in the oil and gas industry»], 2006, no. 2, p. 79-84.
6. Kumar V.K., Gutierrez C., Cantrell C. 30 Years of Successful High-Pressure Air Injection: Performance Evaluation of Buffalo Field, South Dakota. Journal of Petroleum Technology, 2011, vol. 63, no. 01, p.50-53.
7. Khlebnikov V.N., Zobov P.M., Antonov S.V., Ruzanova Yu.F. Research on thermos-gas method for oil extraction. Kinetic laws of oil autoxidation of Jurassic age reservoir. Bashkirskii Khimicheskii Zhurnal [Bashkir Chemical Journal], 2008, vol. 15, no. 4, p. 105-110 (in Russian).
8. Khlebnikov V.N., Zobov P.M., Antonov S.V., Ruzanova Yu.F., Bakulin D.A. Research on thermo-gas method for oil extraction. Influence of sodium bicarbonate on the kinetic laws of light oil autoxidation. Bashkirskii Khimicheskii Zhurnal [Bashkir Chemical Journal], 2009, vol. 16, no. 1, p. 65-71 (in Russian).
9. Khlebnikov V.N., Zobov P.M., Antonov S.V., Bakulin D.A., Gushina Yu.F. and Nisku- lov E.K. Comparison of the kinetic laws of autooxidation of oil and solid organic material in rocks of Bazhenov suite. Bashkirskii Khimicheskii Zhurnal [Bashkir Chemical Journal], 2011, vol. 18, no. 4, p. 87-92 (in Russian).
10. Khlebnikov V.N., Mishin A.S., Zobov P.M., Antonov S.V., Bakulin D.A., Bardin M.E. and Niskulov E.K. Simulation of chemical steps in thermo-gas enhanced viscous oil of reservoirs PK Cenomanian horizon. Bashkirskii Khimicheskii Zhurnal [Bashkir Chemical Journal], 2012, vol. 19, no. 3, p. 12-16 (in Russian).
11. Aizikovich O.M., Bulygin M.G., Korablev L.I. The thermal effect of oxidation reaction in the wet in-situ combustion. Neftepromyslovoe delo and transport nefte [Petroleum engineering and oil transport], 1985, no.11, p. 4-6 (in Russian).
12. Yannimaras D.V., Sufi A.H., Fassihi M.R. The Case for Air Injection into Deep Light Oil Reservoirs. Proc. 6th European IOR-Simposium. Stavanger, Norway, 1991.
13. Lake L.W. Enhanced oil recovery. Englewood Cliffs, New Jersey, Prentice Hall Publ., 1989, 449 p. (Russ. ed.: Osnovi metodov uvelicheniya nefteotdachi, 2004, 449 p. Available at: www.oil-info.ru/content/view/148/59 ).
14. Polishchuk A.M., Khlebnikov V.N. and Gubanov V.B. Using slim models for the physical simulation of oil displacement processes by miscible agents. Part 1. Methodology of experiment. Neftepromyslovoe delo  Petroleum engineering, 2014, no. 5, p. 19-24 (in Russian).
15. Khlebnikov V.N., Gubanov V.B. and Polishchuk A.M. Using slim models for the physical simulation of oil displacement processes by miscible agents. Part 2. Evaluation of the possibility of using standard flooding equipment for the implemention of slim methodology. Neftepromyslovoe delo. Petroleum engineering, 2014, no. 6, p. 32-38 (in Russian).
16. Industry Standard OST-39-195-86. Oil. The method of determining the coefficient of oil displacement by water in the laboratory. Moscow. The Ministry of Petroleum Publ., 1986, 20 p. (in Russian).
17. Yellig W.F., Metcalfe R.S. Determination and Prediction of CO2 Minimum Miscibility Pressures. Journal of Petroleum Technology, 1980, vol. 32, no. 1, pp. 160-168.

2013/4
Using polymeric agents for eor and waterproofing.
Oil and gas processing, chemistry of oil and gas

Authors: Sergey A. SHUVALOV completed Mater’s Program at Gubkin Russian State University of Oil and Gas. He is graduate student, junior researcher at the Department of Physical and Colloid Chemistry Gubkin Russian State University of Oil and Gas. E-mail: shuvalovsa@mail.ru
Vladimir A. VINOKUROV was born in 1950, he graduated from Gubkin Moscow Institute of Petrochemical and Gas Industry in 1972. He is Doctor of Chemical Sciences, Professor, Head of the Department of Physical and Colloid Chemistry of Gubkin Russian State University of Oil and Gas. He is author of over 255 scientific papers. E-mail: vinok_ac@mail.ru
Vadim N. KHLEBNIKOV was born in 1957, hе graduated from the Bashkir State University in 1979. He is Doctor of Technical Sciences, Professor of the Department of Physical and Colloid Chemistry at Gubkin Russian State University of Oil and Gas, Head of the Laboratory oil “URDcenter” (Moscow). He is author of over 160 scientific papers, including one monograph and 30 patents. E-mail: trudyrgung@gubkin.ru

Abstract: Solving the problem of unsustainable oil recovery, the main natural resource of Russia, is quite an important and urgent task. Excessive water cut of produced oil is one of the main problems faced by the oil industry. Physical and chemical methods of enhanced oil recovery are most common in Russia. The use of polymeric agents can successfully reduce water cut and increase oil recovery factor (ORF). Development of nanoparticle-based agents is an important way of improving polymeric materials for enhanced oil recovery.

Index UDK: 665.6

Keywords: residual oil, enhanced oil recovery methods, poly-dimensional flooding, crosslinked polymer systems, nano-agents

Bibliography:
1. Energeticheskaya strategiya Rossii na period do 2030 goda. URL: http://minenergo.gov.ru/activity/energostrategy.
2. Kryanev D.Yu., Zhdanov S.A. Primenenie metodov uvelicheniya nefteotdachi plastov v Rossii i za rubezhom. Burenie i neft’, 2011, no. 2, pp. 22–26.
3.
Karmakar G.P., Chandrima Chacraborty. Improved oil recovery using polymer gelants: a review. Indian Journal of Chemical Technology, 2006, no. 13, pp. 162–167.
4.
Maksimov V.M. O sovremennom sostoyanii neftedobychi, koeffitsiente izvlecheniya nefti i metodakh uvelicheniya nefteotdachi. Burenie i neft’, 2011, no. 2, pp. 12–16.
5.
Demakhin S.A., Demakhin A.G. Selektivnye metody izolyatsii vodopritoka v neftyanye skvazhiny. Saratov: Izd-vo GosUNTs “Kolledzh”, 2003, 164 p.
6. Al’varado V., Manrik E. Metody uvelicheniya nefteotdachi plastov. Planirovanie i strategii primeneniya. M.: Premium Inzhiniring, 2011, 244 p.
7. Gurgel A., Moura M.C.P.A., Dantas T.N.C., Barros Neto E.L., Dantas Neto A.A. Review on chemical flooding methods applied in enhanced oil recovery. Brazilian Journal of Petroleum and Gas, 2008, no. 2, pp. 83–95.
8.
Surguchev M.L., Gorbunov A.T., Zabrodin D.P. i dr. Metody izvlecheniya ostatochnoy nefti. M.: Nedra, 1991, 347 p.
9. Primenenie kolloidnykh sistem dlya uvelicheniya nefteotdachi plastov. O.Yu. Sladovskaya, D.A. Kuryashov, A.I. Lakhova, R.R. Mingazov, I.F. Ismagilov, B.R. Vagapov. Vestnik Kazanskogo tekhnologicheskogo universiteta, 2010, no. 10, pp. 585–591.
10.
Altunina L.K., Kuvshinov V.A. Fiziko-khimicheskie aspekty tekhnologiy uvelicheniya nefteotdachi: Obzor. Khimiya v interesakh ustoychivogo razvitiya, 2001, no. 9, pp. 331–344.
11.
Obzor Ernst and young. Primenenie sovremennykh metodov uvelicheniya nefteotdachi v Rossii: vazhno ne upustit’ vremya. URL: http://www.ey.com/Publication/vwLUAssets/Advanced-recovery-methods-in-Russia/$FILE/Advanced-recovery-methods-in-Russia.pdf.
12. Alvarado V., Manrique E. Enhanced oil recovery: an update review. Energies, 2010, no. 3, pp. 1529–1575.
13.
Surguchev L.M. Uvelichenie nefteotdachi plastov: status i perspektivy. Materialy II Mezhdunarodnogo nauchnogo simpoziuma. M.: 2009, pp. 62–69.
14.
Savinykh Yu.A., Grachev S.I., Muzipov Kh.N. Metody intensifikatsii dobychi nefti. Tyumen’: ID “Slovo”, 2007, 136 p.
15. Thomas S., Farouq Ali S.M. Status and Assessment of Chemical Oil Recovery Methods. Energy Sources, 1999, no. 21, pp. 177–189.
16.
Larri Leyk. Osnovy metodov uvelicheniya nefteotdachi. M.: Universitet Tekhas, 1988, 449 p.
17. Analiz i proektirovanie. Samara: Rossiyskoe predstavitel’stvo aktsionernoy kompanii “Oyl tekhnolodzhi oversiz prodakshn limited”, 2000, 350 p.
18. Vlasov S.A., Kagan Ya.M. O vozmozhnom mekhanizme povysheniya nefteotdachi plastov neftyanykh mestorozhdeniy, razrabatyvaemykh v rezhime zavodneniya. Razrabotka i ekspluatatsiya neftyanykh mestorozhdeniy, 2005, no. 2, pp. 70–73.
19.
Il’ina G.F., Altunina L.K. Metody i tekhnologii povysheniya nefteotdachi dlya kollektorov Zapadnoy Sibiri: Uchebnoe posobie. Tomsk: Izd-vo TPU, 2006, 166 p.
20. Safonov E.N. Metody izvlecheniya ostatochnoy nefti na mestorozhdeniyakh Bashkortostana. Redaktsionno-izdatel’skiy tsentr ANK “Bashneft’”, 1997, 249 p.
21. Berlin A.V. Fiziko-khimicheskie metody povysheniya nefteotdachi. Polimernoe vozdeystvie: Obzor. Chast’ II. Izuchenie effektivnosti polimernogo vozdeystviya. Nauchno-tekhnicheskiy vestnik OAO “NK “Rosneft’”, 2011, no. 11, pp. 20–28.
22.
Carlos A. Roscha, C. Stanley McCool, Stephen J. Randtke, Lanny G. Schoeling, M. Sophocleous. The use of gelled polymer technology for the containment groundwater. URL: http://info.ngwa.org/gwol/pdf/890149595.PDF.
23. Bazekina L.V., Khlebnikov V.N., Baydalin V.S., Plotnikov I.G. Tekhnologiya uvelicheniya nefteotdachi na osnove sshitykh polimernykh sistem.
24. Kachurin A., Sattarov R., Ayupova D., Gabdullina A. Sovershenstvovanie tekhnologiy povysheniya nefteotdachi plastov s primeneniem PAA SoftPusher na mestorozhdeniyakh OOO “Lu- koyl-Zapadnaya Sibir’”. Razrabotka i ekspluatatsiya neftyanykh mestorozhdeniy, 2011, no. 8, pp. 126–128.
25.
Ibatullin R.R., Khisametdinov M.R., Gaffarov Sh.K., Rakhimova Sh.G., Khisamov R.S., Frolov A.I. Novye tekhnologii uvelicheniya plasta zavodneniem. Razrabotka i ekspluatatsiya neftyanykh mestorozhdeniy, 2007, no. 7, pp. 46–48.
26.
Yusupova T.N., Romanov A.G., Barskaya E.E., Ganeeva Yu.M., Ibatullin R.R., Fayzullin I.N., Khisamov R.S. Otsenka rezul’tatov vozdeystviya na plast kapsulirovannykh polimernykh sistem po izmeneniyu sostava dobyvaemoy nefti. Neftegazovoe delo. — 2007 URL: http://www.ogbus.ru/authors/Yusupova/Yusupova_1.pdf.
27. Idiyatullin A.R. “RITIN-10”: novyy effektivnyy reagent dlya povysheniya nefteotdachi plastov. Razrabotka i ekspluatatsiya neftyanykh mestorozhdeniy, 2007, no. 2, pp. 54–57.
28.
Kaushanskiy D.A. Novye tekhnologii povysheniya nefte- i gazootdachi. URL: http://oilgas-journal.ru/2009-1/1-rubric/kaushansky.html.
29. Laverov N.P. Toplivno-energeticheskie resursy. Vestnik RAN, 2006, t. 76, no. 5, pp. 398–408.
30.
Khavkin A.Ya. Neftegazovye nanotekhnologii — osnova ekonomiki XXI veka. Nanotekhnologii. Ekologiya. Proizvodstvo, 2013, no. 2, pp. 54–59.
31.
ZL PETROCHEMICALS (China). URL: http://www.zlpam.com/products-solutions/enhanced-oil-recovery-prductoil-field-related-chemicals-%E2%80%93-nanospere-zlnano%C2%AE/oil-field-related-chemicals-nanosphere-zlnano.

Authors: Vadim Nikolaevich KHLEBNIKOV was born in 1957. Doctor of Technical Sciences, professor of physical and colloidal chemistry chair of Gubkin Russian State University of Oil and Gas, head of petroleum production laboratory “YRD-Center” (Moscow). He is the author of more than 150 scientific works, including 1 monograph and 25 patents. Е-mail: Khlebnikov@yrd.ru
Pavel Mikhailovich ZOBOV was born in 1956. In 1979 he graduated from the Ufa oil institute, deputy head of the laboratory of the “URD-Center”, the author of 47 publications including 5 patents.
Sergey Vladimirovich ANTONOV was born in 1981. In 2003 he graduated from Chemical faculty of M.V. Lomonosov Moscow State University, scientific associate of the laboratory of oil recovery of “Incorporated center of research and development” Ltd., the co-author of 5 scientific publications.
Alexandr Sergeevich MISHIN was born 1979. In 2000 he graduated from Engineering-physical institute, the scientific associate of the laboratory of oil recovery of “Incorporated center of research and development” Ltd., the co-author of 5 scientific publications.
Yuliya Fedorovna GUSHCHINA was born in 1985. In 2008 she graduated from Gubkin Russian State University of Oil and Gas. The scientific associate of the laboratory of oil recovery of “Incorporated center of research and development” Ltd., the co-author of 5 scientific publications.
Vladimir Arnoldovich VINOKUROV was born in 1950. In 1972 graduated from Gubkin Moscow Institute of Oil and Gas Industry (now Gubkin Russian State University of Oil and Gas). Doctor of Chemistry, professor, Head of Physical and Colloidal Chemistry Chair of Gubkin Russian State University of Oil and Gas. Author of 250 publications. Е-mail: vinok_ac@mail.ru

Abstract: In the result of laboratory research and development work it is shown, that stabilized colloid reagent is the effective additive to the cement slurry for well-casing in the conditions of Far North

Index UDK: 622.24

Keywords: oil-well cement, colloid reagent, superplastificator, adhesion, contact solidity

Bibliography:

2009/2
Gel formation Regularities into Acid sols of aluminum silicates and silicates
Drilling and development of hydrocarbon fields

Authors: Vadim Nikolaevich KHLEBNIKOV was born in 1957. Doctor of Technical Sciences, professor of physical and colloidal chemistry chair of Gubkin Russian State University of Oil and Gas, head of petroleum production laboratory “YRD-Center” (Moscow). He is the author of more than 150 scientific works, including 1 monograph and 25 patents. Е-mail: Khlebnikov@yrd.ru

Abstract: Processes of gel formation in acid sols of silica, obtained by solubilisation of silica-alumina, colloid silica and liquid glass in hydrochloric acid are investigated. The equations for dependence of gel formation time on acid and substrate concentration, temperature and mineralization of solutions are obtained. It is shown, that limit stage of gel formation process in acid silica sols is the reaction of silica acid protonation

Index UDK: 544.77

Keywords: gel formation, colloid silica, time of gel formation, dependence on acid and substrate concentration, mineralization; limit stage

Bibliography:

2010/1
Studying rheology of slurries for gas well casing.
Drilling and development of hydrocarbon fields

Authors: Vadim N. KHLEBNIKOV (b. 1957) doctor of Technical Sciences, professor of physical and colloidal chemistry chair of Gubkin Russian State University of Oil and Gas, head of petroleum production laboratory «YRD-Center» (Moscow). He is the author of more than 160 scientific works, including 1 monograph and 25 patents. Е-mail: Khlebnikov@yrd.ru
Pavel M. ZOBOV (b. 1956) in 1979 he graduated from the Ufa oil institute, depu- ty head of the laboratory of the «URD-Center», the author of 50 publications including 6 patents.
Yuliya F. GUSCHINA (b. 1985) in 2008 she graduated from Gubkin Russian State University of Oil and Gas. The scientific associate of the laboratory of oil recovery of «Incorporated center of research and development» Ltd., the co-author of 5 scientific publications.
Vladimir A. VINOKUROV (b. 1950) in 1972 graduated from Gubkin Moscow Institute of Oil and Gas Industry (now Gubkin Russian State University of Oil and Gas). Doctor of Chemistry, professor, Head of Physical and Colloidal Chemistry Chair of Gubkin Russian State University of Oil and Gas. Author of 250 publications. Е-mail: vinok_ac@mail.ru

Abstract: Applying D065 plasticizer and a stabilized colloid agent can help improve the casing and workover quality. The cause of low quality of casing of the upper well segment at a number of gas fields in the Far North is supposed to be the high water/cement ration used lightweight cement slurries.

Index UDK: 622.24

Keywords: cement slurry, gas well, rheology, workover

Bibliography: