Extended Search

- in all fields
- in the title
- in key words
- in the abstract
- in the bibliography
Issue
Name
Authors
Category
2017/1
Denoising of core plug image based on nonlinear anisotropic diffusion
Technical sciences

Authors: Sergey S. ARSENYEV-OBRAZTSOV was born in 1951. Graduated from Moscow Institute of Petrochemical and Gas Industry in 1975. He is Candidate of Technical Sciences, Associate Professor of the Department of Applied Mathematics and Computer Modeling, director of the High Performance Computing Centre of Gubkin Russian State University (National Research University) of Oil and Gas. He is specialist in high performance computer simulation of complicated multiphysics processes. He is author of more than 50 publications. E-mail: arseniev@gubkin.ru
Tatiana M. ZHUKOVA graduated from Moscow Institute of Electronic Engineering in 1971. She is Candidate of Technical Sciences, Assistant Professor at Gubkin Russian State University (National Research University) of Oil and Gas. She is specialist in numerical methods for the solution of partial differential equations on high performance computers. She is author of more than 40 publications. E-mail: jukova.t@mail.ru

Abstract: A modified method of digital filtration based on nonlinear anisotropic diffusion is proposed. Filters using this approach have been successfully applied in medicine. This method was specifically modified to process the results of digital computer tomography and microscopy of core plugs, obtained from reservoirs of oil and gas fields. The filter allows to suppress both additive and multiplicative noise without changing the position of the internal boundaries of the object. Basing on the programming language supporting the „non-uniform memory access” (NUMA) paradigm the parallel filtration algorithm for large size 2D and 3D-digital images was developed for heterogeneous high-performance computer systems. The computer program operation is illustrated by the results of the analysis of core plug permeability dependence on the direction of the fluid flow

Index UDK: 004.932:519.63

Keywords: X-ray computer micro tomography, digital high-resolution microscopy, digital denoising of 3D images, nonlinear anisotropic diffusion filter, parallel algorithms, stencils on regular grids

Bibliography:
1. Arsenyev-Obraztsov S.S. Estimation of permeability tensor by numerical simulation of fluid flow in porous media digital model. Trudy RGU nefti i gaza im. I.M. Gubkina [Proceedings of Gubkin Russian State University of Oil and Gas], 2015, no. 4, p. 64-76 (in Russian).
2. Samarskii A.A. The theory of difference schemes. Moscow, Nauka, 1983, 616 p.
3. De Boor C. A Practical Guide to Splines. Springer Series: Applied Mathematical Sciences, vol. 27 1st ed. 1978. 1st hardcover printing, XVIII, 2001, 372 p.
4. Numrich R.W. and Reid J.K. Co-Array Fortran for parallel programming. ACM Fortran Forum, 17(2), 1998, p. 1-31.
5. Perona P. and Malik J. Scale-space and edge detection using anisotropic diffusion. Proceedings of IEEE Computer Society Workshop on Computer Vision, 1987, p. 629-639.
6. Russ J.C. The Image Processing Handbook. CRC Press, Inc., 2006, 832 p.

2015/4
Еstimation of permeability tensor by numerical simulation of fluid flow in porous media digital model
Geosciences

Authors: Sergey S. ARSENYEV-OBRAZTSOV was born in 1951. He graduated from Gubkin Moscow Institute of Petrochemical and Gas Industry in 1975. He is Candidate of Technical Sciences, Associate Professor of the Department of Applied Mathematics and Computer Modeling, director of the High Performance Computing Centre of Gubkin Russian State University of Oil and Gas. He is specialist in high performance computer simulation of complica- ted multiphysics processes. He is author of more than 50 publications. E-mail: arseniev@gubkin.ru

Abstract: On the basis of direct fluid flow simulation using a porous media digital model obtained from computer microtomography of the core sample an adaptive algorithm for the estimation of the full permeability tensor and its principle parametres is proposed. A sequential method for the estimation of parameters of the generalized nonstationary Darcy law and influence of its components on the filtration process is proposed. Applying the inverse interpolation method an algorithm for adaptation of one-parameter porous media digital model to the results of the laboratory core tests is presented.

Index UDK: УДК 519.87

Keywords: computer microtomography, porous media digital model, full permeability tensor, numerical solution of Navier-Stokes equations.

Bibliography:
1. Arsen’ev-Obrazcov S.S. Chislennoe modelirovanie mikrotechenij v poristoj srede po rezul’tatam 3D komp’juternoj tomografii. Sbornik tezisov dokladov IX Vserossijskoj nauchno-tehnicheskoj konferencii „Aktual’nye problemy razvitija neftegazovogo kompleksa Rossii”, 30 janva-rja — 1 fevralja 2012 g. M.: Izdatel’skij centr RGU nefti i gaza imeni I.M. Gubkina, 2012, chast’ II, р. 85.
2. Arsen’ev-Obrazcov S.S. Modelirovanie dvuhfaznogo techenija na komp’juternoj mikromodeli poristoj sredy, sbornik tezisov dokladov X Vserossijskoj nauchno-tehnicheskoj konferencii „Aktual’nye problemy razvitija neftegazovogo kompleksa Rossii”, 10–12 fevralja 2014 g. M.: Izdatel’skij centr RGU nefti i gaza imeni I.M. Gubkina, 2014, p. 256.
3. Flannery B.P., Deckman H.W., Roberge W.G. and D’Amico K.L. Three-Dimensional X-ray Microtomography. Science, 1987, 237 (4821), p. 1439-1444.
4. Carman P.Z. Flow of Gases through Porous Media. Butterworths, London (1956).
5. Durlofsky L.J. Numerical calculation of equivalent grid block permeability tensors for heterogeneous porous media, 1991, Water Res. Res., v. 27, p. 699-708.
6. Kirkpatrick S. Percolation and conduction. Reviews of Modern Physics 45, no. 4 (1973), p. 574-588.
7. Pan C., Hilpert M., Miller C.T. Pore-scale modeling of saturated permeabilities in random sphere packings. Phys. Rev. E: Stat. Phys., Plasmas, Fluids. 64 (2001).
8. Acharya R.C., Van Der Zee, S.E.A.T.M, Leijnse A. Porosity-permeability properties generated with a new 2-parameter 3D hydraulic pore-network model for consolidated and unconsolidated porous media. Adv. Water Res. 27, p. 707–723 (2004).
9. Lindquist, W.B.: Network flow model studies and 3D pore structure. Contemporary Mathematics, 295 (2002), p. 355-366.
10. Schena G., Favretto S. Pore space network characterization with sub-voxel definition. Transp. Porous Media. 70 (2), p. 181–190 (2007).
11. Succi S. The Lattice Boltzmann Equation: For Fluid Dynamics and Beyond. Series Numerical Mathematics and Scientific Computation. Oxford University Press, Oxford (2001).

2012/3
Numerical modeling of wave propagation in continuous media with linear defining relations
Petroleum geology, geophysics

Authors: Sergey S. ARSENYEV-OBRAZTSOV was born in 1951. Graduated from Moscow Institute of Petrochemical and Gas Industry in 1975. He is Ph.D., Associate Professor of the Department of Applied Mathematics and Computer Modeling, director of the University Centre for High Performance Computing of Gubkin Russian State University of Oil and Gas. E-mail: arseniev@gubkin.ru

Abstract: The paper presents a mathematical model and the results of testing of parallel software for computer clusters, designed to simulate the propagation of seismic waves in continuous linear media. The generalized method of direct second-order accuracy in space and time allows the conditionally stable evaluation of the synthetic seismograms for absorbing media with strongly varying parameters. The developed software allows to set the boundary conditions of the free surface for any smooth topography of solids. To reduce the effect of the reflected waves from the fictitious boundaries energy-absorbing boundary conditions were used. The program provides for the possibility of local refining of computational grid in areas where high-frequency waves are of particular interest. In order to justify the adequacy of the mathematical and computational models these were applied to solve problems with an analytical solution

Index UDK: 550.832.044519.688

Keywords: seismic waves, absorbing boundary conditions, adaptive grids, method of lines

Bibliography:
1. Arsen'ev-Obrazcov S.S., Zhukova T.M. Poglowajuwie granichnye uslovija dlja chislennogo reshenija zadach teorii vjazkouprugosti//ZhVM i MF. – 1987. – Vol. 27. – № 2. – Р. 301–306.
2. Arsen'ev-Obrazcov S.S. Generacija koda programm dlja chislennogo modelirovanija slozhnyh mezhdisciplinarnyh zadach termogazodinamicheskogo vozdejstvija na plasty bazhenovskoj svity// Trudy Rossijskogo gosudarstvennogo universiteta nefti i gaza imeni I.M. Gubkina. – 2009. – № 3 (254). – Р. 114–120.
3. Arsen'ev-Obrazcov S.S. Chislennoe modelirovanie mezhdisciplinarnyh zadach kodogeneraciej obobwennogo metoda prjamyh na podvizhnyh, adaptivnyh setkah//Trudy Rossijskogo gosudarstvennogo universiteta nefti i gaza imeni I.M. Gubkina. – 2010. – № 2 (259). – Р. 120–131.
4. Clayton R., Engquist B. Absorbing boundary conditions for acoustic and elastic wave equations//Bull. Seismo. Sos. Amer. – 1977. – Vol. 67. – P. 1529–1540.
5. Higdon R.L. Absorbing boundary conditions for acoustic and elastic waves in stratified media//J. Comput. Phys. – 1992. – Vol. 101. – P. 386–418.
6. Berenger J.P. A perfectly matched layer for the absorption of electromagnetic waves// J. Comput. Phys. – 1994. – Vol. 114. – P. 185–200.
7. Lamb H. On the propagation of tremors over the surface of an elastic solid//Phil. Trans. Roy. Soc. London. Ser. A. – 1904. –Vol. CCIII. – P. 1–42.

2012/3
Creating a distributed monitoring system of gas flaring by RSD
Automation, modeling and energy supply in oil and gas sector

Authors: Sergey S. ARSENIYEV-OBRAZTZOV was born in 1951. He graduated from Moscow Institute of Petrochemical and Gas Industry in 1975. He is Ph.D., Associate Professor of the Department of Applied Mathematics and Computer Modeling, director of the University Centre for High Performance Computing of Gubkin Russian State University of Oil and Gas. E-mail: arseniev@gubkin.ru
Alexander I. GODUNOV was born in 1986. Graduated from Gubkin Russian State University of Oil and Gas in 2010. He is now a PhD student at the Department of Applied Mathematics and Computer Simulation at Gubkin Russian State University of Oil and Gas. E-mail: arseniev@gubkin.ru

Abstract: This paper presents a system for automatic collection and processing of data received from DMSP satellites. The raw data are averaged and placed into the global map-grid. The images of night lights received and averaged for the year are placed in a special storage for multidimensional data sets. To estimate the volume of flared gas we used a regression of parameters of the visible flame and flared gas volumes, known for some wells. The results of the analysis are visualized on a platform of Google Maps.

Index UDK: 528.854.4

Keywords: gas flaring, DMSP satellites, remote sensing, map of night lights

Bibliography:
1. Elvidge, C., Ziskin D., Baugh K., Tuttle B., Ghosh T., Pack D., Erwin E., Zhizhin M. A Fifteen Year Record of Global Natural Gas Flaring Derived from Satellite Data//Energies 2009. – Vol. 2. – P. 595–622.
2. Gore A. An Inconvenient Truth: The Planetary Emergency of Global Warming and What We Can Do About It. – Rodale Books, 2006, 328 pp.
3. Dokumentacija po prikladnomu programmnomu interfejsu Google Maps API v2: http://code. google.com/intl/ru-RU/apis/maps/documentation/javascript/v2/reference.html.
4. Godunov A.I., Zhizhin M.N. Metod ocenki ob’emov szhiganija poputnogo gaza po sputnikovym izobrazhenijam nochnyh ognej//Sovremennye problemy distancionnogo zondirovanija Zemli iz kosmosa. – 2011. – № 1. – Р. 83–89.
5. Gonsales R., Vuds R. Cifrovaja obrabotka izobrazhenij. M: Tehnosfera, 2006. – 1072 p.
6. Zhizhin M.N., Godunov A.I., Medvedev D.P. Analiz izmenenija nochnyh ognej ot neftjanyh mestorozhdenij po nabljudenijam iz kosmosa//Nauchnaja vizualizacija. – 2011. – Vol 3. – № 1. – Р. 32–45.
7. Prikladnaja statistika: Klassifikacija i snizhenie razmernosti/S.A. Ajvazjan, V.M. Buhshtaber, V.M. Enjukov, L.D. Meshalkin. – M.: Finansy i statistika, 1989. – 607 p.

2009/3
Software code generation for the numerical simulation of complicated multiphysics problems for the thermogas dynamic bajenov bed series stimulation
Automation, modeling and energy supply in oil and gas sector

Authors: Sergey S. ARSENYEV-OBRAZTSOV (b. 1951) in 1975 graduated from the Moscow institute of petrochemical and gas industry, PhD, associate professor of the Gubkin Russian State University of Oil and Gas. E-mail: arss@mail.ru

Abstract: The problem of creating multipurpose software for code generation of numerical solvers for one-dimensional systems of partial differential equations with moving boundaries for numerical simulation complicated multiphysics problems, have been considered and solved.

Index UDK: 519.685+591.63

Keywords: program code generation, Moving boundary problem, thermogas dynamic stimulation of formation, kerogen, Landau transform

Bibliography:

2010/2
Application of Radon transform for the discrimination of noise waves in the field of multiwave acoustics
Automation, modeling and energy supply in oil and gas sector

Authors: Sergey S. ARSENIYEV-OBRAZTSOV was born in 1951, graduated from Gubkin Moscow Institute of Petrochemical and Gas Industry in 1975. He is candidate of technical sciences, assistant professor at Gubkin Russian State University of Oil and Gas.
Tatiana M. ZHUKOVA was born in 1947, graduated from Moscow Institute of Electronic Engineering in 1971. She is candidate of technical sciences, assistant professor at Gubkin Russian State University of Oil and Gas. E-mail: t.jukova@mail.ru

Abstract: Method for discrimination of noise wave in the sonic waveform logging proposed on the basis of Radon transform. Numerically was examined the influence of signal-to-noise amplitude ratio on the possibility for differentiating waves in the wave field according to their propagation velocities

Index UDK: 51.001

Keywords: Radon transform, numerical Radon transform, sonic waveform logging, wave field differentiating according to propagation velocities

Bibliography:

2010/2
Numerical simulation of multiphysics problems by means of Generalized method of lines on the adaptive and moving meshes
Automation, modeling and energy supply in oil and gas sector

Authors: Sergey S. ARSENIYEV-OBRAZTSOV was born in 1951, graduated from Gubkin Moscow Institute of Petrochemical and Gas Industry in 1975. He is candidate of technical sciences, assistant professor at Gubkin Russian State University of Oil and Gas. E-mail: arss@mail.ru

Abstract: The problem of creating multipurpose software for code generation of numerical solvers for multi-dimensional systems of partial differential algebraic equations by means of generalized method of lines on the moving meshes for numerical simulation of the complicated multiphysics problems, have been considered and solved.

Index UDK: 550.832.044

Keywords: program code generation, method of lines, multiphysics problems, adaptive and moving meshes, thermogas dynamic stimulation of formation

Bibliography: