Extended Search

- in all fields
- in the title
- in key words
- in the abstract
- in the bibliography
Issue
Name
Authors
Category
2020/2
Interpretation of results of geological-geochemical studies of southern areas of West-Siberian oil and gas province (Demyanskaya and Nizhne-Keumskaya areas)
Geosciences

Authors: Sergey F. KHAFIZOV graduated from Gubkin Russian State University of Oil and Gas in 1987. He is Doctor of Geological and Mineralogical Sciences, Professor, Member of the Russian Academy of Natural Sciences and AAPG, Head of the Geology of Hydrocarbon Systems Department at Gubkin Russian State University of Oil and Gas (National Research University). He is specialist in the field of oil and gas fields’ exploration. He is author of four monographs and more than 60 scientific publications in Russian and international periodicals. E-mail: khafizov@gubkin.ru
Maria V. ZAKHARCHENKO graduated from Gubkin Russian State University of Oil and Gas in 2011 as a specialist, and after completing a postgraduate course of Gubkin Russian State University of Oil and Gas in 2015, she qualified as Candidate of Technical Sciences in 2017. From 2017-2019 she worked as Assistant Lecturer and Senior Lecturer of the Department of Theoretical Foundations of Oil and Gas Prospecting and Exploration. Currently, she is the Director for Coordinating Programs and Projects of the SIRTEK Association. She is author of more than 23 scientific publications. E-mail: m.zaxarchenko@inbox.ru
Kristina I. DANTSOVA graduated from Gubkin Russian State University of Oil and Gas (National Research University) in 2017. She is Assistant Lecturer at the Department of Theoretical Foundations of Oil and Gas Exploration and Prospecting of Gubkin Russian State University of Oil and Gas (National Research University). She is author of more than 12 scientific publications.
E-mail: kristinadantsova@yandex.ru

Abstract: The paper presents the results of interpretation of pyrolytic studies using Bulk Rock and Reservoir methods in the Jurassic deposits of the Demyanskaya and Nizhne-Keumskaya areas (West Siberian Oil and Gas Province). The detailed study was necessitated by the significant prospect of their oil and gas potential. The content of organic carbon, the stages of thermal maturity, the type of kerogen and the generation potential for source rocks were determined. The composition of asphalt-resinous substances in coarse-grained sandstones was detailed

Index UDK: 550.8.05:542.92 + 550.4:542.92

Keywords: Rock Eval, Reservoir, Bulk Rock method, Bazhenov formation, West Siberia, Jurassic deposits, organic carbon content, Demyanskaya area, Nizhne-Keumskaya area

Bibliography:
1. https://www.vsegei.ru/ru/info/gisatlas/ufo/tyumenskaya_obl/f_13_rayonir_NG.jpg
2. Zaharchenko M.V., Lyushin M.M. Ocenka generacionnogo potenciala osadochnogo chekhla yuzhnoj chasti Predural’skogo progiba (na osnove rezul’tatov piroliticheskih issledovanij). Neft’, gaz i biznes, 2015, no. 9, p. 17-20.
3. Zaharchenko M.V., Lyushin M.M. Ocenka neftegazovogo potenciala OV materinskih porod yuzhnoj chasti Predural’skogo progiba. V kn. “Fundamental’nyj bazis innovacionnyh tekhnologij poiskov, razvedki i razrabotki mestorozhdenij nefti i gaza i prioritetnye napravleniya razvitiya resursnoj bazy TEK Rossii”, 2016, p. 110-115.
4. Shimanskij V.K., Shapiro A.I., Vasil’eva V.F., Vishnevskaya N.B., Kunaeva N.T., Turenkova G.V. Osobennosti sostava bitumoidov rasseyannogo organicheskogo veshchestva argillitov mezozojskih otlozhenij yuga Zapadnoj Sibiri. Neftegazovaya geologiya. Teoriya i praktika, 2006, t. 1. http://www.ngtp.ru/rub/1/09.pdf

2020/2
Mechanism of formation of increased natural radioactivity of deposits of the Osinskiy horizon in the south of the Siberian Platform
Geosciences

Authors: Victoria A. LOSHKAREVA graduated from Gubkin Russian State University of Oil and Gas (National Research University) in 2016. She is Assistant Lecturer of the Department of Lithology of Gubkin Russian State University of Oil and Gas (National Research University). E-mail: viyurr@gmail.com
Olga V. POSTNIKOVA graduated from Gubkin Moscow Institute of Petrochemical and Gas Industry in 1979. Doctor of Geological and Mineralogical Sciences. Her academic interests focus on the lithology of reservoirs. She is author of more than 80 scientific publications, including 35 articles in journals from the list of the Higher Attestation Commission of the Russian Federation.
E-mail: olga.postnikova@yandex.ru
Irina A. KITAEVA is Assistant Lecturer of the Department of Lithology of Gubkin Russian State University of Oil and Gas (National Research University). She is author of 33 scientific publications. E-mail: irina_kitaeva@bk.ru
Ekaterina V. MILOVANOVA graduated from Gubkin Russian State University of Oil and Gas (National Research University) in 2019, she is graduate student of the Department of Lithology of Gubkin Russian State University of Oil and Gas (National Research University). E-mail: katerina.milovanova95@gmail.com

Abstract: The paper gives a brief lithological characteristic and description of the patterns of the structure of the productive Osinskiy horizon of the Nepsko-Botuoba anteclise. According to the results of studies of rock radioactivity (gamma-ray, spectrometry), zones of increased natural radioactivity of the carbonate deposits of the Osinskiy horizon were identified and possible causes of its occurrence were formulated. According to the results of comprehensive laboratory studies, factors of endogenous and exogenous influence on the formation of zones of abnormal radioactivity values were identified

Index UDK: 552.54:550.832.5

Keywords: East Siberia, Nepsko-Botuoba anteclise, Osinskiy horizon, carbonate rock radioactivity, uranium, cyano-bacterial mats

Bibliography:
1. Gottikh R.P. Radioaktivnye elementy v neftegazovoi geologii [Radioactive elements in oil and gas geology]. Moscow, 1980, 253 p.
2. Bacterial paleontology. M.: PIN RAS, 2002, 188 p.
3. Neruchev S.G. Periods of radioactivity on the Earth surface and their influence on the organic world revolution. Neftegazovaya Geologiya. Teoriya i praktika, 2007, no. 2, p. 3-8. http://www.ngtp. ru/rub/10/032.pdf
4. Kuznetsov A.S., Kitaeva I.A. Mineralogical features of osinskiy horizont carbonate reservoir rocks of Nepsko-Botuoba anteclise. Trudy RGU nefti i gaza (NIU) imeni I.M. Gubkina, 2017, no. 2, p. 45-55.

2020/2
Lithological, petrophysical and geochemical support for well logging data interpretation to determine mass and volume concentrations of organic matter
Geosciences

Authors: Nikita I. SAMOKHVALOV is postgraduate student of Well Logging Department, Gubkin Russian State University of Oil and Gas (National Research University). His research inte-rests include petrophysical and geochemical investigation and well logging data interpretation. E-mail: hikz1@mail.ru
Natalya A. SKIBITSKAYA head of Laboratory at Oil and Gas Institute of Russian Academy of Sciences. Candidate of Geological and Mineralogical Sciences. She is specialist in petrophysics, geochemistry and reservoir engineering. She is author of more than 100 scientific publications and 5 patents. E-mail: skibitchka@mail.ru
Kazimir V. KOVALENKO is Doctor of Geological and Mineralogical Sciences, Professor of the Geophysical Information Systems Department, Gubkin Russian State University of Oil and Gas (National Research University). His research interests focus on algorithmical formalization of petrophysical interpretation of well-logging data. He is author and co-author of more than 50 scientific publications. E-mail: kazimirk@hotmail.com

Abstract: The methodological basis of lithological-petrophysical and geochemical support of well logging data interpretation is substantiated to estimate mass and volume concentrations of organic matter on the basis of laboratory data. A method for separate assessment of the concentrations of kerogen and bitumen according to pyrolytic and bituminological studies has been developed. Methods for determining kerogen density that do not require dissolution of the rock mineral matrix are proposed. The list of necessary methods for determining kerogen density, according to the proposed methods, includes X-ray phase analysis, pycnometry, determination of porosity by the method of hydrostatic weighing and the method of nuclear magnetic resonance.
The results of the work are necessary for accurate determination of OM concentrations on the basis of well logging data.

Index UDK: 550.83:552.5 + 550.84:543

Keywords: source rocks, petrophysical modeling, pyrolysis, extraction, kerogen, bitumen

Bibliography:
1. Bazhenova O.K., Burlin Yu.K., Sokolov B.A. i dr. Geologiya i geokhimiya nefti i gaza. Uchebnik. MGU imeni M.V. Lomonosova, 2012.
2. Bogorodskaya L.I., Kontorovich A.E., Larichev A.I. Kerogen. Metody izucheniya, geokhimicheskaya interpretatsiya. Novosibirsk: Izd-vo SO RAN, filial Geo, 2005.
3. Borisenko S.A. Smachivaemost’ i metody ee opredeleniya dlya slozhnopostroennykh porod-kollektorov prirodnykh rezervuarov nefti i gaza. Diss. k.t.n. M., 2019.
4. Gudok N.S., Bogdanovich N.N., Martynov V.G. Opredelenie fizicheskikh svoystv neftevodosoderzhashchikh porod. M.: OOO “Nedra-Biznestsentr”, 2007, 592 p.
5. Dratsov V.G., Abdukhalikov Ya.N., Trukhin V.Yu. Otsenka kharaktera smachivaemosti karbonatnykh porod po dannym GIS. Geofizika, 1999, no. 6, p. 28-33.
6. Zoloeva G.M., Srebrodol’skaya M.A., Kosterina V.A. Opredelenie soderzhaniya kerogena v kollektorakh bazhenovskoy svity po dannym gamma-metoda s uchetom tsiklov osadkonakopleniya. Geofizika, 2014, no. 1, p. 46-52.
7. Kalmykov G.A. Stroenie Bazhenovskogo neftegazonosnogo kompleksa kak osnova prognoza differentsirovannoy nefteproduktivnosti. Diss. d.g.-m.n. M., 2016.
8. Kobranova V.N. Petrofizika: Uchebnik dlya vuzov. M.: Nedra, 1986.
9. Kuznetsov V.G. Litologiya. Osadochnye gornye porody i ikh izuchenie: uchebnoe posobie dlya vuzov. M.: Nedra-Biznestsentr, 2007.
10. Orlov L.I., Karpov E.N., Toporkov V.G. Petrofizicheskie issledovaniya kollektorov nefti i gaza. M.: Nedra, 1987, 217 p.
11. Pirson S.D. Uchenie o neftyanom plaste. M.: Gostoptekhizdat, 1961, t. 580.
12. Samokhvalov N.I., Skibitskaya N.A., Kovalenko K.V. Differentsirovannaya otsenka kharakteristik produktivnosti porod po dannym GIS na osnove petrofizicheskogo i geokhimicheskogo obespecheniya. Geofizika, 2019, no. 6, p. 85-92.
13. Samokhvalov N.I., Skibitskaya N.A., Kovalenko K.V. Voprosy opredeleniya soderzhaniya kerogena v porodakh neftegazomaterinskikh otlozheniy. Geologiya, geofizika i razrabotka neftyanykh i gazovykh mestorozhdeniy (VNIIOENG), 2019, no. 6, p. 69-74.
14. Tisso B., Vel’te D. Obrazovanie i rasprostranenie nefti. Mir, 1981.
15. Bust V.K., Majid A.A. et al. The petrophysics of shale gas reservoirs: Technical challenges and pragmatic solutions. Petroleum Geoscience, 2013, t. 19, no. 2, p. 91-103.
16. Craddock P.R., Mossé L., Prioul R., Miles J. et al. Integrating Measured Kerogen Properties With Log Analysis for Petrophysics and Geomechanics in Unconventional Resources. SPWLA 59th Annual Logging Symposium. Society of Petrophysicists and Well-Log Analysts, 2018.
17. Dang S.T. A new approach to measure organic density. Unconventional Resources Technology Conference, Denver, Colorado, 25-27 August 2014. Society of Exploration Geophysicists, American Association of Petroleum Geologists, Society of Petroleum Engineers, 2014, p. 433-439.
18. Jarvie D.M., Maende A. Mexico’s Tithonian Pimienta Shale: Potential for Unconventional Production. Unconventional Resources Technology Conference, San Antonio, Texas, 1-3 August 2016. Society of Exploration Geophysicists, American Association of Petroleum Geologists, Society of Petroleum Engineers, 2016, p. 528-542.
19. Herron M.M., Grau J., Herron S.L. et al. Total organic carbon and formation evaluation with wireline logs in the Green River Oil Shale. SPE Annual Technical Conference and Exhibition. Society of Petroleum Engineers, 2011.
20. Herron S.L. In Situ Evaluation of Potential Source Rocks by Wireline Logs: Chapter 13: GEOCHEMICAL METHODS AND EXPLORATION, 1991.
21. Kinghorn R.R.F., Rahman M. Specific gravity as a kerogen type and maturation indicator with special reference to amorphous kerogens. Journal of Petroleum Geology, 1983, t. 6, no. 2, p. 179-194.
22. Sanei H., Wood J.M. et al. Characterization of organic matter fractions in an unconventional tight gas siltstone reservoir. International Journal of Coal Geology, 2015, t. 150, p. 296-305.
23. Steiner S., Ahsan S.A., Raina I. et al. Interpreting Total Organic Carbon TOC in Source Rock Oil Plays. Abu Dhabi International Petroleum Exhibition & Conference. Society of Petroleum Engineers, 2016.
24. Ward J. Kerogen density in the Marcellus shale. SPE Unconventional Gas Conference. Society of Petroleum Engineers, 2010.

2020/2
Improving efficiency of development based on digital lithological and petrophysical models of productive layers
Geosciences

Authors: Radmir R. YUNUSOV is head of the Department of Control and Analysis of Oil and Gas Field Development at OOO “LUKOIL-Zapadnaja Sibir”. E-mail: Radmir.Unusov@lukoil.com
Andrew S. KUZNETSOV is engineer of the Department of Lithology at Gubkin Russian State University of Oil and Gas (National Research University). Нe is author of more than 15 scientific publications. E-mail: andrey.kuznecov.91@mail.ru

Abstract: Тhe successful development of oil fields primarily depends on the most accurate geological understanding of the reservoir structure, determined by the correct lithological-facies and lithological-petrophysical and tectonic models. The complex geological model must accurately describe all the geological features of the reservoir for making further decisions on the methods and approaches to field development

Index UDK: 552.5:004.9 + 552:004.9

Keywords: Vikulov formation, core, lithological-facies model, X-ray tomography, typification of well prognosis, geological and engineering operations

Bibliography:
1. Promyshlennyj podschet zapasov plastov v granicah Kamennoj (vostochnaja chast’) LU Krasnoleninskogo mestorozhdenija. OOO NPK “Geoproekt”, 2010, p. 426.
2. Dopolnenie k tehnologicheskoj sheme razrabotki Krasnoleninskogo mestorozhdenija (vostochnaja chast’) (OOO “LUKOJL-Zapadnaja Sibir”), filial OOO “LUKOJL-Inzhiniring” “KogalymNIPIneft’ ” v g. Tjumeni, 2015.
3. Shkandratov V.V., Fedorov Ju.N., Takkand G.V., Ljagushov S.V., Chertenkov M.V. Opyt izuchenija geomehanicheskih svojstv plasta VK1 Vostochno-Kamennogo licenzionnogo uchastka Krasnoleninskogo mestorozhdenija. Neftjanoe hozjajstvo, 2011, no. 8, p. 10-13.
4. Gavura V.E., Lejbson V.G., Chipas E.I., Shefer A.B. Metod izmenenija napravlenija fil’tracionnyh potokov pri razrabotke neftjanyh mestorozhdenij. M.: VNIIOJeNG, 1976, 63 p.
5. Merkulov V.P., Krasnoshhekova L.A. Issledovanie prostranstvennoj litologo-petrofizicheskoj neodnorodnosti produktivnyh kollektorov mestorozhdenij nefti i gaza. Izvestija TPU, 2002, t. 305, no. 6, p. 296-303.
6. Dmitrievskij A.N. Izbrannye trudy. Tom 1. Sistemnyj podhod v geologii. Teoreticheskie i prikladnye aspekty. M.: Nauka, 2008, 454 p.

2020/2
Advantages of underwater platforms in arctic shelf conditions
Geosciences

Authors: Сhingis S. GUSEYNOV graduated from Azerbaijan Industrial Institute, Faculty of Oilfield Development and graduate school of Gubkin Moscow Institute of Petrochemical and Gas Industry, Department of Transportation and Storage of Oil and Gas. He is Doctor of Technical Sciences, Professor of Computer Aided Design of Facilities of Oil and Gas Industry of Gubkin Russian State University of Oil and Gas (National Research University). He is author of over 300 published works. E-mail: guseinov2@yandex.ru
Vadim B. KHAZEEV graduated from Gubkin Russian State University of Oil and Gas specialising in “Offshore Oil & Gas structures” in 2009. He is author of 10 publications. E-mail: hazvad@yandex.ru

Abstract: The article outlines the problems of developing oil and gas fields in the Arctic Ocean, requiring the creation of submarine-ice floating vessels for the development of hydrocarbon resources in the freezing seas, and proposes an original design for drilling and production of oil and gas underwater floating structures (hereinafter — OGUFS). The article also describes the advantages of underwater placement of offshore oil and gas facilities at depths of approximately 138 meters below ice formations in comparison with the traditional Pentagon-88 type propulsion system. Based on these calculations, it was concluded that there is a significantly lower level of heat loss and that there is no icing problem in submarine floating structures, and the associated expediency of using this design in the development of Arctic shelf deposits is noted. A review of the remaining operational advantages of the subsea oil and gas facilities is provided

Index UDK: 622.242.424(204)

Keywords: underwater oil and gas structures (UOGS), Arctic Seas, environmental loads, UOGS shells, arctic structures icing

Bibliography:
1. Buzin I.V. Aisbergi i ledniki Barentseva morya: Issledovaniya posslednikh let. Problemi Arktiki i Antarktiki, 2008, no. 1 (78), p. 66-80.
2. Huseynov Ch.S., Nadein V.А. Zonirovanie dlitelno zamerzaushikh arkticheskikh akvatoryi po glubinam s celiu osvoenia otkrivaenikh nefregazovikh mestorozhdenii suchestvyushimi i novimi predlagaemimi teknicheskimi sredstvami i teknologiyami. Burenie i neft’, 2017, no. 4, p. 10-16.
3. Khazeev V.B., Huseynov Ch.S. Ocenka vneshnikh vozdeisvyi na pogruzhnie i podvodnie morskie neftegazovie soorusheniya. Burenie i neft’, 2018, no. 3, p. 24-27.
4. Patent RF no. 2012151565/03, 03.12.2012. Huseynov Ch.S., Ivanters V.K., Shvets S.А., Musabirov А.А., Gromova G.V. Podvodnoe sooruzhenie dlya bureniya neftegazovikh skvazhin i dobichi uglevodorodov, i sposobi ego transportirovki, montazha i ekspuatacii. Patnet Rossii no. 2517285, 2014, bul. no. 15.
5. Gidrometeorologiya i gidrokhimiya Morey SSSR. Tom 1. Barentsevo more. SPB: Gidrometeoizdat, 1990, 280 р.
6. Kutateladze S.S., Borishanskyi V.M. Sprvaochnik po teploperedache. L.: Gosudarstevennoe energeticheskoe izdatelstvo, 1958, 414 р.
7. Mikheev M.A., Mikheeva I.M. Osnovi teploperedachi. M.: Energiya 1977, 344 р.
8. Elektonni resurs: http://www.trawler pictures.net/gallery/image/16188-ocean-bounty-in-front-of-MT-taranaki/
9. David L. Ice observation program on the semisubmersible drilling vessel SEDCO 708. Minsk, 1984, 24 p.
10. Charles C., Ryerson U.S. Army Engineer Research and Development Center — Cold Regions Research and Engineering Laboratory, Hanover, NH, United States, 2010, 14 p.

2020/2
Calculation methods of determining physical and thermodynamical properties of natural gas. Methods of evaluating critical and pseudo-critical parameters of natural gas
Geosciences

Authors: Vitaly A. SHVECHKOV graduated from Gubkin Russian State University of Oil and Gas in “Computer Science and Computer Facilities” in 2002. He is Candidate of Technical Sciences, Associate Professor of Dept. of Design and Operation of Oil and Gas Pipelines of Oil and Gas of Gubkin Russian State University of Oil and Gas (National Research University). He is author of 49 scientific and methodical works: 2 educational publications, 38 scientific works, 9 copyright certificates of state registration of computer programs. E-mail: shvechkov.v@gubkin.ru
Sergey A. SARDANASHVILI graduated from Moscow Institute of Petrochemical and Gas Industry in 1976. He is Doctor of Technical Sciences, Associate Professor, Head of Dept. of Design and Operation of Gas and Oil Pipelines of Gubkin Russian State University of Oil and Gas (National Research University). He is specialist in the field of computer dispatchers decision-support systems for oil and gas industry and author of more than 50 scientific papers. E-mail: sardanashvili.s@gubkin.ru
Alexandr A. ALEKSANOCHKIN graduated from the Bauman Moscow State Technical University in 1998. He is Deputy Head of Dispatch Service of Gazprom Transgaz Moscow. E-mail: alexanochkin@gtm.gazprom.ru

Abstract: The problem of adequate determination of the critical and pseudocritical parameters of natural gas is solved in the presence of initial data on the incomplete component composition A review of existing methods for determining the critical and pseudocritical parameters of natural gas in the presence of baseline data on the full component composition and on incomplete component composition (based on density data under standard conditions and the content of nitrogen and carbon dioxide) has been made. The results of the study of the limits of the possible application of the law of the corresponding states for natural gas are shown. New calculated dependencies of pseudocritical parameters are proposed with the aim of their application in calculation methods for determining the physical and thermodynamic properties of natural gas in computer models, mode calculations and technological problems of pipeline gas transport

Index UDK: 665.612:53

Keywords: natural gas, corresponding states law, thermodynamic similarity, methods of evaluation of critical and pseudo-critical parameters

Bibliography:
1. Aleksanochkin A.A., Sardanashvili S.A. Raschetnye metody opredeleniya fizicheskikh i termodinamicheskikh svoystv prirodnogo gaza. Metod razlozheniya nepolnogo komponentnogo sostava prirodnogo gaza na ekvivalentnyy komponentnyy sostav. Sbornik Trudy RGU nefti i gaza (NIU) imeni I.M. Gubkina, 2018, no. 3 (292), p. 184-194.
2. Kirillin V.A., Sychev V.V., Sheyndlin A.E. Tekhnicheskaya termodinamika: uchebnik dlya vuzov. 5-e izdanie, pererabotannoe i dopolnennoe. M. MEI, 2008, 496 p.
3. International Standard 30319.2-2015 Natural gas. Methods of calculation of physical properties. Calculation of physical properties on base information on density of standards conditions and nitrogen and carbon dioxide contents. Moscow, Standarinform publ., 2016, 13 p. (in Russian).
4. ISO 20765-2:2015 International Standard. Natural gas — Calculation of thermodynamic properties. Part 2: Single-phase properties (gas, liquid, and dense fluid) for extended ranges of application. Switzerland, 2015, 60 p. (in Russian).
5. State Standard 8.770-2011 State system for ensuring the uniformity of measurements. Natural gas. The coefficient of dynamic viscosity of compressed gas with a known component composition. The method of calculation. Moscow, Standarinform publ., 2012, 24 p. (in Russian).
6. International Standard 30319.3-2015 Natural gas. Methods of calculation of physical properties. Calculation of physical properties on base information on component composition. Moscow, Standarinform publ., 2016, 33 p. (in Russian).
7. State Standard 8.662-2009 (ISO 20765-1:2005) State system for ensuring the uniformity of measurements. Natural gas. Gas phase thermodynamic properties. Methods of calculation for transmission and distribution applications on base of the AGA8 fundamental equation of state. Moscow, Standarinform publ., 2010, 38 p. (in Russian).
8. International Standard 30319.1-2015 Natural gas. Methods of calculation of physical properties. General statements. Moscow, Standarinform publ., 2012, 5 p. (in Russian).

2020/2
Аsia-Рacific region as promising vector for Russian natural gas exports
Geosciences

Authors: Vladimir G. KUTCHEROV graduated from Gubkin Moscow Institute of Petrochemical and Gas Industry in 1972. He is Doctor of Physical and Mathematical Sciences, Professor of the Department of Physics of Gubkin Russian State University of Oil and Gas (National Research University), he is also Associate Professor of the Department of Energy Technology, KTH Royal Institute of Technology. He is specialist in the field of genesis of hydrocarbons, investigation at extreme thermobaric conditions and global energy transformation. He is author of more than 150 scientific publications. E-mail: vladimir@flotten.se
Valeriy V. BESSEL graduated from Gubkin Moscow Institute of Petrochemical and Gas Industry in 1980. He is Candidate of Technical Sciences, Executive Vice President of OOO NewTech Services, Professor of the Department of Thermodynamics and Heat Engines of Gubkin Russian State University of Oil and Gas (National Research University). He is author of about 150 scientific papers in the field of new oil and gas technologies, energy efficiency and alternative energy. E-mail: vbessel@nt-serv.com
Ekaterina A. OBUKHOVA graduated from Gubkin Russian State University of Oil and Gas (National Research University) in 2020 with a bachelor’s degree. She is Master Program student of Gubkin Russian State University of Oil and Gas (National Research University). E-mail: obukhovakat14@gmail.com
Alexey S. LOPATIN graduated from Gubkin Moscow Institute of Petrochemical and Gas Industry in 1979. He is Doctor of Technical Sciences, Professor, Head of the Department of Thermodynamics and Heat Engines of Gubkin Russian State University of Oil and Gas (National Research University). He is author of more than 400 papers in the field of thermodynamics of natural gases, diagnostics of oil and gas transportation systems, energy-saving technologies for gas transportation, energy efficiency and alternative energy.
E-mail: lopatin.a@gubkin.ru

Abstract: This article presents the results of the analysis of the natural gas market made by a group of authors in the framework of a joint research work conducted by Gubkin Russian State University of Oil and Gas and the Royal Institute of Technology (Stockholm, Sweden). The trends in the development of world energy market are analyzed. The analysis of energy consumption and energy supply in the Asia-Pacific region as the most promising area for Russian natural gas exports is carried out. It is shown that the largest economies of the region such as (China, India, Japan and South Korea) need increasing larger volumes of natural gas to meet their growing energy needs, and it is Russia that can solve this problem by exporting natural gas through pipeline systems, as well as exporting liquefied natural gas

Index UDK: 622.279(5)

Keywords: natural gas, liquefied natural gas, Asia-Pacific region, energy supply, energy market, reserves, renewable energy sources, exports, energy supply

Bibliography:
1.Bessel’ V.V., Kucherov V.G., Lopatin A.S. Strategiya eksporta rossijskih uglevodorodov. Neft’, gaz i biznes, 2015, no. 1, p. 3-10.
2.Dinamika rossijskogo eksporta uglevodorodnogo syr’ya i perspektivy ego razvitiya. V.V. Bessel’, V.G. Kucherov, A.S. Lopatin, V.G. Martynov. Gazovaya promyshlennost’, 2015, no. 11 (730), p. 12-16.
3.BP Statistical Review of World Energy, June 2018. [Elektronnyj resurs]. Rezhim dostupa: http://www.bp.com/statistical review. (Data obrashcheniya: 12 iyunya 2020 g.).
4.Bessel’ V.V., Kucherov V.G., Lopatin A.S. Potencial ispol’zovaniya solnechnoj i vetrovoj energii v toplivno-energeticheskom komplekse Rossii. ZHurnal Neftegaz.ru, 2014, no. 6, p. 74-79.
5.Bessel’ V.V., Kucherov V.G., Lopatin A.S. Prirodnyj gaz — osnova vysokoj ekologichnosti sovremennoj mirovoj energetiki. Ekologicheskij vestnik Rossii, 2014, no. 9, p. 10-16.
6.Sovremennye tendencii razvitiya mirovoj energetiki s primeneniem “gibridnyh” tekhnologij v sistemah energoobespecheniya. V.V. Bessel’, V.G. Kucherov, A.S. Lopatin, V.G. Martynov, R.D. Mingaleeva. Neftyanoe hozyajstvo, 2020, no. 3, p. 31-35.
7.Martynov V.G., Lopatin A.S., Bessel’ V.V. Prirodnyj gaz — osnova ustojchivogo razvitiya energetiki. Izvestiya Sankt-Peterburgskogo gosudarstvennogo ekonomicheskogo universiteta, 2017, no. 1-1 (103), p. 70-77.
8.Naselenie Zemli. [Elektronnyj resurs]. Rezhim dostupa: https://countrymeters.info/ru/ World#historical_population. (Data obrashcheniya: 15 yanvarya 2020 g.).
9.The World Bank, GDP, PPP (current international $) [Elektronnyj resurs]. Rezhim dostupa: https://data.worldbank.org/indicator/NY.GDP.MKTP.PP.CD.(Data obrashcheniya: 12 iyunya 2020 g.).
10. Kindzh D. Kitaj, kotoryj potryas mir. M.: AST: AST MOSKVA, 2008, 351 p.
11. Perederij S.E. Ispol’zovanie vozobnovlyaemyh istochnikov energii: kitajskij proryv. LesPromInform, 2014, no. 8, 132 p.
12. Novaya energeticheskaya strategiya YAponii: vozvrat k atomnoj energetike i razvitie VIE. [Elektronnyj resurs]. Rezhim dostupa: https://eenergy.media/2018/07/22/novaya-energetiches-kaya-strategiya-yaponii-vozvrat-k-atomnoj-energetike-i-razvitie-vie. (Data obrashcheniya: 12 iyunya 2020 g.).
13. Obzor rossijskih SPG — proektov. [Elektronnyj resurs]. Rezhim dostupa: https:// www.pwc.ru/ru/publications/russian-lng-projects.html (Data obrashcheniya: 12 iyunya 2020 g.).
14. Rasoulinezhad E., Taghizadeh-Hesary F., Yoshino N., Sarker T. Russian Federation-East Asia Liquefied Natural Gas Trade Patterns and Regional Energy Security. ADBInstitute, 2019, no. 965, p. 7-9.

2020/2
Approaches to planning nondestructive testing and technical diagnostics when repairing technological pipelines of oil and gas facilities
Geosciences

Authors: Igor A. GOL’DZON graduated from the Siberian state automobile and road Academy in 2008. Candidate of the Department of thermodynamics and heat engines of Gubkin Russian State University of Oil and Gas (National Research University). Specialist in the construction of CNG stations and supply pipelines. Author of 8 scientific publications. E-mail: goldzon.ia@yandex.ru
Alexey P. ZAV’YALOV graduated from Gubkin Russian State University of Oil and Gas in 2002. Candidate of technical Sciences, associate Professor of the Department of oil and gas processing equipment of Gubkin Russian State University of Oil and Gas (National Research University). Specialist in the field of reliability and technical diagnostics of pipeline systems. Author of about 70 scientific publications. E-mail: zavyalovap@yandex.ru

Abstract: The article deals with the problems of technical diagnostics and non-destructive testing that arise during repairs of technological pipelines of oil and gas facilities. There are four main tasks of diagnostic repairs of technological pipelines, which differ both in the nature of the requirements for the results of diagnostics, the cost of monitoring, the accuracy of the results, and the equipment and methods used for monitoring. It is stated that there is currently no universal method for monitoring technological pipelines, which is applicable in all cases of assessing the technical condition of these structures during repairs

Index UDK: 620.179.1:/622.691+622.692

Keywords: pipeline, reliability, repairs, technical diagnostics, non-destructive testing

Bibliography:
1. Diagnosticheskoe obsluzhivanie magistral’nyh gazoprovodov: Uchebnoe posobie. A.M. Angalev, B.N. Antipov, S.P. Zarickij, A.S. Lopatin. M.: MAKS Press, 2009, 112 p.
2. Analiz defektov, vyyavlennyh pri diagnosticheskom soprovozhdenii kompleksnogo remonta tekhnologicheskih truboprovodov kompressornyh stancij. A.M. Angalev, D.S. Butusov, A.P. Zav’ya-lov, A.I. Martynov. Gazovaya promyshlennost’, 2015, no. S1 (720), p. 88-90.
3. Butusov D.S., Proskuryakov A.M., Tishchenko N.I. Metodologiya predremontnogo obsledovaniya tekhnologicheskih truboprovodov KS. Gazovaya promyshlennost’, 2011, no. 9 (664), p. 32-34.
4. Zav’yalov A.P. Aktual’nye voprosy diagnosticheskogo obsluzhivaniya tekhnologicheskih truboprovodov ob’’ektov TEK. Himicheskaya tekhnika, 2015, no. 2, p. 40-43.
5. Metody i sredstva nerazrushayushchego kontrolya oborudovaniya i truboprovodov kompressornyh stancij: Ucheb. posobie. A.M. Angalev, S.I. Egorov, A.S. Lopatin, D.M. Lyapichev. M.: RGU nefti i gaza imeni I.M. Gubkina, 2015, 95 p.

2020/2
Increasing efficiency of workflow of thermo-mechanical impacts on soil during construction and operation of pipelines
Geosciences

Authors: Boris L. ZHITOMIRSKIY graduated from Kamenetz-Podolsk Higher Military Engineering Command School named after Marshal of Engineering Troops Kharchenko and Kuibyshev Military Engineering Order of Lenin Red Banner Academy. He is Candidate of Technical Sciences, General Director of AO “Gazprom Orgenergogaz”. He is Professor at the Department of Termodynamics and Heat Engines of Gubkin Russian State University of Oil and Gas (National Research University). He is author of more than 50 scientific papers in the field of power engineering, diagnostics, energy saving and gas transport.
E-mail: zhyitomirsky@oeg.gazprom.ru

Abstract: The article presents the results of research on the technological efficiency of working processes of thermomechanical impact (TMI) on the soil. Taking into account the physical and technological features of the development of frozen and rocky soils, the analysis of the causes of unproductive energy losses that affect the efficiency of working processes is performed. Based on limitations and initial parameters of the TMI and the treated medium, the efficiency can be determined accurately enough and technically justified, and therefore ensure a stable efficiency with automated workflow management of low-temperature thermomechanical extraction of soils during the construction and exploitation oil and gas pipelines

Index UDK: 624.042.5:622.692.4.07

Keywords: thermomechanical drilling rig tool, energy efficiency, workflow

Bibliography:
1. Zhytomyrsky B.L., Dubinsky V.G., Lopatin A.S. Investigation of the flow modes of the air jet from the drilling tool in the thermomechanical method of developing. Trudy RGU of nefti and gasa (NIU) imeni I.M. Gubkina, 2019, no. 4 (297), p. 99-111.
2. Zhytomyrsky B.L. Investigation of thermodynamics of heat and mass transfer of the medium in the soil at the thermomechanical method of drilling holes on main gas pipelines. Equipment and technologies for the oil and gas complex, 2019, no. 2 (110), p. 38-43.
3. Zhitomirsky B.L. On the optimization of the energy balance of the thermo-mechanical drilling tool with surf beam diagnostics of pipelines. Oil & gas, 2020, no. 01.1-2, p. 98-102.
4. Deich M.E., Filippov G.A. Gas Dynamics of two-phase media. М.: Energia, 1968, 423 p.

Authors: Victor G. PIROZHKOV graduated from the Krasnoyarsk Polytechnic institute in 1971 with a degree in mechanical engineering technology, machine tools and metalworking. He is Candidate of Technical Sciences, Professor at the Department of Technical Mechanics of Gubkin Russian State University of Oil and Gas (National Research University). He is expert in the field of calculation of strength and reliability of elements of engineering structures. He is author of more than 70 scientific and educational works. E-mail: pirogkov.v@gubkin.ru
Michail O. ARBUZOV graduated from Moscow machine tool institute in 1964 by specialty “Mechanical engineering technology, machine tools and metalworking”. He is Candidate of Technical Sciences, Assistant Professor of Sub-department of Machines of MSUT “STANKIN”. He is expert in the field of designing and calculating machine parts. He is author and co-author of more than 60 scientific and educational works. E-mail: stankin-okm@yandex.ru
Alexey Ya. NEKRASOV graduated from Moscow State University of Technology “STANKIN” in 1994 by specialty “Machine tools and metalworking”. He is Candidate of Technical Sciences, Assistant Professor of Sub-department of Machines of MSUT “STANKIN”. He is expert in engineering. He is author and co-author of more than 120 scientific and educational works.
E-mail: stankin-okm@yandex.ru
Alexander N. SOBOLEV graduated from Moscow State University of Technology “STANKIN” in 2002 in the direction of the magistracy “Technology, Equipment and Automation of Engineering Industries”. He is Candidate of Technical Sciences, Assistant Professor of the Sub-department of Machines of MGTU “STANKIN”. He is expert in the theory of mechanisms and CAD. He is author and co-author of more than 120 scientific and educational works. E-mail: stankin-okm@yandex.ru

Abstract: One of the options for mounting parts on shafts is through the use of the friction method of transmitting torque with two contacting conical surfaces pulled together. However, traditional designs are not without drawbacks. The authors proposed a simple and compact design for reliable fastening of parts on the shaft in combination with the ability to quickly adjust their axial and angular position. New technical solutions are based on the improvement and diversification of the designs of tapered shrink sleeves

Index UDK: 621.85-238+ 621.824

Keywords: torque transmission, shaft-hub connection, elastic sleeve, axial and angular position adjustment

Bibliography:
1. Egorov O.D., Bujnov M.А., Prokhorenko L.S. Structural analysis of mechanisms using graphs. Tekhnologiya mashinostroeniya [Engineering Technology], 2017, no. 7, p. 33-36 (in Russian).
2. Tsukanov M.A., Ulianova O.P. Algorithmization of the dispatching process of casting cranes as a way to reduce the downtime of steelmaking. Elektrometallurgiya [Electrometallurgy], 2018, no. 3, p. 9-17 (in Russian).
3. Sobolev А.N., Nekrasov А.YA., Yаgol’nitser O.V., Butrimova E.V. An experimental model for assessing the technical and environmental indicators of machine tools. Vestnik MGTU “STANKIN” [Messenger of Moscow State University of Technology “Stankin”], 2016, no. 1, p. 33-37 (in Russian).
4. Pirogkov V.G., Sobolev A.N., Nekrasov A.Ya., Arbuzov M.O. Computer-aided design and modeling in mechanical engineering: orthogonal bevel gears. Trudi RGU nefti I gaza (NIU) imeni I.M. Gubkina [Proceedings of Gubkin Russian State University of Oil and Gas], 2019, no. 2, p. 95-106 (in Russian).
5. Pirozhkov V.G., Sobolev А.N., Nekrasov А.YA., Аrbuzov M.O. Gear mechanisms of intermittent intermittent motion: designs, calculation methods, modeling. Trudi RGU nefti i gaza (NIU) imeni I.M. Gubkina [Proceedings of Gubkin Russian State University of Oil and Gas], 2019, no. 4, p. 156-166 (in Russian).
6. Nekrasov А.YA., Аrbuzov M.O., Pirozhkov V.G. On a formalized method for determining the additional loads caused by individual errors in the steps of links in mechanical devices with multipair contact of elements. Neft’ gaz i biznes [Oil, Gas and Business], 2011, no. 3, p. 62-67 (in Russian).
7. Kazakov A.A., Arbuzov M.O., Pirogkov V.G., Saldadze A.D. Influence of part shape errors in equipment accuracy calculations. Neft’ gaz i biznes [Oil, Gas and Business], 2012, no. 1-2, p. 98-101 (in Russian).
8. Pirogkov V.G., Sobolev A.N., Nekrasov A.Ya., Arbuzov M.O. To the question of the shaping of the profile of cylindrical gears during electrical discharge cutting. Trudi RGU nefti i gaza (NIU) imeni I.M. Gubkina [Proceedings of Gubkin Russian State University of Oil and Gas], 2018, no. 4, p. 118-131 (in Russian).
9. Sobolev A.N., Nekrasov A.Ya. Improving the design technique of the pin chain gearing based on new software for calculating and modeling. Vestnik MGTU “STANKIN” [Messenger of Moscow State University of Technology “Stankin”], 2015, no. 3, p. 34-38 (in Russian).
10. Sobolev A.N., Kosov M.G., Nekrasov A.Ya. Modeling of structures of hull parts using calculated macrocells. Vestnik MGTU “STANKIN” [Messenger of Moscow State University of Technology “Stankin”], 2014, no. 3, p. 98-101 (in Russian).
11. Pronin А.I., Myl’nikov V.V., Val’ko D.А., Kondrashkin O.B. Development and research of part design using CAD/CAE systems. Remont. Vosstanovlenie. Modernizatsiya [Repairs. Recovery. Modernization], 2018, no. 6, p. 13-16 (in Russian).
12. Kosov M.G., Gurevich YU.E., Kapitanov А.V. Load distribution on rolling bodies of wave transmission generators. Vestnik MGTU “STANKIN” [Messenger of Moscow State University of Technology “Stankin”], 2018, no. 1, p. 36-44 (in Russian).
13. Chekanin V.А., Chekanin А.V. The study of genetic methods for optimizing the distribution of rectangular resources. Sovremennoe mashinostroenie. Nauka i obrazovanie [Modern engineering. Science and education], 2012, no. 2, p. 798-804 (in Russian).
14. Chekanin V.A., Chekanin A.V. Data structure for the problem of three-dimensional orthogonal packing of objects. Vestnik MGTU “STANKIN” [Messenger of Moscow State University of Technology “Stankin”], 2015, no. 1, p. 112-116 (in Russian).
15. Arbuzov M.O., Nekrasov A.Ya., Sobolev A.N., Rivkin A.V. Issledovaniye, raschet parametrov i konstruirovaniye zubchato-remennykh peredach [Research, calculation of parameters and design of gear-belt drives]. Moscow, 2018, 164 p.
16. Sobolev А.N., Nekrasov А.YA., Аrbuzov M.O. Effective methods of training future engineering and scientific personnel at the machine tool department of MGTU “STANKIN”. Tekhnicheskoe tvorchestvo molodyozhi [Technical creativity of youth], 2016, no. 1, p. 21-24 (in Russian).
17. Arbuzov M.O., Sobolev A.N., Nekrasov A.Ya. Raschet parametrov soyedineniya val-stupitsa “Shaft-Hub Joining” [Calculation of the shaft-hub connection “Shaft-Hub Joining”]. Patent RF, no. 2018661093, 2018.
18. Arbuzov M.O., Sobolev A.N., Nekrasov A.Ya. Soyedineniye vala so stupitsey [Shaft-hub connection]. Patent RF, no. 177902, 2018.
19. Arbuzov M.O., Sobolev A.N., Nekrasov A.Ya. Soyedinenyie vala so stupitsey [Shaft-hub connection]. Patent RF, no. 192160, 2019.
20. Arbuzov M.O., Sobolev A.N., Nekrasov A.Ya. Soyedinenyie val-stupitsa [Shaft-hub connection]. Patent RF, no. 183767, 2018.
21. Arbuzov M.O., Sobolev A.N., Nekrasov A.Ya. Ustroystvo dlya krepleniya stupitsy na valu [Device for attaching the hub to the shaft]. Patent RF, no. 190482, 2019.
22. Arbuzov M.O., Sobolev A.N., Nekrasov A.Ya. Sposob dostizheniya soosnosti dvukh konicheskikh vnutrennikh poverkhnostey stupitsy [The way to achieve alignment of two conical inner surfaces of the hub]. Patent RF, no. 2272649, 2020.