Статьи

Drilling and development of hydrocarbon fields

The influence of porosity and permeability of carbonate reservoirs on oil recovery factor
Drilling and development of hydrocarbon fields

Authors: Larisa N. NAZAROVA graduated from Gubkin Moscow Institute of Petrochemical and Gas Industry in 1979. She is Candidate of Technical Sciences, Associate Professor of the Department of Development and Exploitation of Oil fields of Gubkin Russian State University of Oil and Gas. She is specialist in the field of development and design of oil fields. She is author of more than 50 scientific publications. E-mail: Nazarova-ln@irmu.ru

Abstract: One of the main technological parameters of efficiency of development of oil fields has been oil recovery factor (ORF). Its value is influenced by a number of natural factors. 197 layers were analyzed to assess the impact of reservoir porosity and permeability of a carbonate porous type reservoir on the magnitude of the calculated and actual final ORF. It is shown that the calculated and actual values of the ORF do not always correspond to a certain set of reservoir properties. The degree of divergence of the calculated and actual values of the ORF depends on the reservoir porosity and permeability of the productive strata

Index UDK: УДК 622.276

Keywords: oil recovery factor (ORF), conductivity, water permeability, reservoir porosity and permeability

Bibliography:
1. Amelin I.D. Vliyanie prirodnykh i tekhnologicheskikh faktorov na pokazateli razrabotki zalezhey nefti v karbonatnykh kollektorakh (po dannym opyta ikh ekspluatatsii). Materialy soveshchaniya. M.: VNIIOENG, 1990, p. 117 (in Russian).
2.Baziv V.F. Nefteotdacha v printsipe ne mozhet padat’. M.: Nedropol’zovanie — KhKhI vek, 2007, no. 1 (in Russian).
3.Baziv V.F., Vasil’ev I.P., Ustimov S.K., Egurtsov N.N. Osnovnye napravleniya po sovershenstvovaniyu proektnykh tekhnologicheskikh dokumentov. Sb. trudov Vserossiyskogo soveshchaniya po razrabotke neftyanykh mestorozhdeniy. Al’met’evsk, 2002 (in Russian).
4.Baishev B.T. O zadachakh, printsipakh i metodakh regulirovaniya protsessa razrabotki neftyanykh mestorozhdeniy pri rezhime vytesneniya nefti vodoy. M.: Nauka, 1976, p. 243 (in Russian).
5.Baturin Yu.E. Slovo o KINe (koeffitsient izvlecheniya nefti). Burenie i neft’, 2011, no. 2 (in Russian).
6.Gavura A.V. Statisticheskaya model’ dlya otsenki nefteotdachi karbonatnykh plastov pri zavodnenii. Effektivnost’ razlichnykh sistem zavodneniya neftyanykh plastov na mestorozhdeniyakh Kuybyshevskoy i Orenburgskoy oblastey. Tr. Giprovostoknefti. Kuybyshev, 1981, p. 64–73 (in Russian).
7.Gavura V.E. Kontrol’ i regulirovanie protsessa razrabotki neftyanykh i gazoneftyanykh mestorozhdeniy. M.: OAO «VNIIOENG», 2001, p. 340 (in Russian).
8.Geologiya i razrabotka krupneyshikh i unikal’nykh neftyanykh i neftegazovykh mestorozhdeniy Rossii: v 2-kh tomakh pod red. V.E. Gavury. M.: OAO «VNIIOENG», 1996 (in Russian).
9.Graf T., Zangl Dzh, Khartlib M., Al’-Kanani. Otbor i klassifikatsiya kollektorov na osnove veroyatnostnogo gidrodinamicheskogo modelirovaniya — prakticheskiy primer vybora kandidatov na zavodnenie. SPE-136373 (in English).
10. Zhdanov S.A., Malyutina G.S. Vliyanie razbalansirovki sistemy razrabotki na polnotu vyrabotki zapasov. Trudy 5-go Mezhdunarodnogo tekhnologicheskogo simpoziuma. INB, 2006, p. 150 (in Russian).
11. Ivanova M.M. Kratkiy obzor nachal’nogo osvoeniya neftyanykh nedr strany. M.: NP NAEN, 2008, p. 108 (in Russian).
12. Ivanova M.M., Cholovskiy I.P., Bragin Yu.I. Neftegazopromyslovaya geologiya. M.: Nedra, 2000 (in Russian).
13. Surguchev M.L., Kolganov V.I., Gavura A.V. i dr. Izvlechenie nefti iz karbonatnykh kollektorov. M.: Nedra, 1987, p. 230 (in Russian).
14. Lisovskiy N.N., Baziv V.F. O putyakh dal’neyshego sovershenstvovaniya proektirovaniya razrabotki. Tr. Mezhdunarodnogo simpoziuma. M., 2005 (in Russian).
15. Mishchenko I.T., Lutfullin A.A. Geologo-fizicheskie kriterii uspeshnosti primeneniya tekhnologiy, pozvolyayushchikh uvelichit’ koeffitsient okhvata plastov. Neftyanoe khozyaystvo, 2009, no. 4 (in Russian).
16. Nemkov A.S., Kovalev V.S., Sazonov B.F., Berlin G.D. Vliyanie geologo-fizicheskikh parametrov na effektivnost’ razrabotki neftyanykh zalezhey v karbonatnykh kollektorakh. Sb. nauchnykh trudov. M., 2000, vyp. 122 (in Russian).
17. Osobennosti nefteotdachi karbonatnykh kollektorov po dannym geologo-razvedochnykh rabot/ Malinovskiy I.N., Panteleev A.S., Gileva N.M. i dr. Neftyanoe khozyaystvo, 1982, no. 8.
18. Subbotina E.V. Analiz zavisimosti nefteotdachi zalezhey s karbonatnymi kollektorami porovogo tipa Uralo-Povolzh’ya ot razlichnykh faktorov. Sb.nauch. tr. VNII. Vyp. 100. M., 1987, p. 104— 110 (in Russian).
19. Rudenko M.N., Pis’mennikov D.N. Tekhniko-ekonomicheskoe obosnovanie koeffitsienta izvlecheniya nefti (TEO KIN) kak osnova otsenki investitsionnoy privlekatel’nosti neftyanoy otrasli. Rossiyskoe predprinimatel’stvo, 2012, no. 7 (in Russian).

Account of osmotic swelling clays in modeling clay reservoirs for oil development
Drilling and development of hydrocarbon fields

Authors: Valery V. CADET was born 1953. He graduated from the Moscow Engineering Physics Institute in «Theoretical Nuclear Physics». He has been Head of the Department of Petroleum and Underground fluid mechanics at Gubkin Russian State University of Oil and Gas.. E-mail: trudyrgung@gubkin.ru
Pavel S. CHAGIROV was born in 1988; he graduated from Gubkin Russian State University of Oil and Gas in 2012 with Master’s Degree. He is currently doing a postgraduate course of studies at the Department of Petroleum and Underground fluid mechanics at Gubkin Russian State University of Oil and Gas. E-mail: pavel.chagirov@enconco.ru

Abstract: The analysis of osmotic swelling on the border between the injected agent and clay-containing rock allowed obtaining the dependence of the reservoir properties on the clay content and mineralization rate of injected water. The dependnces obtained show that with the decrease in salinity of the injected agent the pore space structure changes, i.e. the share of «fine» pores grows thus by reducing the share of «larg» ones, the variance of the pore radius distribution function as well as porosity decrease. On the basis of micromechanical description of the process of fluid flow in a lattice model of the porous medium analytical dependences of relative permeability curves as a function of salt concentration in the injected fluid were obtained. The process of two-phase flow of Newtonian fluids, one of which is a solution of electrolyte, in clay-containing porous medium was simulated. The influence of the parameters of the porous medium and injected saline fluid on the process of oil displacement was studied

Index UDK: УДК 622.276

Keywords: clay reservoir, flow in porous medium, osmotic swelling, percolation simulation

Bibliography:
1. Tang G.-Q. & Morrow N.R. Influence of brine composition and fines migration on crude oil/brine/rock interactions and oil recovery. Journal of Petroleum Science and Engineering, 1999, no. 24, p. 99-111.
2. Morrow N., Buckley J. Improved oil recovery by Low-Salinity Waterflooding. SPE 129421.
3. Austad T., Rezaeidoust A. & Puntervold T. Chemical Mechanism of Low Salinity Water Flooding in Sandstone Reservoirs. SPE Improved Oil Recovery Symposium. Tulsa, Oklahoma, 2010. USA: Society of Petroleum Engineers.
4. Hanin A.A. Porody i kollektory nefti i gaza i ih izuchenie. М.: Nedra, 1969. P. 140-141.
5. Wilcox R., Fisk J. Test show shale behavior, aid well planning. Oil and gas J., 1983, 12/IX, v. 81, no. 37.
6. Rumynina V.G. Ocenka vlijanija atomno-promyshlennogo kompleksa na podzemnye vody i smezhnye prirodnye ob’ekty. S-Pb.: Izdatel’stvo S.-Peterburgskogo universiteta, 2003, p. 85-90.
7. Kadet V.V. Metody teorii perkoljacii v podzemnoj gidromehanike. M.: centrlitneftegaz, 2008. — 96 p.
8. Stupochenko V.E. Vlijanie glinistosti kollektora na polnotu vytesnenija nefti vodoj. Geologo-geofizicheskie aspekty obosnovanija kojefficienta nefteotdachi. M.: VNIGNI, 1981, vyp. 228, p. 59-79.
9. Havkin A.Ja., Alishaeva O.M. O vlijanii mineralizacii plastovyh vod na fazovye pronicaemosti i vybor optimal’noj tehnologii polimernogo vozdejstvija na neftjanoj plast. Vniineft’, 1983, 11 p.
10. Basniev K.S., Kochina I.N., Maksimov V.M. Podzemnaja gidromehanika. M.: Nedra, 1993, 408 p.
11. Zareckij S.A., Suchkov V.N., Zhivotinskij P.B. Jelektrohimicheskaja tehnologija neorganicheskih veshhestv i himicheskie istochniki toka. M: Vysshaja shkola, 1980, p. 34.
12. Seljakov V.I., Kadet V.V. Perkoljacionnye modeli processov perenosa v mikroneodnorodnyh sredah. M.: 1-j topmash, 2006, 247p.
13. Uljasheva N.M., Ivenina I.V. Vlijanie ionnoj sily rastvora na skorost’ uvlazhnenija glinistyh porod. Stroitel’stvo neftjanyh i gazovyh skvazhin na sushe i na more [Construction of oil and gas wells on land and sea], 2010, no. 4, p. 28–30.
14.
Makeeva T.G. Metodicheskie novacii dlya umen’sheniya pogreshnosti opredeleniya plotnosti tverdoi fazi dispersnih gruntov standartnim metodom. Estestvennie i tehnicheskie nauki [Natural and technical sciences], 2009, no. 5, p. 231-243.
15. Khramchenkov M.G., Eirish M.V., Kornil’cev U.A. Izuchenie strukturnih izmenenii I termodinamicheskaya model’ fil’tracionnih svoistv glinistih porod. Izv. RAN. Geoekologiya [Russian Academy of Science, Geoecology], 1996, no. 5, p. 63-73.

Experimental setup for studying mechanism of elastic waves action on filtering process
Drilling and development of hydrocarbon fields

Authors: Evgeny A. MARFIN graduated from KSU (Kazan State University) named after Ulyanov-Lenin in 1999. He is PhD, Leading Researcher at the Research Center for Energy KSC of the RAS, Senior Lecturer in electronics of the KFI. He is specialist in the field of energy-saving technologies and technical means of enhanced oil recovery and oil production intensification. He is author of over 100 scientific publications. : E-mail: marfin76@mail.ru
Alexei A. ABDRASHITOV graduated from KAI (Tupolev Kazan State Technical University) in 1981. He is Junior Researcher at the Research Center for Energy of KSC of the RAS. He specializes in the field of gas dynamics. He is author of more than 10 scientific publications E-mail: abdary@mail.ru.
Evgeny V. BELYAEV is student at Kazan State Power Engineering University. He is specializes in the field of electric power supply for industrial heat engineering. He is Fellow of Presidential and Governmental Scholarship of the Russian Federation. He is author of 4 scientific public

Abstract: The action of elastic waves on the fluid flow in porous media is studied. It is shown that the impact of elastic fluctuations on the saturated porous me- dium will increase the filtration coefficient. Increased filtration coefficient under wave action can increase the rate of flow of fluid in porous media and the effectiveness of the method of production. Based on the analysis of data from dif- ferent studies an experimental setup was developed to implement various options of overlaying fields of elastic waves. Some results confirming the hypothesis of the mechanism of action of elastic waves on the filtration process were obtained

Index UDK: УДК 622.276.6

Keywords: filtration, porous medium, oil, viscosity, elastic waves, wave action, oscillator, frequency, amplitude of oscilla-tion, filter factor

Bibliography:
1. Dyblenko V.P., Kamalov R.N., Sharifullin R.Ja., Tufanov I.A. Povyshenie produktivnosti i reanimacija skvazhin s primeneniem vibrovolnovogo vozdejstvija [Productivity increase and reanimation wells with application vibrational-wave action]. Moscow: OOO “Nedra-Biznescentr”, 2000. — 381 p.
2. Kuznecov O.L., Efimova S.A. Primenenie ul’trazvuka v neftjanoj promyshlennosti [The use of ultrasound in the petroleum industry]. Moscow: Nedra, 1983. — 286 p.
3. Miheev N.I., Davletshin I.A. Method of measuring the average values of the coefficient of heat transfer in complex flows. Izvestija RAN. Jenergetika, 2005, no. 6, p. 16-19 (In Russian).
4. Davletshin I.A., Miheev N.I., Molochnikov V.M. Heat transfer in turbulent separated region with superimposed pulsations. Teplofizika i ajeromehanika [Thermophysics and Aeromechanics], 2008, vol. 15, no. 2, p. 229-236 (In Russian).
5. Mikhailov D.N., Nikolaevskii V.N. Dynamics of flow through porous media with unsteady phase permeabilities. Fluid Dynamics, 2000, vol. 35, no. 5, p. 715-724.
6. Kirsanov Ju.A., Nazipov R.A., Danilov V.A., Bashkircev G.V. Mathematical model of thermal processes and methods of research of heat transfer in a porous cylinder. Izvestija Samarskogo nauchnogo centra RAN, 2010, vol. 12, no. 4, p. 90-96 (In Russian).
7. Butorin Je.A., Zagidullina A.R. Forced vibration propagation and energy loss in the wall of vertical well. Izvestija RAN. Jenergetika, 2008, no.1, p. 131-136 (In Russian).
8. Esipov I.B., Zozulja O.M., Fokin A.V. The resonance method of measuring the shear viscoelastic properties of liquids based on the excitation of torsional oscillations in tubes. Akusticheskij zhurnal [Acoustical Physics], 2010, vol. 56, no.1, p. 124-134 (In Russian).

Features of heavy concrete in the Arctic
Drilling and development of hydrocarbon fields

Authors: Vladlen O. ALMAZOV graduated from Kuibyshev Moscow Institute of Civil Engineering in 1956. He is full professor, Doctor of Technical Sciences, professor of the Department of Concrete Structures of Moscow State University of Civil Engineering. He specializes in the field of engineering structures, including offshore oil and gas facilities. He is author of more than 130 publications. E-mail: v_almazov33@mail.ru
Zakir Allahveran-ogly AMIRASLANOV graduated from Azerbaijan Institute of Civil Engineering in Baku in 1984. He is PhD, leading researcher “Morneft” SPC. He specializes in research and design of structures for offshore oil and gas facilities. He is author of 26 publications. E-mail: trudyrgung@gubkin.ru

Abstract: Operation of concrete composite structures and hydraulic structures in the arctic conditions has specific features. The type of frost resistant concrete is of particular significance in the harsh climatic conditions. Durability of concrete in the arctic conditions depends on the annual number of cycles of freezing and thawing. This paper proposes a new approach to the choice of the properties of concrete structures designed for operating in harsh environments. This is based on statistical processing of the temperature variations and can greatly simplify the procedure for determining the safety factors for strength and deformability.

Index UDK: 693.5

Keywords: concrete, reinforced concrete, cement type, cycles of freezing and thawing, strength

Bibliography:
1. SP 41.13330.2012: Concrete and reinforced concrete design of hydraulic structures. M., 2012, 70 р.
2. SP 28.13330.2012: Protection of structures from corrosion. M., 2012, p. 118.
3. SP 131.13330. Building Climatology. M., 2012, р. 113.
4. EN 1992-1-1: Design of concrete structures — Part 1-1 General rules and rules of buildings. CEN 2003, 193 p.

Experimental investigations of wave processes in perforated well
Drilling and development of hydrocarbon fields

Authors: Rustem N. GATAULLIN graduated from Tupolev Kazan State Technical University in 2005. He is PhD, fellow of the Research Center for Power Engineering Problems of the Federal State Organization of Science Kazan Scientific Center of the Russian Academy of Sciences (Akademenergo). He is a specialist in enhanced oil recovery methods, including horizontal wells conditions, modeling of processes in technical systems and devices for elastic waves generation. He is author of more than 30 scientific publications. E-mail: rustem.acadrome@mail.ru
Jacob I. KRAVTSOV graduated from Tupolev Kazan Aviation Institute in 1959. He is Doctor of Technical Sciences, corresponding member of the Russian Academy of Natural Sciences, Honored Power Engineer of the RF, Head of the OETV Laboratory Research Center for Power Engineering Problems of the Federal State Organization of Science Kazan Scientific Center of the Russian Academy of Sciences (Akademenergo). He specializes in the field of methods for enhanced oil recovery and heat and power systems based on aircraft gas turbine engines. He is author of over 150 scientific publications. E-mail: kravtsov@mail.knc.ru

Abstract: The article investigates the distribution of elastic vibrations in perforated wells to optimize the geometric parameters of the well and the wave mode stimulation. The stand and technique for experimental studies are described. The results of experimental investigation of the propagation of energy fluctuations in the perforated well casing, which allows identifying features of forced vibrations in the well and well casing elements are generalized. In order to provide resonant vibrations of maximum amplitude and reduce energy losses desired geometric characteristics of the well are determined.

Index UDK: 534.231534.1

Keywords: oil, wave field, well, amplitude, frequency, casing, vibrations emitter

Bibliography:
1. Gataullin R.N., Kravtsov Ya.I., Marfin E.A. Nanotekhnologii v zadachakh intensifikatsii dobychi i povysheniya nefteotdachi plastov. [Nanotechnologies in production stimulation and increasing the oil recovery of formations]. Trudy Akademenergo [Transactions of Academenergo], 2012, no. 1, Kazan’: Issledovatel’skiy tsentr problem energetiki, pp. 125-138.
2.
Kuznetsov O.L., Efimova S.A. Primenenie ul’trazvuka v neftyanoy promyshlennosti. [Application of ultrasound in petroleum industry]. M.: Nedra, 1983, 192 p.
3. Dyblenko V.P., Kamalov R.N., Sharifullin R.Ya., Tufanov I.A. Povyshenie produktivnosti i reanimatsiya skvazhin s primeneniem vibrovolnovogo vozdeystviya. [Pinch of efficiency and resuscitation of wells with application vibro-wave action]. M.: OOO “Nedra-Biznestsentr”, 2000, 381 p.
4. Kuznetsov O.L., Simkin E.M., Chilingar Dzh. Fizicheskie osnovy vibratsionnogo i akusticheskogo vozdeystviya na neftegazovye plasty [A principal physics of vibration and acoustic action on oil and gas seams]. M.: Mir, 2001, 260 p.
5. Ivanov B.N., Guryanov A.I., Gumerov A.M. Volnovye protsessy i tekhnologii dobychi i podgotovki nefti. [Undular processes and technologies of production and oil treatments]. Kazan’: Izd-vo “Fen” AN RT, 2009, 400 p.
6. Ganiev R.F., Ukrainsky L.E. Non-Linear Wave Mechanics & Technologies. Second Edition.; SPC “Regular and Chaotic Dynamics”. Moscow, 2011, 780 р.
7. Gataullin R.N., Kravtsov Ya.I., Kokhanova S.Ya. Osobennosti metoda integrirovannogo vozdeystviya na produktivnyy plast pri primenenii gorizontal’nykh skvazhin. [Feature the method of the integrated influence on productive strata at application of horizontal wells]. Zhurnal Vestnik KGTU im. A.N. Tupoleva, no. 3, 2008. Izd-vo: KGTU, рр. 9-14.
8.
Zagidullina A.R., Butorin E.A. Vybor rezhimov raboty dinamicheskoy sistemy “skvazhina-izluchatel’” pri vibrovolnovom vozdeystvii na plast [Selection of operational modes of a well-emitter dynamic system in case of a vibro-wave impact on a formation]. Neftepromyslovoe delo [Oilfield Engineering]. No. 10, 2012, рр. 17-22.
9.
Gataullin R.N., Kravtsov Ya.I., Marfin E.A. Rasprostranenie uprugikh voln na uchastke perforirovannoy obsadnoy kolonny skvazhiny [Distribution of elastic waves on site of the perforated casing string of the well]. Zh. Trudy Akademenergo, 2009, no. 4. Kazan’: Issledovatel’skiy tsentr problem energetiki, рр. 84-93.
10.
Isakovich M.A. Obshchaya akustika. [General acoustics]. M.: Nauka, 1973, 500 p.
11. Efimov A.P., Nikonov A.V., Sapozhnikov A.Zh., Shorov V.I. Akustika. Spravochnik [Acoustics. Directory]. M.: Radio i svyaz’, 1989, рр. 47-60.

Multi-Criteria Evaluation of Options for Development of Oil and Gas Deposits Using Method of Analytical Networks.
Drilling and development of hydrocarbon fields

Authors: Sergei M. DAMASKIN graduated from Gubkin Russian State University of Oil and Gas with Master’s degree in 2010. He is currently a graduate student of the Department of Automated Control Systems of Gubkin Russian State University of Oil and Gas. He is author of more than five scientific publications. E-mail: damaskin@mail.ru
Yuri P. STEPIN was born in 1946, he graduated from Gubkin Moscow Institute of Petrochemical and Gas Industry in 1969. He is Doctor of Technical Sciences, Professor of of the Department of Automated Control Systems of Gubkin Russian State University of Oil and Gas. He specializes in the field of computer-aided management decision-making. He is author of 121 scientific publications. E-mail: stepin@qubkin.ru

Abstract: A new approach to the problem of multi-criteria evaluation of options for the development of oil and gas fields on the basis of analytical networks method is proposed. It is shown that basing on the recommendations of the Rules for formulating project documents for development of oil and gas deposits and using the analytical networks method the best alternative of oil and gas field development variant can be reasonably computed using rigorous mathematical methods.

Index UDK: 622.276

Keywords: oil, gas, selection criteria, optimized decision-making, analytical networks method

Bibliography:
1. RD 153-39-007-96. Reglament sostavlenija proektnyh tehnologicheskih dokumentov na razrabotku neftjanyh i gazoneftjanyh mestorozhdenij. Moscow, 1996, 112 p.
2. Saati T.L. Prinjatie reshenij. Metod analiza ierarhij. M., Radio i svjaz’, 1993, 320 p.
3. Saati T.L. Prinjatie reshenij pri zavisimostjah i obratnyh svjazjah. Analiticheskie seti. M.: URSS, 2011, 360 p.
4. Saaty T.L. Decision making with Dependence and Feedback. The Analityc Network Process. Pittsburgh: PWS Publications, 2000, 370 p.
5. Andrejchikova O.A. Prinjatie reshenij v uslovijah vzaimnoj zavisimosti kriteriev i al’ternativ slozhnyh tehnicheskih sistem//Informacionnye tehnologii, 2001, no. 11, p
р. 14–19.
6.
Rukovodstvo pol’zovatelja programmy SuperDecisions.
7. Materialy sajta http://www.superdecisions.com.

Integrated experimental approach to determining parameters of penetration and trapping of mud components and related changes in reservoir rock permeability.
Drilling and development of hydrocarbon fields

Authors: Dmitry N. MIKHAILOV graduated from the Physics Department of Lomonosov Moscow State University in 1997. He is Candidate of Physical and Mathematical Sciences, senior researcher of the “Schlumberger” Moscow Scientific  Research Center. He is author of more than 40 scientific publications in the field of multiphase flow in porous media, acoustics of porous media, theory of hydrofracturing, electrokinetic effects. E-mail: DMikhailov2@exchange.slb.com
Nikita I. RYZHIKOV graduated from Moscow Physical and Technical Institute in 2011. He is in his third year of postgraduate studies at Moscow Physical and Technical Institute and researcher at the Moscow Research Center of “Schlumberger”. E-mail: nryzhikov@slb.com
Valery V. SHAKO graduated from Moscow Physical and Technical Institute from in 1982. He is Head of the R&D Department at the “Schlumberger” Moscow Scientific  Research Center. He is specialist in the field of numerical simulation and experimental studies of hydrodynamics and heat transfer in petroleum reservoirs and wells, author of more than 30 scientific publications. E-mail: vshako@slb.com

Abstract: Changing the properties of the near-wellbore formation zone under the influence of peneratng mud components or other process fluids have a significant impact on the subsequent opertion of the well, formation testers data and geophysical instruments. Laboratory filtration experiments with mud can only measure the integral hydraulic resistance of the core sample, which is insufficient for understanding the mechanism of the formation damage. This work is aimed at developing methods to obtain additional data on the process of core contamination with mud components. The paper presents methods for constructing profiles of captured components in porous media using X-ray microcomputed tomography, analyzing pictures of broken core and acoustic profiling of contaminated samples of porous medium. A method for estimating the concentration of the polymer in a liquid filtered through the sample by measuring its rheological properties is proposed. The components capture in the porous medium are evaluated using analytical solutions for the profile of the captured components coefficients.

Index UDK: 532.546

Keywords: porous medium, transport of hard particles, mud

Bibliography:
1. Civan F. Reservoir formation damage: fundamentals, modeling, assessment and mitigation. SecondEdition. GulfPublishingCompany, 2007, 1089 р.
2. Mikhailov N.N. Izmenenie fizicheskikh svoistv gornykh porod v okoloskvazhinnykh zonakh. M.: Nedra, 1987, 151 p.
3. Longeron D.G., Alfenore J., Salehi N., Saintpère S. Experimental approach to characterize drilling mud invasion, formation damage and cleanup efficiency in horizontal wells with openhole completions. SPE 58737, 2000.
4. Boek E.S., Hall C., Tardy P.M.J. Deep bed filtration modelling of formation damage due to particulate invasion from drilling fluids. Transport in Porous Media, 2012, v. 91, no. 2, pp. 479–508.
5.
Jiao D., Sharma M.M. Formation Damage due to Static and Dynamic Filtration of Water — Based Muds. SPE 23823, 1992.
6. Herzig J.P., Leclerc D.M., Le Goff P. Flow of Suspensions through Porous Media — Application to Deep Filtration. Industrial and Engineering Chemistry, 1970, vol. 62, no. 5, p
р. 8–35.
7.
Ives K.J., Pienvichitr V. Kinetics of filtration of dilute suspensions. Chemical Engineering Science, 1965, vol. 20, no. 11, pp. 965–973.
8.
Tien C., Payatakes A.C. Advances in deep bed filtration. IChE Journal, 1979, vol. 25, no. 5, pp. 737–759.
9.
Bedrikovetsky P., Marchesin D., Shecaira F., Souza A.L., Milanez P.V., Rezende E. Characterisation of deep bed filtration system from laboratory pressure drop measurements. Journal of Petroleum Science and Engineering, 2001, v. 32, Issues 2–4, pp. 167–177.
10.
Shekhtman Yu.M. Fil’tratsiya malokontsentrirovannykh suspenzii. M., Nedra, 1961.
11. Zaitoun A., Kohler N. The role of adsorption in polymer propagation through reservoir rocks//SPE 16274-MS, 1987.
12. Bai R., Tien C. Effect of deposition in deep-bed filtration: determination and search of rate parameters. Journal of Colloid and Interface Science, 2000, vol. 231, pp. 299–311.
13.
Ryzhikov N.I., Mikhailov D.N., Shako V.V. Metod rascheta profilei raspredeleniya poristosti i ob’emnykh dolei materialov v poristoi srede s pomoshch’yu analiza dannykh rentgenovskoi mikrotomografii. Trudy MFTI, 2013, t. 5, no. 4 (20), pp. 161–169.
14.
Guo. H et al. Rock fracture-toughness determination by the Brazilian test. Engineering Geology, 1993, vol. 33, pp. 177–188.
15.
Dobrynin V.M., Vendel’shtein B.Yu., Kozhevnikov D.A. Petrofizika (fizika gornykh porod). M.: “Neft’ i gaz” RGU nefti i gaza im. I.M. Gubkina, 2004, 368 p.
16. Nikolaevskii V.N., Basniev K.S., Gorbunov A.T., Zotov G.A. Mekhanika nasyshchennykh poristykh sred. M.: Nedra, 1970, 339 p.
17. Khan M.A. e
t al. A non-destructive method for mapping formation damage. Ultrasonics, 2001, vol. 39, pp. 321–328.

Laboratory modeling of two-phase flows
Drilling and development of hydrocarbon fields

Authors: Nikolay A. BARYSHNIKOV was born in 1981, he graduated from Moscow Institute of Physics and Technology in 2005. He is senior researcher of the Laboratory of Geomechanics and Fluid Dynamics of the Institute of Geosphere Dynamics of the Russian Academy of Sciences. He is author of 16 scientific publications in the field of fluid mechanics of multiphase media. E-mail: nabarysh@gmail.com
Georgy V. BELYAKOV was born in 1936, he graduated from Moscow Institute of Physics and Technology in 1959. He is Candidate of Physical and Mathematical Sciences, senior researcher at Laboratory of Geomechanics and Fluid Dynamics of the Institute of Geosphere Dynamics of the Russian Academy of Sciences. He is author of over 50 scientific publications in the fields of rapid chemical processes and fluid mechanics of multiphase media. E-mail: nabarysh@gmail.com
Sergey В. TURUNTAEV was born in 1957. He graduated from Moscow Institute of Physics and Technology in 1981. He is Doctor of Physical and Mathematical Sciences, Deputy Director for Research of the Institute of Geosphere Dynamics of the Russian Academy of Sciences, Professor of the Department of Theoretical and Experimental Physics of Geosystems of Moscow Institute of Physics and Technology. He published over 110 scientific papers in the field of geomechanics and fluid dynamics. E-mail: s.turuntaev@gmail.com
Anatoly N. FILIPPOV was born in 1960. He graduated from Lomonosov Moscow State University in 1982. He is Doctor of Physical and Mathematical Sciences, Professor at the Department of Higher and Applied Mathematics at Gubkin Russian State University of Oil and Gas. He is author of more than 200 scientific papers in the field of physical and chemical mechanics and colloid chemistry. E-mail: filippov.a@gubkin.ru

Abstract: Experimental data on the changes in the distribution of displacing fluid saturation in the pore space of porous plane-parallel array filled with displaced fluid with greater viscosity are obtained. The mathematical model of instability of two-phase flow of displacement fluid in the form of fingers (fingers) is studied. The results of modeling are compared with experimental results.

Index UDK: 532.546

Keywords: two-phase flow, filtration, laboratory simulation, flooding, SaffmanTaylor instability

Bibliography:
1. Barenblatt G.I., Entov V.M., Ryzhik V.M. Dvizhenie zhidkostej i gazov v prirodnyh plastah. Moscow, 1984, 207 p.
2. Podzemnaja gidromehanika. K.S. Basniev, N.M. Dmitriev, R.D. Kanevskaja, V.M. Maksimov. Izhevsk, 2005, 496 p.
3. Chouke R.L., van Meurs P. and van der Poel C. Instability of Slow, Immiscible, Viscous Liquid-LiquidDisplacements in Permeable Media. Pet. Trans. A.I.M.E., 1959, no. 216, р. 188–194.
4.
Zheltov J.P. Mehanika neftegazonosnogo plasta. Moscow, 1975, 216 p.
5. Lejbenzon L.S. Dvizhenie prirodnyh zhidkostej i gazov v poristoj srede. Moscow, 1947, 244 p.
6. Leverett M.C. Flow of Oil-Water Mixtures through Unconsolidated Sands. Trans. A.I.M.E., 1939, no. 132, p. 381-401.
7. Muskat M. and M.W. Meres. The Flow of Heterogeneous Fluids Through Porous Media//Physics, 1936, no. 7, p. 346-363.
8.
Nikolaevskij V.N. Mehanika poristyh i treshhinovatyh sred. Moscow, 1984, 232 p.
9. Saffman P.G. and Sir Taylor G.I. The penetration of a fluid into a porous medium or Hele-Shaw cell containing a more viscous liquid. Proc. R. Soc. London, 1958. A245, p. 321-329.
10.
Saffman P.G. Viscous fingering in Hele-Shaw cells. J. Fluid Mech. 1986, no. 173, p. 73-94

Non-linear vibrations under slow kinetics of viscoelastic properties of oil
Drilling and development of hydrocarbon fields

Authors: Igor B. ESIPOV was born March 13, 1945. He graduated from Moscow Institute of Physics and Technology in 1968 specializing in Ultrasonic Engineering. He is Doctor of Physical and Mathematical Sciences, professor of the Department of Physics at Gubkin Russian State University of Oil and Gas since 1995. He is author of more than 89 scientific papers. Е-mail: igor.esipov@mail.ru
Oleg M. ZOZULYA is researcher at Schlumberger. E-mail: omzozulya@gmail.com
Michael A. MIRONOV is Candidate of Physical and Mathematical Sciences, Head of Laboratory at the Andreev Acoustics Institute. E-mail: mironov_ma@mail.ru

Abstract: We have previously identified slow evolution of the viscoelasticity modules of heavy crude oil. Shear modulus was measured during 72 hours at frequencies of 0,5, 5 and 50 Hz at different temperatures. The dependence of complex shear modulus on the deformation amplitude was studied with a rotational rheometer. The study showed a logarithmic growth of the nonlinearity parameter in time for this sample of oil. It was established experimentally that the complex shear modulus depends linearly on the amplitude of the shear perturbations, which is possible with the shear modulus linearly depending on the shear modulus of the medium deformation. Based on the Boltzmann statistical approach to the determination of the rate of transition to equilibrium , the model differential equation describing the slow kinetics of the changes in the internal parameters of the medium was obtained. It is shown that unlike the exponential time dependence, the slow kinetics leads to logarithmic time dependence of the perturbation decay.

Index UDK: 534.26; 542.34

Keywords: complex media, viscoelasticity, slow kinetics, nonlinearity parameter

Bibliography:
1. Landau L.D., Lifshits E.M. Gidrodinamika. — M.: Nauka, 1986. — 736 p.
2. TenCate J.A., Smith E., Guyer R.A. Universal Slow Dynamics in Granular Solids Phys. Rev. Let., 2000, v. 85, no. 5, p. 1020-1023.
3.
Pyatakov P.A., Mironov M.A. Tuning-fork Investigation of Shear Stresses Nonlinearity in Thixotropic Media//Proceedings ISNA, 2002, v. 2, p. 815-819.
4.
Mironov M.A., Pyatakov P.A. Medlennaya kinetika sil’no neravnovesnykh protsessov. Trudy 15 sessii RAO, 2004. — Moskva, GEOS. T. 1, p. 283-286.
5.
Bazhenova E.D., Vil’man A.N., Esipov I.B. Fluktuatsii akusticheskogo polya v granulirovan-noi srede. Akusticheskii zhurnal, 2005. T. 51, Prilozhenie, p. 46-52.
6.
Medlennaya kinetika vyazkouprugikh svoistv nefti pri nizkochastotnykh sdvigovykh ko- lebaniyakh. M.A. Mironov, I.A. Shelomikhina, O.M. Zozulya, I.B. Esipov. Akusticheskii zhurnal, 2012. T. 58, no. 1, p. 132-140.
7.
Devlikamov V.V., Khabibullin Z.A., Kabirov M.M. Issledovanie anomalii vyazkosti pla-stovykh neftei mestorozhdenii Bashkirii. Izvestiya vuzov. Ser. Neft’ i gaz, 1972, no. 8, p. 41-44.
8.
Lian H.J., Lin J.R., Yen T.F. Peptization Studies of Asphaltene and Solubility Parameter Spectra, Fuel. 73 (1994), p. 423-428.
9.
Asphaltenic Crude Oil Characterization: An Experimental Investigation of the Effect of Resins on the Stability of Asphaltenes. A. Hammami, K.A. Ferworn, J.A. Nighswander, S. Overa, E. Stange. Pet. Sci. Technol. 16 (1998), p. 227-249.
10.
Properties of Resins Extracted from Boscan Crude Oil and Their Effect on the Stability of Asphaltenes in Boscan and Hamaca Crude Oils. N.F. Carnahan, J.L. Salager, R. Antón, A. Dávila. Energy Fuels. 13 (1999), p. 309-314.
11.
Badmaev B.B., Damdinov B.B. Issledovanie vyazkouprugikh svoistv organicheskikh zhidkostei akusticheskim metodom. Akusticheskii zhurnal, 2001. T. 47, no. 4, p. 487–489.
12.
Badmaev B.B., Damdinov B.B., Sanditov D.S. Nizkochastotnye sdvigovye parametry zhidkikh vyazkouprugikh materialov. Akusticheskii zhurnal, 2004. T. 50, no. 2, p. 156–160.
13.
Boutreux T., De Gennes P.G. Compaction of granular mixtures: a free volume model. Physica A 1997, p. 59-67.
14.
Khaaze R. Termodinamika neobratimykh protsessov. M.: Mir, 1967, 544 p

Methodology and results of complex laboratory studies of anisotropic reservoir properties
Drilling and development of hydrocarbon fields

Authors: Alexei N. KUZ’MICHEV was born in 1988, he graduated from Gubkin Russian State University of Oil and Gas in 2011 as Master of Engineering and Technology. He is now a graduate student of the Department of petroleum and underground fluid mechanics Gubkin Russian State University of Oil and Gas. He is author of 10 scientific publications in the field of anisotropic media models, petroleum and underground fluid mechanics, as well as petrophysics. E-mail: alekn88@gmail.com

Abstract: A laboratory technique for determining core-derived absolute permeability tensor for different types of anisotropy is presented. The method for determining core-derived lateral anisotropy and further, permeability tensors is based on measuring the rate of ultrasonic waves passing through the sample on the lateral surface of the core. Using this method, we first established the presence of lateral anisotropy and then, in accordance with established type of anisotropy of the rock sample we cut out the required number of cores for hydrodynamic and other studies. The results of determining the absolute permeability tensor, translucent characteristics, linear dimensions, as well as the results capillarimetrics are presented. These data confirm the tensor nature of absolute permeability, effective diameter and translucent characteristics. The method also allows to determine the permeability tensor of phase permeabilities, limiting gradients and to construct nonlinear filtration laws.

Index UDK: 532.546

Keywords: anisotropy, tensors of absolute permeability and translucency, tensor of characteristic linear dimensions, density of pore distribution along radii, effective diameter, capillary curves

Bibliography:
1. Zakony techeniya s predel’nym gradientom v anizotropnykh poristykh sredakh. N.M. Dmitriev i dr. Gidrodinamika, 2010, no. 2, p. 223–229.
2.
Dmitriev N.M., Dmitriev M.N., Muradov A.A. Modeli anizotropnykh sred. Osnovnye ponyatiya i opredeleniya. Moscow, 2009, 134 p.
3. Dmitriev N.M., Kadet V.V., Mamedov M.T. Metod laboratornogo opredeleniya fil’tratsionno-emkostnykh svoistv anizotropnykh kollektorov. 4-ya Mezhdunarodnaya konferentsiya i vystavka EAGE (Sankt-Peterburg, 5–8 aprelya 2010).
4. Dmitriev N.M., Maksimov V.M. O strukture tenzorov koeffitsientov fazovykh i otnositel’nykh pronitsaemostei dlya anizotropnykh poristykh sred. Dokl. RAN, 1998. T. 358, no. 3, p. 56-59.
5.
Kadet V.V., Dmitriev N.M., Kuzmichev A.N. Determination of lateral anisotropy of rocks in core. 5-ya mezhdunarodnaya konferentsiya i vystavka EAGE (Saint Petersburg, 2-5 April 2012).
6. Metodika i rezul’taty kompleksnykh laboratornykh issledovanii fil’tratsionno-emkostnykh svoistv na kerne. V.V. Kadet, N.M. Dmitriev, A.N. Kuz’michev, S.P. Tsybul’skii. Rossiiskaya tekhnicheskaya neftegazovaya konferentsiya i vystavka SPE po razvedke i dobychi (Moskva, 16-18 oktyabrya 2012).
7. Kuznetsov A.M., Baishev A.B., Kuznetsov V.V. Opredelenie nachal’noi vodonasyshchennosti i kapillyarnoi krivoi metodom tsentrifugirovaniya. Neftyanoe khozyaistvo, 2010, no. 1, p. 49–51.
8.
Sirotin Yu.I., Shaskol’skaya M.P. Osnovy kristallofiziki. M.: Nauka, 1975, 680 p