Статьи

Chemical sciences

Authors: Valeriy A. MITYAGIN graduated from Military Academy of the Chemical Defense in 1969. He is Doctor of Engineering Sciences, Professor, Laureate of the Russian Federation Government Prize. He has been working in FAE “The 25th State Research Institute of Chemmotology of the Ministry of Defense of the Russian Federation” since 2016 as leader research scientist. He is author of more than 200 scientific publications, including a number of books, scientific booklets and certificates of authorship. The main research line is chemmotology of grease lubricants, conservation materials, special fluids and protective coatings.
E-mail: vm-432@mail.ru
Igor V. POPLAVSKIY graduated from Ulyanovsk branch of Military Academy of Logistics and Transport in 2001. He has been working in FAI “The 25th State Research Institute of Chemmotology of Ministry of Defense of the Russian Federation” since 2001. He has been Head of Fluids and Conservation Materials Laboratory since 2010. He is author of 15 scientific articles. The main research line is chemmotology of special liquids and conservation materials. E-mail: poplavskyiv@yandex.ru
Elena I. SAFRONOVA graduated from Gubkin Russian State University of the Oil and Gas (National Research University) in 2018. She is post-graduate student of the Department of Chemistry and Technology of Lubricants and Chemmotology from Gubkin Russian State University of the Oil and Gas (National Research University). She has been working in FAI “The 25th State Research Institute of Chemmotology of Ministry of Defense of the Russian Federation” since 2018 as junior research fellow. Her research focus is chemmotology of special liquids and conservation materials. She is author of 4 published works. E-mail: elena.safronova94@mail.ru

Abstract: It is proposed to use the model hydraulic bench for assessing the stability of working fluids. The results of evaluation of changes in physical, chemical and operational properties of the working fluids during testing on the hydraulic bench are given. It is shown that the proposed work scheme for hydraulic bench allows assessing the stability of working fluids during test process. A fundamental technological scheme and description of work of the hydraulic bench that allows to model variable loads, pressure and temperature during work process of working fluids are presented. A program variant for testing of the working fluids is proposed for hydraulic fluid AMG-10 and possibilities for program estimation of the working fluids are described. Correlation of research results of the working fluids stability during testing on the model bench and in the hydraulic system of machinery during operation is determined

Index UDK: 691.89

Keywords: stability of working fluids, evaluation of physical, chemical and operational properties, hydraulic bench, software

Bibliography:
1. Mityagin V.A., Poplavsky I.V., Tishina E.А. Stability of hydraulic fluids — parameter evaluation of their application. M.: World of Oil Products. The Oil Companies’ Bulletin, 2017, no. 3, p. 24-28 (in Russian).
2. Raskin Y.Е. Working fluids for hydraulic system modern aircrafts. Aviation materials. Scientific and technical collection, 1983, p. 136-141 (in Russian).

Approach to development of liquid and solid crosslinkers of aqueous polysaccharide gels for fracturing
Chemical sciences

Authors: Vadim A. TSYGANKOV graduated from Gubkin Russian State University of Oil and Gas in 2006. He is Candidate of Technical Sciences, Associate professor of the Department of Chemical Reagents for Oil and Gas Industry from Gubkin Russian State University of the Oil and Gas (National Research University). He is specialist in the field of oilfield chemistry, technologies and reagents for well stimulation, in particular, acid treatment technologies. He is author of more than 40 scientific publications.
E-mail: tsygankov.v@gubkin.ru
Lyubov A. MAGADOVA graduated from Gubkin Moscow Institute of Petrochemical and Gas Industry in 1975. She is Doctor of Technical Sciences. Professor of the Department of Chemical Reagents for Oil and Gas Industry from Gubkin Russian State University of Oil and Gas (National Research University). She is specialist in the field of oilfield chemistry, reagents and technologies for hydrocarbons recovery processes. She is author of more than 180 scientific publications. E-mail: lubmag@gmail.com
Kirill V. STRIZHNEV graduated from Ufa State Petroleum Technological University in 1999. He is Doctor of Technical Sciences, Head of the specialized Department of Technologies for Enhanced Oil Recovery of Hard-To-Recover Reserves from Gubkin Russian State University of Oil and Gas (National Research University). He is specialist in the field of deve-lopment and exploitation of oilfields in particular containing hard-to-recover reserves. He is author of more than 60 scientific publications. E-mail: strizhnev.k@gubkin.ru
Denis N. MALKIN graduated from Gubkin Russian State University of Oil and Gas in 2007. He is Head of Division of Chemical Reagents for Hydraulic Fracturing, Research and Educational Center “Oilfield Chemistry” from Gubkin Russian State University of Oil and Gas (National Research University). He is specialist in the field of reagents and technologies for well stimulation. He is author of more than 20 scientific publications. E-mail: malkindn@gmail.com

Abstract: The process of hydraulic fracturing is now one of the most effective methods of oil production stimulation. This has become an integral part of almost every development project. Hydraulic fracturing, however, entails a lot of difficulties and risks. A large number of parameters as well as variability of conditions should be taken into account during the preparation and implementation stage. Risks can be minimized and the quality of the processing can be improved by optimizing chemical reagent handling (transportation, storage, utilization). A special approach helps to optimize the work flow with chemical reagents when not individual chemicals are used, but compositions of chemicals of multifunctional purpose. The development of such compositions can be algorithmized and vary depending on tasks

Index UDK: 622.234.573

Keywords: hydraulic fracturing, crosslinked polysaccharide gel, crosslinking process, commercial form, dry crosslinking composition, granulated crosslinker, li- quid crosslinking composition, liquid crosslinker

Bibliography:
1. Magadova L.A., Silin M.A., Malkin D.N., Tsygankov V.A., Savasteev V.G. New reagents for the hydraulic fracturing. Coiled Tubing Times, 2013, no. 2, p. 64-69.
2. Strizhnev K.V., Tsygankov V.A., Magadova L.A., Kunakova A.M., Duplyakov V.M. Hydraulic fracturing water-based polysaccharide gel crosslinking process analysis. Technologies of oil and gas, 2018, no. 4, p. 38-43.
3. Strizhnev K.V., Tsygankov V.A., Magadova L.A., Kunakova A.M., Gogolev A.A. Solid crosslinker of aqueous polysaccharide gel. Chemistry and Technology of Fuels and Oils, 2018, no. 4, p. 13-15.

Development of Inhibiting Oil Compositions Based on Solid Hydrocarbons
Chemical sciences

Authors: Igor R. Tatur (b. 1956) graduated from Gubkin Moscow Institute of Oil Chemistry and Gas Industry in 1979. He is Candidate of Technical sciences, Assistant professor of the Dept. of Chemistry and Technology of Lubricants and Chemmotology of Gubkin Russian State University of Oil and Gas (National Research University). He is author of 98 articles, 25 patents, 2 tutorials and 1 monograph. E-mail: igtatur@yandex.ru
Аleksey V. LEONTYEV (b. 1988) graduated from Gubkin Russian State University of Oil and Gas (National Research University) in 2013. He is PhD student of the Dept. of Chemistry and Technology of Lubricants and Chemmotology of Gubkin Russian State University of Oil and Gas (National Research University). He is Research Fellow in OOO “United Research and Development Center”. He is author of 15 publications. E-mail: leontievaleksey@gmail.com
Yulia S. BELOMESTNOVA is student of the Dept. of Chemistry and Technology of Lubricants and Chemmotology of Gubkin Russian State University of Oil and Gas (National Research University). She is author of 6 scientific works. E-mail: belomestnova.y@mail.ru

Abstract: A film-forming inhibited oil composition (PINS) based on solid hydrocarbons with high protective properties has been developed. To determine the protective properties of PINS films, direct corrosion test methods and indirect methods were used: capacitive-ohmic, potentiodynamic, and determination of the corrosion rate by the method of polarization resistance. It is shown that with the introduction of lignite wax (montan wax) and phenol-formaldehyde resin in the concentration of 20 % by weight on the active substance as a component of the PINS, the physicomechanical properties of the film, the stability of the dispersion and the protective properties of the coating increase. It has been established that PINS compositions containing solid hydrocarbons possess high protective properties in mineralized media, which will allow to use them not only as a traditional means of protecting motor vehicles, but also as a means of anticorrosive protection of oilfield equipment

Index UDK: 620.193

Keywords: inhibited oil compositions, solid hydrocarbons, oxidized petrolatums, corrosion inhibitors, mathematical experiment planning, corrosion tests, protective effect

Bibliography:
1. Bogdanova T.I., Shekhter Yu.N. Ingibirovannye neftyanye sostavy dlya zashchity ot korrozii. M.: Himiya, 1984. 247 p.
2. Gureev A.A., Shekhter Yu.N., Timohin I.A. Sredstva zashchity avtomobilej ot korrozii. M.: Transport, 1983, p. 43-51.
3. Tatur I.R., Leont’ev A.V., Belomestnova YU.S. Uluchshenie ehkspluatacionnyh svojstv zashchitnyh zhidkostej dlya bakov — akkumulyatorov goryachego vodosnabzheniya ehnergeticheskih pred-priyatij. Trudy RGU nefti i gaza imeni I.M. Gubkina, 2017, no. 3 (288), p. 89-98.
4. Standartizovannye metody korrozionnyh ispytanij: uchebnoe posobie/R.A. Kajdrikov, S.S. Vi-nogradova, L.R. Namzieva, I.O. Egorova. Kazan’: KGTU, 2011, 150 p.
5. Rykov V.V., Itkin V.YU. Matematicheskaya statistika i planirovanie ehksperimenta. Seriya Prikladnaya matematika v inzhenernom dele. M.: RGU nefti i gaza imeni I.M. Gubkina, 2009, 303 p.

On role of topoisomerism of heterocycles in [alkyl(aryl)sulfonyl]-azoles
Chemical sciences

Authors: Vladimir N. KOSHELEV graduated from Gubkin Moscow Institute of Petrochemical and Gas Industry in 1975. He is Vice Rector for Academic Affairs, Head of the Department of Organic Chemistry and Petroleum Chemistry of Gubkin Russian State University of Oil and Gas (National Research University). He is author of more than 320 scientific papers in the field of organic and petroleum chemistry. E-mail: koshelev.v@gubkin.ru
Vladimir D. RYABOV graduated from Gubkin Moscow Institute of Petrochemical and Gas Industry. He is Professor of the Department of Organic Chemistry and Petroleum Chemistry of Gubkin Russian State University of Oil and Gas (National Research University). He is author of more than 180 scientific papers in the field of organic and petroleum chemistry. E-mail: 27helga72@mail.ru
Zoya P. BELOUSOVA graduated from Kuibyshev State University in 1975, she is Candidate of Chemical Sciences, assistant professor of the Department of Geology of Organic, Bioorganic and Medicinal Chemistry of the Samara National Research University named after S.P. Korolyov. She is specialist in the field of organic chemistry and chemistry of natural compounds. She is author of more than 80 scientific publications. E-mail: zbelousova@mail.ru

Abstract: Sulfonyl-substituted derivatives of imidazole, 1,2,4-triazole, benzimidazole, benzotriazole have been synthesized and characterized by IR and NMR 1H-spectroscopy. It is shown that the interaction of azoles with methane and benzenesulfonic acid chlorides in the presence of an organic base gives rise to the 1H-isomers of imidazole and benzimidazole, the 4H isomer of  1,2,4-triazole and the 2H-isomer of benzotriazole. The presence in the NMR 1H-spectrum of PhSO2-4-1,2,4-Tri singlet in the region of 8.31 ppm. confirmed, that the compound is a 4H-isomer. In the NMR 1Н MeSO2-2-BzTri spectrum, a doublet of doublets is present in the regions of 7.43 and 7.91 ppm. 1H-Isomers of  1,2,4-triazole and benzotriazole and their symmetrical analogues differ in dipole moment and lipophilicity. The information obtained will help explain the mechanism of their biological action

Index UDK: 547.56; 547.584

Keywords: heterocycles, 1-(phenylsulfonyl)-1Н-imidazole, 1-(methylsulfonyl)-1Н-benzimidazole, 4-(phenylsulfonyl)-1Н-1,2,4-1,2,4-triazole, 2-(methylsulfonyl)-1Н-benzotriazole, lipophilicity, dipole moment

Bibliography:
1. Zinchenko V.A. Himicheskaja zaschita rastenii: sredstva, tehnologioga i ekologicheskaja bezopasnost [Chemical protection of plants: means, technology and environmental safety]. М.: KolosS, 2012, 127 p. (in Russian).
2. Krasovitsky B.M., Bolotin B.M. Organischeskie lubimofori [Organic phosphors]. M.: Che- mistry, 1984, 334 p. (in Russian).
3. Kozinsky V.A., Rubinov I.I. Issledovaniya v riady 2aril-benzotriazolov. Voprosy khimii i khi-micheskoy tekhnologii. Khar’kov [Studies in the series 2-aryl-benzotriazoles], 1973, vyp. 31, p. 7-14.
4. Yujie Ren, Fanhong Wu, Chunfeng Shu, Ma Liu Synthesis and Potent Biological Activity of  1-Sulfonyl Substituted Imidazole and benzo[d]imidazole Compounds. Advanced Materials Research, 2011, vol. 236-238, p. 2570-2573.
5. Motoshi Yamauchi, Tomoya Miura, Masahiro Murakami Preparation of 2-sulfonyl-1,2,3-triazolez by bace-promoted 1,2-rearrangement of a sulfonyl group. Heterocycles. 2010, vol. 80, no. 1, p. 177-181.
6. Staab H.A. Synthesen mit heterocyclischen Amiden (azoliden). Angew.Chem. 1962, no. 74, p. 407-423.
7. Gilchrist T.L. Heterocyclic chemistry. M.: Mir, 1996, 464 p.
8. Alan R. Katritzky, Xiangfu Lan, Olga V. Denisko Properties and Synthetic Utility of N-Substituted Benzotriazoles. Chem. Rev., 1998, no. 98, p. 409-548.
9. Spartan’10. Evaluation version. Wavefunction, Inc., Irvine (CA), 2010.
10. http://www.vcclab.org/lab/alogps/
11. Belousova Z.P., Selezneva E.S. Antibacterial activity and phisico-chemical propertoes of sulfoasids benzoazolides. Vestnic of Samara State University, 2007, t. 47, no. 7, p. 6-11 (in Russian
12. Selezneva E.S., Belousova Z.P., Ten’gaev E.I. i dr. Synthesis and biological activity of triazolides. Pharmaceutical Chemistry Journal, 2003, Т. 37, No 8, pp. 14-17. (in Russian).
13. Potapova I.A., Purygin P.P., Lipatov I.S. i dr. Synthesis and biological activity of aliphatic and aromatic azolides. Pharmaceutical Chemistry Journal, 2001, vol. 35, no. 11, p. 5-7 (in Russian).
14. Traven V.F., Schekotikhin A.E. Praktikum po organicheskoy khimii. М.: Binom, Laboratoriya znaniy, 2014, 592 p. (in Russian).
15. Staab H.A. Synthesen mit heterocyclischen Amiden (azoliden). Angew.Chem., 1962, no. 74, p. 407-423.

Synthesis and antioxidant activity of phenolic derivatives with heterocycles fragments
Chemical sciences

Authors: Stepan V. VOROBYEV graduated from Dmitry Mendeleev University of Chemical Technology of Russia in 2015. He is junior researcher of Chemistry and Technology of Hydrocarbons Research and Educational Center of Gubkin Russian State University of Oil and Gas (National Research University). He is author of 10 scientific publications. E-mail: vorstepan@yandex.ru
Olga V. PRIMEROVA graduated from Gubkin Russian State University of Oil and Gas in 2015. She is postgraduate student of the Department of Organic Chemistry and Petroleum Chemistry of Gubkin Russian State University of Oil and Gas (National Research University). She is author of 35 scientific publications. E-mail: Primerova92@yandex.ru
Ludmila V. IVANOVA graduated from Gubkin Moscow Institute of Petrochemical and Gas Industry in 1983. She is Professor of the Department of Organic Chemistry and Petroleum Chemistry of Gubkin Russian State University of Oil and Gas (National Research University). She is author of more than 100 scientific publications. E-mail: ivanova.l@gubkin.ru
Vladimir N. KOSHELEV graduated from Gubkin Moscow Institute of Petrochemical and Gas Industry in 1975. He is Vice Rector for Academic Affairs, Head of the Department of Organic Chemistry and Petroleum Chemistry of Gubkin Russian State University of Oil and Gas (National Research University). He is author of more than 320 scientific papers in the field of organic and petroleum chemistry. E-mail: koshelev.v@gubkin.ru
Vladimir D. RYABOV graduated from Gubkin Moscow Institute of Petrochemical and Gas Industry. He is Professor of the Department of Organic Chemistry and Petroleum Chemistry of Gubkin Russian State University of Oil and Gas (National Research University). He is author of more than 180 scientific papers in the field of organic and petroleum chemistry. E-mail: 27helga72@mail.ru

Abstract: The synthesis of 2-(2,3-dihydroxybenzyl)-1H-isoindol-1,3(2H)-dione was descri-bed. The structure of synthesized compound was confirmed by IR- and NMR-spectroscopy. The way of electrophilic attack of catechol ring depends on the solvent, as it was shown by quantum-chemical calculations (Gaussian09 program, semi-empirical method PM6). In case of substitution at the third position in catechol ring the energy of cationic intermediate is lower in chloroform than the one in methanol. As the reaction proceeds on the way of energy minimum, it afforded the 3-substituted product. Energy of dissociation of ArO-H bond was calculated to reveal possible antioxidant activity of target compounds using quantum chemical method (semi-empirical PM6). The ability of synthesized compounds to destruct cumene hydroperoxide was studied. It was estimated, that 2-(2,3-dihydroxybenzyl)-1H-isoindol-1,3(2H)-dione, 1-(4-hydroxy-5-isopropil-2-methylbenzyl)azepan-2-one and 1-(4-hydroxy-5-isopropil-2-methylbenzyl)pyr-rolidin-2-one possess the best antioxidant effect

Index UDK: 547.56; 547.584

Keywords: organic synthesis, heterocyclic phenols derivatives, quantum-chemical calculations, antioxidant activity

Bibliography:
1. Yehye W.A., Rahman N.A., Ariffin A., Abd H., Sharifah B., Alhadi A.A., Kadir F.A., Yaeghoobi M. Understanding the chemistry behind the antioxidant activities of butylated hydroxytoluene (BHT): A review. European Journal of Medicinal Chemistry, 2015, vol. 101, p. 295-312.
2. Almeida E.S. et al. Behaviour of the antioxidant tert-butylhydroquinone on the storage stability and corrosive character of biodiesel. FUEL, 2011, vol. 90 (11), p. 3480-3484.
3. Koshelev V.N., Kelarev V.I., Belov N.V., Malova O.V., Osipov S.L., Spirkin V.G.. Effect of azoles and sym-triazines with hindered phenol fragments on protective properties of turbine oils. Chemistry and technology of fuels and oils, 1995, vol. 31, p. 26-29.
4. Koshelev V.N., Golubeva I.A., Klinaeva E.V., Kelarev V.I. Stabilization of ecologically clean diesel fuel by means of combinations of additives. Chemistry and technology of fuels and oils, 1996, vol. 32, p. 189-194.
5. Kelarev V.I., Silin M.A., Golubeva I.A., Borisova O.A. Stabilization of distillate fuels in storage. Chemistry and technology of fuels and oils, 2000, vol. 36, p. 111-115.
6. Vorobyev S.V., Primerova O.V., Koshelev V.N., Ivanova L.V. Synthesis of alkylphenols lactamomethyl derivatives. Butlerov Communications, 2018, vol. 55, p. 124-132.
7. Negrebetsky V.V., Vorobyev S.V., Kramarova E.P., Shipov A.G., Lagunin A.A., Shmi- gol T.A., Baukov Y.I., Korlyukov A.A., Arkhipov D.E. Lactamomethyl derivatives of diphenols as potential immunosuppressants: synthesis, structure and properties. Russian Chemical Bulleten’, 2018, no. 8, p. 1518-1529.
8. Barry J., Mayeda E., Ross S. The amidoalkylation of aromatic hydrocarbons. Tetrahedron, 1976, vol. 33, p. 369-372.
9. Tiwari, Pandey. Journal of the Indian Chemical Society, 1975, vol. 52, p. 777-779.
10. Zaugg H E. a-Amidoalkylation at carbon: Recent advances. Part I. Synthesis, 1984, p. 85-110.
11. Gaussian 09, Revision D.01, Frisch M.J., Trucks G.W., Schlegel H.B., Scuseria G.E., Robb M.A., Cheeseman J.R., Scalmani G., Barone V., Mennucci B., Petersson G. A., Nakatsuji H., Ca-ricato M., Li X., Hratchian H.P., Izmaylov A.F., Bloino J., Zheng G., Sonnenberg J.L., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Vreven T., Montgomery J.A., Peralta J.E., Ogliaro F., Bearpark M., Heyd J.J., Brothers E., Kudin K.N., Staroverov V.N., Kobayashi R., Normand J., Raghavachari K., Rendell A., Burant J.C., Iyengar S.S., Tomasi J., Cossi M., Rega N., Millam J. M., Klene M., Knox J.E., Cross J.B., Bakken V., Adamo C., Jaramillo J., Gomperts R., Stratmann R.E., Yazyev O., Austin A.J., Cammi R., Pomelli C., Ochter- ski J.W., Martin R.L., Morokuma K., Zakrzewski V.G., Voth G.A., Salvador P., Dannenberg J.J., Dapprich S., Daniels A.D., Farkas Ö., Foresman J.B., Ortiz J.V., Cioslowski J., Fox D.J. Gaussian, Inc., Wallingford CT, 2009.
12. Mashentseva A.A., Seitembetov T.S. The Study of the Structure-Activity Relationship For a Cinnamic Acid Derivatives. Journal of Siberian Federal Univercity. Chemistry, 2010, vol. 3, p. 183-192.
13. Vasil’ev R.F., Fedorova G.F., Trofimov A.V., Kancheva V.D., Batovska D.I. Antioxidant activity of chalcones: The chemiluminescence determination of the reactivity and the quantum chemical calculation of the energies and structures of reagents and intermediates. Kinetics and Catalysis, 2010, vol. 51, no. 4, p. 507-515.
14. Rudnick L.R. Lubricant Additives: Chemistry and Applications. Spb., CRC press, 2009, 777 p.
15. Zaugg H., Martin W. α-Amidoalkylations at carbon. N.-Y., John Wiley & Sons, 1965, 167 p.

Decomposition of carbonyl and cyclopentadienyl complexes Cr, Mn and Fe on nickel and palladium on aluminic oxide
Chemical sciences

Authors: Valentine D. STYTSENKO graduated from Gubkin Moscow Institute of petrochemical and Gas Industry in 1963. Doctor of Chemical Sciences, Professor of the Department of Physical and Colloid Chemistry of Gubkin Russian State University of Oil and Gas (National Research University) since 2002, expert in the field of Petrochemistry, Catalysis and Kinetics. Author of more than 150 scientific publications. E-mail: vds41@mail.ru
Dmitrii P. MEL’NIKOV graduated from Gubkin Russian State University of Oil and Gas in 2010. Engineer of the Department Physical and Colloid Chemistry of Gubkin Russian State University of Oil and Gas (National Research University). Specialist in the field of catalysis. He is author of 4 scientific publications. E-mail: melnickd@mail.ru

Abstract: Decomposition of carbonyl and cyclopentadienyl complexes of Cr, Mn, and Fe on nickel and palladium on aluminium oxide is studied as a method for preparation bimetallic catalysts comprising Group VI-VIII metals. A sequence and kinetics of decomposition is revealed in the hydrogen atmosphere. As a result, bimetallic nanoparticles are shown to form on the surface. Physicochemical properties of bimetallic compositions obtained are characterized

Index UDK: 544.46; 544.478

Keywords: Cr, Mn, Fe, carbonyl/сyclopentadienyl complexes, decomposition, bimetallic compositions Ni-Cr, Pd-Cr, Pd-Mn, Pd-Fe, physicochemical properties

Bibliography:
1.Ertl G., Knözinger H., Schüth F., Weitkamp J. Handbook of Heterogeneous Catalysts. VCH. Weinheim. Germany, 1997, vol. 5, 2165 p.
2. Matar S., Hatch L. F. Chemistry of petrochemical processes. 2nd Edition. Elsevier Inc., 2001, p. 238-261.
3. Kirk-Othmer Encyclopedia of Chemical Technology. New York, John Wiley, 2004, vol. 20, 126 p.
4. Plate N.A., Slivinskii E.V. Osnovy khimii i tekhnologii monomerov. [Fundamentals of Chemistry and Technology of Monomers]. M.: MAIK Nauka, 2002, 696 p.
5. Weerachawanasak P., Praserthdam P., Arai M., Panpranot J. J. Mol. Catalysis A. Chemical, 2008, vol. 279, p. 133-139.
6. Bhogeswararao S., Srinivas D. Catalysis Letters, 2010, vol. 140 (1), p. 55-64.
7. Volpe M.A., Rodriguez P., Gigola C.E. Catal. Lett, 1999, vol. 61, p. 27-32.
8. Margitfalvi J., Szabó S., Nagy F. Catalytic Hydrogenation, Stud. Surf. Sci. Catal., Elsevier, Amsterdam, 1986, vol. 27, 373 р.
9. Schatz A., Reiser O., Stark W. European Journal, 2010, vol. 16, issue 30, p. 8950-8967.
10. Molchanov V.V., Chesnokov V.V., Buyanov R.A. Kinetika i cataliz, 2005, vol. 46, p. 702-709.
11. Bal’zhinimaev B.S., Barelko V.V., Suknev A.G. Kinetika i cataliz, 2002, vol. 43, p. 587-593.
12. De Rogatis L., Cargnello M., Gombac V., Fornasiero P. ChemSusChem, 2010, vol. 3, p. 24-42.
13. Stytsenko V.D., D’yakonov A.Yu., Maksimov Yu.V., Eigenson I.A., Narkevich L.D. Kine-tika i cataliz, 1987, vol. 28, p. 915-920.
14. Stytsenko V.D. Applied Catalysis A. General, 1995, vol. 126, p. 1-26.
15. Stytsenko V.D. Trudy RGU nefti i gasa imeni I.M. Gubkina [Ptoceedings of Gubkin Russian State University of Oil and Gas], 2009, no. 2, p. 133-144.
16. Stytsenko V.D. Kinetic Descriptions of Heterogeneous Catalytic Processes Using Adsorption Substitution Reactions. Zh. Fizicheskoi khimii [Russian Journal of Physical Chemistry], 2018, vol. 92, no. 2, p. 244-254.
17. Stytsenko V.D., Mel’nikov D.P., Tkachenko O.P., Savel’eva E.V., Semenov A.P., Kus- tov L.M. Zhyrnal Fizicheskoi khimii [Russian Journal of Physical Chemistry], 2018, vol. 92, no. 5, p. 691-702.

Nanostructured photocatalysts based on cadmium and zinc sulfide nanoparticles deposited inside/outside natural halloysite nanotubes
Chemical sciences

Authors: Yaroslav A. CHUDAKOV graduated from Gubkin Russian State University of Oil and Gas (National Research University) in 2014. He is an engineer and post graduate student at Gubkin Russian State University of Oil and Gas (National Research University). He is author of 8 scientific publications. E-mail: chudakov.yaroslav@gmail.com
Anna Yu. KURENKOVA graduated from Novosibirsk State University in 2017. She works is junior research fellow and post graduate student in Boreskov Institute of Catalysis SB RAS. She is an expert in the field of photocatalysis on semiconductors. She is author of 5 scientific publications. E-mail: kurenkova@catalysis.ru
Fereshteh POURESMAEIL graduated from Bauman Moscow State Technical University in 2016 as a top student. He is post graduate student of the Department of Physical and Colloid Chemistry of Gubkin Russian State University of Oil and Gas (National Research University). E-mail: pouresmaeil@gubkin.ru
Anna V. STAVITSKAYA graduated from Gubkin Russian State University of Oil and Gas (National Research University) and got PhD in 2015. Is a researcher in the Department of Physical and Colloid Chemistry of Gubkin Russian State University of Oil and Gas (National Research University). Author of more than 20 scientific publications E-mail: stavitsko@mail.ru

Abstract: Novel nanophotocatalysts based on CdS or Cd(1-x)ZnxS nanoparticles less than 10 nm in size and mass concentration in catalyst of about 3–3,5 % deposited on outer and inner surface of halloysite nanotubes were synthesized and investigated. The obtained catalysts are efficient in reaction of hydrogen evolution from electrolyte solution under visible light irradiation. It was shown that the most active catalyst is a system with Cd0,3Zn0,7S nanopartilces deposited on halloysite, the hydrogen reaction rate reached 756 µmol/h·gkat

Index UDK: 544.774.4, 544.478-03

Keywords: cadmium sulfide, halloysite, photocatalysts, nanotubes, nanoparticles, hydrogen

Bibliography:
1. Lyubina T.P., Kozlova E.A. New Photocatalysts Based on Cadmium and Zinc Sulfides for Hydrogen Evolution from Aqueous Na2S—Na2SO3 Solutions under Irradiation with Visible Light. Kinetics and Catalysis, 2012, no. 53, p. 188–196.
2. Huang Y., Chen J., Zou W., Zhang L.X., Hu L., He M., Gu L., Deng J.X., Xing X.R. A review of one-dimensional TiO 2 nanostructured materials for environmental and energy applications Dalton Transactions. J. Mater. Chem. A., 2016, no. 45, p. 1160–1165.
3. Li Y., Du J., Peng S., Xie D., Lu G., Li S. Enhancement of photocatalytic activity of cadmium sulfide for hydrogen evolution by photoetching International Journal of Hydrogen Energy. J. Am. Chem. Soc., 2008, no. 33, p. 2007–2013.
4. Synthesis of CdS nanorods by an ethylenediamine assisted hydrothermal method for photocatalytic hydrogen evolution. J. Phys. Chem. C., 2009, no. 113, p. 9352–9358.
5. Peng S.Q., Huang Y.H., Li Y.X. Rare earth doped TiO2-CdS and TiO2-CdS composites with improvement of photocatalytic hydrogen evolution under visible light irradiation. Materials Science in Semiconductor Processing, 2013, no. 16, p. 62–69.
6. Vinokurov V.A., Stavitskaya A.V., Ivanov E.V., Gushchin P.A., Kozlov D.V., Kurenkova A.Y., Kolinko P.A., Kozlova E.A., Lvov Y.M. Halloysite nanoclay based CdS formulations with high catalytic activity in hydrogen evolution reaction under visible light irradiation. ACS Sustain. Chem. Eng., 2017, no. 5, p. 11316–11323.
7. Parmon V.N., Kozlova E.A. Heterogeneous semiconductor photocatalysts for hydrogen production from aqueous solutions of electron donors. Russ Chem Rev., 2017, no. 86, p. 870–906.
8. Vinokurov V.A., Stavitskaya A.V., Glotov A.P., Novikov A.A., Zolotukhina A.V., Kotelev M.S., Gushchin P.A., Ivanov E.V., Darrat Y., Lvov Y.M. Nanoparticles Formed Onto/Into Halloysite Clay Tubules: Architectural Synthesis and Applications. Chem. Rec., 2018, no. 18, p. 1–11.
9. Papoulis D., Komarneni S., Panagiotaras D., Stathatos E., Toli D., Christoforidis K.C., Fernández-García M., Li H., Yin S., Sato T., Katsuki H. Halloysite—TiO2 nanocomposites: synthesis, characterization and photocatalytic activity. Applied Catalysis B: Environmental, 2013, no. 132, p. 416–422.
10. Peng H., Liu X., Tang W., Ma R. Facile synthesis and characterization of ZnO nanoparticles grown on halloysite nanotubes for enhanced photocatalytic properties. Scientific Reports, 2017, no. 7, p. 2250.
11. Xing W., Ni L., Liu X., Luo Y., Lu Z., Yan Y., Huo P. Effect of metal ion (Zn2+, Bi3+, Cr3+, and Ni2+)-doped CdS/halloysite nanotubes (HNTs) photocatalyst for the degradation of tetracycline under visible light. Desalination and Water Treatment, 2015, no. 53, p. 794–805.
12. Markovskaya D.V., Kozlova E.A., Stonkus O.A., Saraev A.A., Cherepanoua S.V., Parmon V.N. Evolution of the state of copper-based co-catalysts of the Cd0. 3Zn0. 7S photocatalyst at the photoproduction of hydrogen under action of visible light. International Journal of Hydrogen Energy, 2017, no. 42, p. 30067–30075.
13. Abdullayev E., Joshi A., Wei W.B., Zhao Y.F., Lvov Y. Enlargement of halloysite clay nanotube lumen by selective etching of aluminum oxide. ACS Nano, 2012, no. 6, p. 7216–7226.

Chemical dispersion technology application during underwater oil pipelines accidents in the Arctic
Chemical sciences

Authors: Irakly A. MERITSIDI graduated from Gubkin Moscow Institute of Petrochemical and Gas Industry in 1987. He is Candidate of Technical Sciences, Associate Professor of the Department of Machines and Equipment of Oil and Gas Wells of Gubkin Russian State University of Oil and Gas (National Research University). He is specialist in the field of localization of oil spills and oil products and author of more than 50 scientific papers. He has been awarded 7 gold and 1 silver medals at international exhibitions for his inventions. E-mail: iameritsidis@rambler.ru
Konstantin Kh. SHOTIDI graduated from Gubkin Moscow Institute of Petrochemical and Gas Industry in 1966. He is Candidate of Technical Sciences, Professor of the Department of Thermodynamics and Thermal Engines at Gubkin Russian State University of Oil and Gas (National Research University). He is the author of more than 100 scientific, educational and methodical works and patents on thermal methods of influence on oil formation, research of thermophysical properties of rocks, applied questions of thermodynamics and heat transfer. E-mail: chotidi.k@gubkin.ru
Iraklis I. MERICIDI graduated from Gubkin Russian State University of Oil and Gas (National Research University) in 2014. He is Assistant Lecturer of the Department of Thermodynamics and Thermal Engines, Gubkin Russian State University of Oil and Gas (National Research University). He is the author of scientific works on engineering and technology of repair of underwater pipelines, localization and liquidation of oil spills in case of accidents. He is participant of international youth scientific conferences.
E-mail: fokasi@rambler.ru

Abstract: The article is devoted to the use of chemical dispersion technology during the underwater oil pipelines accidents in the Arctic. Dependences of dispersion efficiency on salinity, viscosity, temperature and limitations of the use of dispersion depending on environmental conditions are given. The actuality of the use of underwater dispersion in the Arctic conditions is considered

Index UDK: 551.46, 504.05, 622.692.48; 622.692.4.07

Keywords: оil, spills, chemical dispersion, underwater dispersion, dispersants, the Arctic conditions, underwater pipelines

Bibliography:
1. Mazlova E.A., Meritsidi I.A. „Analysis and applicability of methods for liquidating oil and oil products spills in the Arctic on the continental shelf”, report of the research work of the Federal State Unitary Enterprise „REA” of the Ministry of Energy of the Russian Federation, 2014, 152 p. (In Russian, unpublished).
2. Meritsidi I.I., Shotidi K.X. Windows of possibility determination of methods for oil spills localisation during the offshore pipelines accidents. Transport i hranenie nefteproduktov i uglevodorodnogo syr’ja, 2015, no. 2, p. 30–33 (in Russian).
3. Technique and technology of л of localization and liquidation of emergency oil spills and oil products. Directory. Under the general editorship. I.A. Meritsidi, St. Petersburg, NPO „Professional”, 2008, 819 p.
4. ExxonMobil. Prevention and elimination of marine oil spills in arctic conditions and emergency preparedness. Available at: http://cdn.exxonmobil.com/~/media/russia/files/arctic/arctic-osr_russian-final.pdf
5. SIEP BV. Dr. Viktorija Brozhe. Modern technologies for liquidation of oil and oil products spills in the marine environment. Available at: http://new.groteck.ru/images/catalog/32772/eaa9de34a 3b4bd6f 81b973d6f40bc5ac.pdf
6. Belore R.C., Trudel K., Mullin J.V. and Guarino A. Large-scale cold water dispersant effectiveness experiments with Alaskan crude oils and Corexit 9500 and 9527 dispersants. Marine Pollution Bulletin, 58, 2009, p. 118-128.
7. Brandvik P.J., Moldestad M.Q. and Daling P.S. Laboratory testing of dispersants under Arctic conditions. In: Proceedings Arctic and Marine Oilspill Program (AMOP) Technical Seminar, 1992, no. 15, p. 123–134. Environment Canada, Ottawa.
8. Brown H.M. and Goodman R.H. The use of dispersants in broken ice. In: Proceedings Arctic and Marine Oilspill Program (AMOP) Technical Seminar, 1996, no. 19, vol. 1, p. 453–460. Environment Canada, Ottawa.
9. CEDRE. Using dispersants to treat oil slicks at sea. Available: http://www.cedre.fr/ en/publi-cation/dispersant/dispersant.php.
10. IPIECA-IOGP 2015. Dispersants: surface applications Available: http://www.oilspillres-ponseproject.org/wp-content/uploads/2017/01/Dispersants-surface_application_2016.pdf
11. Lewis A. and Daling P.S. Oil in ice: A review of studies of oil spill dispersant effectiveness in Arctic conditions (JIP Project 4, Act. 4.11). Report No. 11: SINTEF A 16086 Report Publication, 2007, 22 p.
12. Owens C. and Belore R. Dispersant effectiveness testing in cold water and brash ice. In: Proceedings Arctic and Marine Oilspill Program (AMOP) Technical Seminar, 2004, no. 27, vol. 2, p. 819–841. Environment Canada, Ottawa.
13. Sørstrøm S.E., Brandvik P.J., Buist I., Daling P., Dickins D., Faksness L-G., Potter S., Rasmussen J.F. and Singsaas I. Joint industry program on oil spill contingency for Arctic and ice-cove- red waters: Summary Report. SINTEF Report A14181. SINTEF. Trondheim, Norway, 2010. www.sintef.no/Projectweb/JIP-Oil-In-Ice/Publications/.

Research of specific aspects in interaction between oil and acid compositions in porous medium
Chemical sciences

Authors: MAGADOVA graduated from Gubkin Moscow Institute of Petrochemical and Gas Industry. She is Ph.D., Professor of the Department of Chemical Engineering for Oil and Gas Industry of Gubkin Russian State University of Oil and Gas (National Research Univer- sity), director of Scientific and Research Center „Promislovaya Himiya”. She is author of 150 scientific publications, 60 patents and 4 methodological works. She specializes in the field of oil-field chemistry, chemical agents and technologies for production stimulation, enhanced oil recovery, repair and insulation works and oil treatment. E-mail: lubmag@gmail.com
Ljucija F. DAVLETSHINA graduated from Al’met’evsk State Oil Institute in 1998, she is Candidate of Technical Sciences, assistant professor of the Department of Chemical Engineering for Oil and Gas Industry of Gubkin Russian State University of Oil and Gas (National Research University). She specializes in the field of oil-field chemistry. She is author of 60 scientific publications.
E-mail: luchiad@mail.ru
Vladimir B. GUBANOV graduated from Moscow Engineering Physics Institute. He is leading researcher in the Scientific and Research Center „Promislovaya Himiya”. He specializes in the field of seepage studies of agents for production stimulation, enhanced oil recovery, repair and insulation works. He is author of 50 scientific publications and 15 patents of invention.
E-mail: gubanowww@gmail.com
Polina S. MIKHAYLOVA is a student of the Department of Chemical Engineering for Oil and Gas Industry of Gubkin Russian State University of Oil and Gas (National Research University). She is author of 5 scientific publications. E-mail: mihaylovapolly@mail.ru
Viktoria D. VLASOVA is a student of the Department of Chemical Engineering for Oil and Gas Industry of Gubkin Russian State University of Oil and Gas (National Research University). She is author of 3 scientific publications. E-mail: vica-vv@yandex.ru

Abstract: In spite of all the benefits of acid treatment and good practice the efficiency of the process decreases. One of the reasons of this is high viscosity oil emulsions and precipitation formation during acid placement as well as acid interaction with oil in reservoir conditions is one of the reasons of this.
A sample of degassed and dry crude oil from Romashkinskoye oil field was used for investigation of oil hydrocarbon behavior during interaction between oils and acid compositions. Compatibility tests in free volume were made with equal quantities of oil and acid compositions put in a test tube and mixed. After this the stability and viscosity of formed emulsions were determined. Compositions based on hydrochloric and sulfamic acids were studied.
Interaction of the acid compositions in pore volume was studied. The received data was also compared with the results of the experiments with oil, acids, water and surfactants in similar conditions

Index UDK: 622.276.63

Keywords: acid treatment, oil-acid emulsions, seepage studies

Bibliography:
1. Mordvinov V.A., Glushhenko V.N. Reservoir performance and acid composition influence on acidizing efficiency. Geologija, geofizika i razrabotka neftjanyh i gazovyh mestorozhdenij, 2002, no. 11, p. 22-26 (in Russian).
2. Davletshina L.F., Tolstyh L.I., Mikhaylova P.S. On the necessity of hydrocarbons behavior patterns researching with a view to increase of reservoir acidizing effectiveness. Territory NEFTEGAZ, 2016, vol. 4, p. 95-96 (in Russian).
3. Fedorenko V.Ju., Nigmatullin M.M., Petuhov A.S., Gavrilov V.V., Krupin S.V. Acid compositions for bottom-hole formation zone treatment. Ferric ions content optimization as applied to some oils from povolzhskiy region. Vestnik Kazanskogo tehnologicheskogo universiteta, 2011, no. 13, p. 136-140 (in Russian).
4. Amijan V.A., Ugolev V.S. Fiziko-himicheskie metody povyshenija proizvoditel’nosti skvazhin [Physicochemical methods of well’s yield increase]. Moscow, Nedra, 1970, 279 p (in Russian).
5. Kelland M.A. Promyslovaja himija v neftegazovoj otrasli [Production chemicals for the oil and gas industry] (under the ed. of Magadova L.A). Profession, 2015, no. 2, pp. 238-239 (in Russian).
6. Davletshina L.F., Mikhaylova P.S., Akzigitov E.A. Behavior of oils from one oil field while selecting acid compositions for terrigenous reservoir treatments. Trudy Rossijskogo gosudarstvennogo universiteta nefti i gaza imeni I.M. Gubkina, 2017. , no. 2/287, pp. 153-162 (in Russian).
7. Magadov R.S., Silin M.A., Gaevoj E.G., Magadova L.A., Pahomov M.D., Davletshina L.F., Mishkin A.G. Upgrading of acid composition using Neftenol K. Neft’, gaz i biznes, 2007, no. 1-2, p. 93-97 (in Russian).
8. Silin M.A., Magadova L.A., Cygankov V.A., Muhin M.M., Davletshina L.F. Kislotnye obrabotki plastov i metodiki ispytanija kislotnyh sostavov: uchebnoe posobie [Reservoir acidizing and acid system test : a textbook]. PC RGU nefti i gaza imeni I.M. Gubkina, 2011, 119 p. (in Rus- sian).
9. Vahrushev S.A., Kotenev Ju.A. Composition investigations for acid exposure to high-grade carbonate reservoir. Neftegazovye tehnologii i novye materialy. Problemy i reshenija. Sbornik nauchnyh trudov. Ufa: OOO „Monografija”, 2015, p. 252-261 (in Russian).
10. Gavrilova N.N., Nazarov V.V., Jarovaja O.V. Mikroskopicheskie metody opredelenija razmerov chastic dispersnyh materialov: ucheb.posobie [Microscopic methods of definition of particles size in dispersive materials: a textbook] Moscow, RHTU imeni D.I. Mendeleeva, 2012, 52 p. (in Russian).

Experimental validation of industrial CO2 sequestration scheme in underground pool of Devon field
Chemical sciences

Authors: Vadim N. KHLEBNIKOV graduated from Bashkir State University in 1979, he is Doctor of Technical Sciences, Professor of the Department of Physical and Colloid Chemistry of Gubkin Russian State University of Oil and Gas (National Research University). He is specialist in the field of enhanced oil recovery and development of hard-to-recover oil reserves. He is author of more than 200 scientific publications. E-mail: Khlebnikov_2011@mail.ru
Aleksandr S. MISHIN graduated from National Research Nuclear University „MEPhI” in 2005. He is engineer of the Department of Physical and Colloid Chemistry of Gubkin Russian State University of Oil and Gas (National Research University). He is specialist in the field of enhanced oil recovery and development of hard-to-recover oil reserves. He is author of more than 20 scientific publications. E-mail: aleks_mishin@mail.ru
LIANG MENG graduated from Beijing Institute of Petrochemical Technology in 2009, he is Ph.D of the Department of Physical and Colloid Chemistry of Gubkin Russian State University of Oil and Gas (National Research University). E-mail: liangmeng@mail.ru
Natalia A. SVAROVSKAYA graduated from Тomsk State University in 1971. She is Doctor of Technical Sciences, Professor of the Department of Physical and Colloid Chemistry of Gubkin Russian State University of Oil and Gas (National Research University). She is specialist in enhanced oil recovery and development of hard-to-recover oil reserves. She is author of more than 160 scientific publications. E-mail: na_sv2002@mail.ru
Natalia V. LIKHACHEVA graduated from Gubkin Russian State University of Oil and Gas. She is first-year PG student of the Department of Physical and Colloid Chemistry of Gubkin Russian State University of Oil and Gas (National Research University). Her academic interests include ecology and oil- and gas-extraction. E-mail: likhacheva.natalia.v@gmail.com

Abstract: Physical simulation of sequestration of СО2 as flue and enriched flue gas was made in the conditions of depleted reservoir filled with light crude and high-salinity water. In these circumstances it is advised to sequestrate industrial СО2 as WAG since this is an advanced method providing highly efficient displacement of residual oil and delays the breakthrough of gas. Using WAG allows to increase effective capacitance of geological trap to 25-105 %. A general procedure of sequestration of industrial greenhouse gases in geological traps is proposed

Index UDK: 502.211+622.276.344

Keywords: greenhouse gases sequestration, geological traps, depleted reservoir, water-alternated-gas injection, WAG

Bibliography:
1. Hlebnikov V.N., Zobov P.M., Hamidullin I.M. i dr. Perspektivnye regiony dlja osushhestvle- nija proektov po hraneniju parnikovyh gazov v Rossii. Bashkirskij himicheskij zhurnal, 2009, t. 16, no. 2, p. 73-80.
2. Bajmuhammetov K.S., Viktorov P.F., Gajnullin K.H., Syrtlanov A.Sh. Geologicheskoe stroenie i razrabotka neftjanyh i gazovyh mestorozhdenij Bashkortostana. Ufa: RIC ANK „Bashneft’ ”, 1997, 424 p.
3. Vafin R.V. Povyshenie jeffektivnosti tehnologii vodogazovogo vozdejstvija na plast na Alekseevskom mestorozhdenii. Neftepromyslovoe delo, 2008, no. 2, p. 33-35.
4. Vafin R.V. Metod regulirovanija tehnologiej vodogazovogo vozdejstvija na plast. Neftepro-myslovoe delo, 2008, no. 2, p. 30-32.
5. Zacepin V.V., Maksutov R.A. Sovremennoe sostojanie promyshlennogo primenenija tehno-logij vodogazovogo vozdejstvija. Neftepromyslovoe delo, 2009, no. 7, p. 13-21.
6. Polishhuk A.M., Hlebnikov V.N., Mishin A.S. i dr. Jeksperimental’noe issledovanie me-hanizma fil’tracii vodogazovyh smesej. Vestnik CKR Rosnedra, 2012, no. 6, p. 8-14.
7. Ulavlivanie i hranenie dvuokisi ugleroda. Special’nyj doklad MGJEIK. Mezhpravitel’stven-naja gruppa jekspertov po izmeneniju klimata, 2005. ISBN 92-9169-419-3. URL: https://ipcc.ch/pdf/ special-reports/srccs/srccs_spm_ts_ru.pdf (data obrashhenija: 09.10.2016).