Technical sciences

Principles of optimization of operation of gas-distributing unit taking into account non-stationary processes
Technical sciences

Authors: Alexander F. MAKSIMENKO graduated from Gubkin University majoring in Applied Mathematics in 1976. He is Doctor of Technical Sciences, Professor of the Department of Theoretical Mechanics of Gubkin Russian State University of Oil and Gas (National Research University). He is specialist in the field of research of processes in oil and gas reservoirs effected by underground explosions; industrial safety systems after use of explosive technologies in oil and gas fields. He is author of more than 75 scientific publications. E-mail: maf@gubkin.ru
Alexander S. KUZNECHIKOV graduated from Gubkin Russian State University of Oil and Gas in 2001. He is senior lecturer of Gubkin Russian State University of Oil and Gas (National Research University) and specialist in the field of shock wave processes in pipeline systems, standardization and quality management systems. He is author of more than 25 scientific publications.
E-mail: kas@gubkin.ru

Abstract: Оne of basic elements of the gas transmission system of Russia are compressor stations which allow to provide the required volumes of transportation of gas and uninterrupted supply of natural gas to consumers. At the same time every start or shutdown of gas-distributing units at compressor stations, fluctuation in gas consumption, change of temperature and hydraulic operating modes, etc. lead to changes of the operating mode of all elements of the gas pipeline. Therefore, the problem of optimization of operating modes of gas-distributing units is very relevant

Index UDK: 622.691; 533.6

Keywords: gas transmission system, gas transport, gas-distributing unit, system, natural gas

1. Loitsyansky L.G. Mechanics of fluid and gas. M.: Nauka, 1991, 847 p.
2. Kuznechikov A.S., Maksimenko A.F. Use of methods of the asymptotic theory for calculation of intensity of the shock wave in pipeline systems Pipeline Transport. Theory and Practice, 2018, no. 1, p. 27-29 (in Russian).
3. Kuznechikov A.S., Maksimenko A.F. Analysis of basic options for design schemes for natural gas discharge and utilization systems (for gas-main pipelines). Oil, Gas and Business, 2008, no. 10, p. 55-60 (in Russian).
4. Kuznechikov A.S., Maksimenko A.F. Determination of the intensity of the shock wave as a function of the parameters of the initial state of the gas mixture (with forced discharge of a high-pressure fluid from the process pipeline). Oil, Gas and Business, 2009, no. 1, p. 65-67 (in Russian).
5. Kuznechikov A.S., Maksimenko A.F. Basic calculation relationships for determining the intensity of the shock wave (in pipeline branches for a one-dimensional design scheme of the shock-wave process). Oil, Gas and Business, 2009, no. 3, p. 57-58 (in Russian).
6. Kuznechikov A.S., Maksimenko A.F. Analysis of calculation formulas for the limiting stage of the forced natural gas discharge process. Gazovaya promyshlennost, august 2011, p. 48-50 (in Russian).
7. Kuznechikov A.S., Maksimenko A.F. Analysis of the influence of the degree of opening of the launching device’s channel on the intensity of the shock wave when a high-pressure gas is discharged from a high-pressure apparatus of a large volume. Oil, Gas and Business, 2012, no. 1-2, p. 106-109 (in Russian).
8. Kuznechikov A.S., Maksimenko A.F. The use of single-channel schemes for the calculation of a shock wave that has passed from a discharge pipeline to a collection manifold. Gazovaya promyshlennost, april 2013, p. 44-46 (in Russian).

Prospects for using cyclic airs cooling systems for gas turbine plants based on absorption refrigerating machines as part of compressor stations
Technical sciences

Authors: Tatyana V. POPOVA graduated from Gubkin Russian State University of Oil and Gas (National Research University) in 2015. She is postgraduate student, Assistant of the Department of Thermodynamics and Heat Engines at Gubkin Russian State University of Oil and Gas (National Research University). E-mail: popova_ttd@mail.ru
Mikhail A. VORONTSOV graduated from Bauman Moscow State Technical Universi- ty in 2007. He is Candidate of Technical Sciences, Head of the Field Compressor and Turbo Refrigeration Systems Sector at OOO “Gazprom VNIIGAZ”, Associate Professor of the Department of Thermodynamics and Heat Engines at Gubkin Russian State University of Oil and Gas (National Research University). E-mail: vorontsov.m@gubkin.ru

Abstract: The way for increasing the efficiency of exploitation of compressor stations, equipped with gas turbine gas pumping units, in the hot season using a cycle airs cooling system of gas turbine units based on absorption refrigerating machines is considered. The factors that allow to obtain a useful effect when using cyclic airs cooling systems as part of compressor shops of compressor stations are shown. The article presents applications of absorption refrigerating machines to increase the efficiency of gas turbine installations and the results of the calculations of the influence of the systems cooling cyclic airs of gas turbine installations on the main energy and operational indicators of gas pumping aggregates and compressor shops. Requirements for the characteristics of cyclic airs cooling systems are substantiated, which allows to obtain the greatest technological effect, a methodological approach to assessing the effectiveness of this energy saving event is developed. Various applications of absorption cooling machines as part of compressor shops with gas turbine gas pumping units are considered

Index UDK: 620.9

Keywords: gas pumping unit, gas turbine plant, compressor station, compressor shop, system of cooling cyclic airs gas turbine unit, absorption cooling machine, disposable power, utilization of heat of exhaust gas of gas pumping unit, energy saving event

1. Gazoperekachivayushchie agregaty s gazoturbinnym privodom na magistral’nyh gazoprovodah. B.P. Porshakov, A.S. Lopatin, S.M. Kupcov, K.H. Shotidi. Uchebnoe posobie dlya vuzov. M.: OOO “Izdatelskij dom Nedra”, 2010, 245 p.
2. Ckhyaev A.D., Kuzmina T.G. Ispolzovanie ABHM v sistemah ohlazhdeniya vozduha
na vhode v compressor GTU. Turbiny I dizeli. Specializirovannyj informacionno-tekhnicheskij zhurnal, 2015, no. 5, p. 10-13.
3. Povyshenie energeticheskoj ehffektivnosti magistralnogo transporta gaza PAO “Gazprom” na osnove realizacii vysokoehffektivnyh tekhnologij utilizacii teplovoj ehnergii vyhlopnyh gazov gazo-turbinnyh ustanovok gazoperekachivayushchih agregatov. O.E. Aksyutin, A.G. Ishkov, G.A. Hvorov, M.V. Yumashev i dr. Gazovaya promyshlennost’, 2017, no. S1 (750), p. 64-69.
4. Popova T.V., Voroncov M.A. Utilizaciya teploty vyhlopnyh gazov na kompressornyh stan-ciyah. Opyt I perspektivy. Nauch.-tekh. sb. RGU nefti i gaza (NIU) imeni I.M. Gubkina. Magistralnye i promyslovye truboprovody: proektirovanie, stroitelstvo, ehkspluataciya, remont, M.: Izd. centr RGU nefti i gaza (NIU) imeni I.M. Gubkina, 2018, no. 2, p. 27-33.
5. Balzamov D.S., Timershin B.F. Perspektivnye tekhnologii dlya predpriyatij ehnergeticheskoj otrasli. Vesti v ehlektroehnergetike, 2017, no. 5 (91), p. 38-40.
6. Ohlazhdenie ciklovogo vozduha kompressora na PGU-110 (g. Astrahan’) s primeneniem absorbcionnyh bromisto-litievyh holodilnyh mashin (ABHM). D.L. Dogadin, A.B. Anohin, G.G. Latypov, I.N. Krykin. Gazoturbinnye tekhnologii, 2014, no. 7, p. 8-12.
7. Normy tekhnicheskogo proektirovaniya magistralnyh gazoprovodov. STO Gazprom-2-3-5-051-2006. M.: OAO “Gazprom”, 2006, 192 p.
8. Modelirovanie processov v ehnergotekhnologicheskom oborudovanii magistralnyh gazopro-vodov. Chast I. [Ehlektronnyj resurs]: Uchebnoe posobie. A.F. Kalinin, M.A. Voroncov. M.: RGU nefti i gaza (NIU) imeni I.M. Gubkina, 2018.
9. Energosberegayushchie tekhnologii pri magistral’nom transporte prirodnogo gaza. Uchebnoe posobie. B.P. Porshakov, A.S. Lopatin, A.F. Kalinin, S.M. Kupcov i dr. M.: Izd. centr RGU nefti i gaza imeni I.M. Gubkina, 2014, 408 p.

System for trainees’ actions automatic assessment in computer training complexes
Technical sciences

Authors: Tatiana M. PAPILINA graduated from Gubkin Russian State University of Oil and Gas in 2012. She is Candidate of Technical Sciences, assistant professor at the Department of Automated Control Systems of Gubkin Russian State University of Oil and Gas (National Research University). She is specialist in training software development and distributed and cloud systems design.
E-mail: papilina.tm@asugubkin.ru
Roman L. BARASHKIN graduated from Gubkin Russian State University of Oil and Gas in 2006. He is Candidate of Technical Sciences, assistant professor at the Department of Process Control of Gubkin Russian State University of Oil and Gas (National Research University). He is specialist in simulation modeling and process automation. He is author of more than 20 scientific publications. E-mail: barashkin.r@gubkin.ru
Nikita S. VASILYUK graduated from Gubkin Russian State University of Oil and Gas (National Research University) in 2018. He is Master’s degree student at the Department of Automated Control Systems, Gubkin University (National Research University). He is specialist in distributed data processing and analysis. E-mail: sowow359@ya.ru

Abstract: The paper summarizes the theoretical knowledge and practical experience in computer-training complexes (CTC) development and proposes a system for real time automatic student’s actions assessment. The system controls that students’ actions follow the regulated sequence taking into account achievement of target indicators and compliance with technological limitations. The system has been tested as part of gas treatment unit CPC. The results can be used in CTC for continuous technological processes control

Index UDK: 004.9:622.691+004.9:622.279

Keywords: training software, computer learning systems, automatic assessment of trainees’ actions, online learning, process control system

1. Federal’nyy zakon ot 21.07.1997 No. 116-FZ (red. ot 29.07.2018) “O promyshlennoy bezopasnosti opasnykh proizvodstvennykh obektov”. [Elektronnyy resurs] Rezhim dostupa: http://www.consultant.ru/document/cons_doc_LAW_15234/ , svobodnyy.
2. Sträter O. Cognition and safety: an integrated approach to systems design and assessment. Routledge, 2005, 288 p.
3. Asiryan A.V., Grigor’ev L.I. K otsenke chelovecheskogo faktora v ergaticheskikh sistemakh. Avtomatizatsiya, telemekhanizatsiya i svyaz’ neftyanoy promyshlennosti, 2018, no. 9, p. 46-51.
4. Grigor’ev L.I., Sardanashvili S.A., Dyatlov V.A. Komp’yuterizirovannaya sistema podgotovki dispetcherskogo personala v transporte gaza. Neft’ i gaz, 1996, 195 p.
5. Grigor’ev L.I. K teorii avtomatizirovannogo dispetcherskogo upravleniya. Trudy Rossiyskogo gosudarstvennogo universiteta nefti i gaza imeni I.M. Gubkina, 2012, no. 3, p. 124-130.
6. Chistikov S.P., Lavrukhin V.K., Asanov T.A., Grigor’ev L.I., Ermolaev A.I. Tendentsii razvitiya integrirovannykh avtomatizirovannykh sistem upravleniya v gazodobyche. Gazovaya promyshlennost’, 2006, no. 5, p. 199-203.
7. Chikalo V.N., Grigor’ev L.I., Popad’ko V.E. Model’ raspredeleniya proizvoditel’nosti mezhdu UKPG v ASDU tekhnologicheskim protsessom dobychi gaza. Nauka i tekhnologiya uglevodorodov, 2003, no. 2, p. 77-80.
8. Martynov V.G., Sheynbaum V.S., Pyatibratov P.V., Sardanashvili S.A. Realizatsiya mezhdistsiplinarnogo obucheniya v virtual’noy srede proektnoy i proizvodstvennoy deyatel’nosti. Inzhenernoe obrazovanie, 2014, no. 14, p. 5-11.
9. Barashkin R.L., Kalashnikov P.K., Popad’ko V.E., Yuzhanin V.V. Opyt vnedreniya “Komp’yuternogo trenazhernogo kompleksa protsessov podgotovki nefti i gaza k transport” v obrazovatel’nyy protsess. Territoriya Neftegaz, 2017, no. 10, p. 12-19.
10. Abel J. Aging HPI workforce drives need for operator training systems. Hydrocarbon Processing, November 2011, p. 11-16.
11. Sardanashvili S.A., Mitichkin S.K., Leonov D.G., Shvechkov V.A. Innovatsii v podgotovke dispetcherskogo personala gazodobyvayushchikh i gazotransportnykh obshchestv. Gazovaya promyshlennost’, 2015, no. 3, p. 80-84.
12. Dozortsev V.M. Mirovoy rynok komp’yuternykh trenazherov dlya obucheniya operatorov: tendentsii, vyzovy, prognozy. Avtomatizatsiya v promyshlennosti, 2016, no. 2, p. 35-38.
13. SIMONE SOFTWARE Simulation. [Elektronnyy resurs] Rezhim dostupa: http://www.si-mone.eu/simone-simonesoftware-simulation.asp, svobodnyy.
14. Operator Training Simulator. [Elektronnyy resurs] Rezhim dostupa: https://www.yokoga-wa.com/solutions/services/training/operator-training-simulator/, svobodnyy.
15. Rasmussen J. Skills, rules, and knowledge; signals, signs, and symbols, and other distinctions in human performance models. IEEE transactions on systems, man, and cybernetics, 1983, no. 3, p. 257-266.
16. Kochueva O.N. Metody otsenki deystviy obuchaemogo v komp’yuternykh trenazhernykh kompleksakh dlya podgotovki dispetcherov v transporte nefti i gaza. Avtomatizatsiya, telemekhanizatsiya i svyaz’ v neftyanoy promyshlennosti, 2018, no. 6, p. 31-36.
17. Dozortsev V.M. Naskol’ko polezny komp’yuternye trenazhery dlya obucheniya operatorov? Golos pol’zovateley. Avtomatizatsiya v promyshlennosti, 2016, no. 7, p. 7-13.
18. Dedov D.L., Krasnyanskiy M.N., Rudnev A.A. Virtual’nyy trenazhernyy kompleks preduprezhdeniya i likvidatsii chrezvychaynykh situatsiy tekhnogennogo kharaktera na osnove modelirovaniya deyatel’nosti cheloveka-operatora. Vestnik TGTU, 2012, no. 4, p. 834-839.
19. Barashkin R.L., Zhedyaevskiy D.N., Kalashnikov P.K., Yuzhanin V.V. Modernizatsiya komp’yuternogo trenazhernogo kompleksa po protsessam podgotovki gaza k transportu dlya primeneniya v uchebnom protsesse vuza. Sovremennaya nauka: Aktual’nye problemy teorii i praktiki, 2019, no. 3/2, p. 5-10.

Causes for intensification of carbon dioxide corrosion of steel equipment and pipelines of oil and gas fields
Technical sciences

Authors: Ksenia V. NAKONECHNAYA graduated from Gubkin Russian State University of Oil and Gas (National Research University) in 2018. She is postgraduate student of the Department of Tribology and Technology of Repair of Oil and Gas Equipment. She is author of 9 scientific publications. E-mail: nakonechnaya.k@gubkin.ru
Oksana Y. ELAGINA graduated from Gubkin Moscow Institute of Petrochemical and Gas Industry in 1989. She is Doctor of Technical Sciences, Head of the Department of Tribology and Technology of Repair of Oil and Gas Equipment of Gubkin Russian State University of Oil and Gas (National Research University). She is Head of the Interdepartmental Center for the Study of New Materials for Fuel and Energy Complex Objects. She is author of over 100 scientific papers. E-mail: elaguina@mail.ru

Abstract: The article is devoted to the reasons causing the intensification of carbon dioxide corrosion. Methods of its identification are considered on the example of production of wells of the Karazhanbas field. The results of the studies showed the pos-sibility of using X-ray structural analysis of corrosion deposits as a method of corrosion monitoring. The necessity to isolate wells with a pH value of 6,5 and below was revealed with an increase in partial pressure up to 3 kPa and above at the temperature of the produced fluid of 50 °C to a complicated pool for selecting equipment in corrosion-resistant design.

Index UDK: 620.193/197:622.692.4

Keywords: carbon dioxide corrosion, corrosion rate, intensification of the corrosion process.

1. Markin A.N., Nizamov R.E. SO2-korroziya neftepromyslovogo oborudovaniya. [CO2 corrosion of oilfield equipment]. Moscow, 2003, 188 p.
2. Erekhinsky B.A., Chernukhin V.I., Popov K.A., Shiryaev A.G., Rekin S.A., Chetverikov S.G. [Oil country tubing resistant to carbon dioxide corrosion]. Territory neftegaz [Territory neftegaz], 2016, no. 6, p. 72-76.
3. Avtorskiy nadzor za realizatsiey proektnogo dokumenta na razrabotku mestorozhdeniya Karazhanbas. [Designer supervision of the implementation of the project document for the development of the Karazhanbas field. Report of KazNIPImunaygas JSC]. Otchet AO «KazNIPImunaygaz». Almaty, 2016, 135 p.

Computer-aided design and modeling in machine building: orthogonal cylinder-bevel gears
Technical sciences

Authors: Aleksey Ya. NEKRASOV born in 1971, graduated from Moscow State Technological University «STANKIN» in 1994 by specialty «Designing machine tools and tools». The candidate of Technical Sciences, assistant professor of Sub-department of Machines of MSTU «STANKIN». The specialist in engineering. The author and co-author of more than 60 scientific and educational works. E-mail: stankin-okm@yandex.ru
Alexander N. SOBOLEV born in 1979, graduated from Moscow State Technological University «STANKIN» in 2002 in the direction of the magistracy «Technology, Equipment and Automation of engineering industries». Candidate of Technical Sciences. Assistant professor of the Sub-department of Machines of MSTU «STANKIN». The specialist in the theory of mechanisms and machines, CAD. The author and co-author of more than 60 scientific and educational works. E-mail: stankin-okm@yandex.ru
Michail O. ARBUZOV born in 1942, graduated from Moscow machine tool institute in 1964 by specialty «Designing machine tools». The candidate of Technical Sciences, assistant professor of Sub-department of Machines of MSTU «STANKIN». The specialist in the field of designing and calculating machine parts. The author and co-author of about 35 scientific and educational works.
E-mail: stankin-okm@yandex.ru
Victor G. PIROZHKOV born in 1949, graduated from the Krasnoyarsk Polytechnic Institute in 1971 with a degree in mechanical engineering technology, machine tools and metalworking. He is Candidate of Technical Sciences, Professor at the Department of Technical Mechanics of Gubkin Russian State University of Oil and Gas (National Research University). He is expert in the field of calculation of strength and reliability of elements of engineering structures. He is author of more than 60 scientific publications.
E-mail: pirogkov.v@gubkin.ru

Abstract: Orthogonal cylinder-bevel gears have been applied since ancient times. The main advantage of such transmission versus the traditional conical one is the possibility of some axial displacement of the gear that significantly simplifies the mounting of the gear. However, the geometric calculations required in the manufacture of this type of transmission are extremely complex. Therefore, effective software, that would simplify the geometric modeling of transmission elements, is needed. The article describes the scope of orthogonal cylinder-bevel gears in modern engineering. An algorithm for the geometric calculation of the elements of cylinder-bevel gear, implemented using the application program module developed by the authors, is presented

Index UDK: 621.0.01:621.833.2

Keywords: orthogonal cylinder-bevel gear, geometric calculations, software module

1. Sobolev A.N., Kosov M.G. Avtomatizaciya kinematicheskogo i dinamicheskogo analiza tehnologicheskih mashin. Vestnik MGTU «Stankin» [Messenger of Moscow State University of Technology «STANKIN»], 2010, no. 2, p. 32-36 (in Russian).
2. Kosov M.G., Sobolev A.N. Avtomatizirovannoe proektirovanie na osnove metodologii netverdotelnogo modelirovaniya. Tehnologiya mashinostroeniya [Engineering technology], 2010, no. 3, p. 44-48 (in Russian).
3. Kissling U., Beermann S. Face Gears: Geometry and Strength [M]. USA: Gear Technology, 2007, vol. 1, p. 54-61.
4. Litvin F. L., Wang J. C., Bossler R. B. Application of face gear drives in helicopter trans- missions. Journal of Mechanical Design, Transactions of the ASME, 1994, vol. 3, no. 116, p. 672-676.
5. Litvin F.L., Fuentes A. Gear Geometry and Applied Theory, second ed., Cambridge University Press. Cambridge, 2004, 818 p.
6. Spravochnik konstruktora tochnogo priborostroeniya [Reference instrument designer precision instrument]. Pod redakciey doktora tehnicheskih nauk, prof. F.L. Litvina. M., L.: Mashinostroenie, 1964, 943 p.
7. Litvin F.L. Teoriya zubchatih zacepleniy [Gearing theory]. M., Nauka, 1968, 584 p.
8. Kazakov A.A., Arbuzov M.O., Pirozhkov V.G., Saldadze A.D. Vliyanie pogreshnostey formi detali v raschetah tochnostey oborudovaniya. Neft, gaz i biznes [Oil, Gas and Business], 2012, no. 1-2, p. 98-101 (in Russian).
9. Nekrasov A.Ya., Arbuzov M.O., Pirozhkov V.G. Primenenie universalnoy sistemi avtomatizirovannogo analiza shemi raspredeleniya nagruzki megdu elementami v mnogokontaktnih kinema-ticheskih parah (dlya vibora chisla zubiev menshego shkiva v zubchato-remennoy peredache). Neft’, gaz i biznes [Oil, Gas and Business], 2010, no. 7-8, p. 69-74 (in Russian).
10. Nekrasov A.Ya., Sobolev A.N., Arbuzov M.O. Innovacionniy interaktivniy programmniy product kak sredstvo povisheniya effektivnosti proektirovaniya mehanizmov. Innovacii [Innovations], 2016, no. 8, p. 104-107 (in Russian).
11. Pirozhkov V.G., Sobolev A.N., Nekrasov A.Ya., Arbuzov M.O. K voprosu formoobrazovaniya profilya cilindricheskih zubchatih koles pri elektroerozionnom virezanii. Trudi RGU nefti i gaza (NIU) imeni I.M. Gubkina [Proceedings of Gubkin Russian State University of Oil and Gas], 2018, no. 4, p. 118-131 (in Russian).
12. Sobolev A.N., Kosov M.G., Nekrasov A.Ya. Modelirovanie konstrukciy korpusnih detaley s ispolzovaniem raschetnih makroelementov. Vestnik MGTU «Stankin» [Messenger of Moscow State University of Technology «STANKIN»], 2014, no. 3, p. 98-101 (in Russian).
13. Kosov M.G., Sobolev A.N., Nekrasov A.Ya. Informacionnaya struktura sistemi netverdotelnogo modelirovaniya. Vestnik MGTU «Stankin» [Messenger of Moscow State University of Technology «STANKIN»], 2015, no. 1, p. 108-111 (in Russian).
14. Nekrasov A.Ya., Arbuzov M.O. Matematicheskaya model nagrugeniya zveniev mehanicheskih ustroistv s mnogoparnim silovim kontaktom. Vestnik MGTU «Stankin» [Messenger of Moscow State University of Technology «STANKIN»], 2012, no. 1, p. 32-35 (in Russian).
15. Sobolev A.N., Nekrasov A.Ya. CAD/CAE Modeling of Maltese Cross Mechanisms in Machine Tools. Russian Engineering Research, 2016, vol. 36, no. 4, p. 300-302.
16. Sobolev A.N., Nekrasov A.Ya., Arbuzov M.O. Usovershenstvovannaya metodika proekti- rovaniya zubchatih i chervyachnih mehanizmov v CAD/CAE-sistemah. Vestnik MGTU «Stankin» [Messenger of Moscow State University of Technology «STANKIN»], 2014, no. 2, p. 102-106 (in Russian).
17. Sobolev A.N., Nekrasov A.Ya. Raschet i modelirovanie v CAD-sisteme evolventnih i cikloidalnih (chasovih) zubchatih peredach priborov. Vestnik MGTU «Stankin» [Messenger of Moscow State University of Technology «STANKIN»], 2016, no. 2, p. 13-16 (in Russian).
18. Chekanin V.A., Chekanin A.V. Evristicheskiy algoritm optimizacii resheniy zadachi pryamougolnogo raskroya. Vestnik MGTU «Stankin» [Messenger of Moscow State University of Techno-logy «STANKIN»], 2014, no. 4, p. 210-213 (in Russian).

Authors: Konstantin V. SHATALOV graduated from the Ulyanovsk Higher Military Technical School named after B. Khmelnitsky in 1988, the Military Academy of Logistics and Transport in 1998. Candidate of Technical Sciences, Associate Professor. Head of the department of qualification assessment of fuels and oils of the FAE «The 25th State Research Institute of Chemmotology of Ministry of Defense of the Russian Federation». His research interests are chemotology, quality assessment of fuels and oils, metrological assurance of testing fuels and oils. He is author of more than 80 scientific publications. E-mail: 1499090@mail.ru.
Lidiya A. VLASENKOVA, Post-Graduate Student, Gubkin Russian State University of Oil and Gas (National Research University). The main direction of research is the jet fuel chemmotology. E-mail: vlasenkova.l@ya.ru.
Natalya M. LIKHTEROVA graduated from Gubkin Moscow Institute of Petrochemical and Gas Industry in 1968. Doctor of Technical Sciences, Professor. Leading Researcher of the department for the qualification assessment of fuels and oils of the FAE «The 25th State Research Institute of Chemmotology of Ministry of Defense of the Russian Federation». Her research interests are oil refining technology, chemical and motor fuel chemmotology, dispersed oil systems, heavy oil feedstock processing. She is author of more than 289 scientific publications. E-mail: 1499090@mail.ru.

Abstract: The article shows the need to study the chemical stability of fuels for jet engines, which contain components of deep oil refining, and suggests a method for studying the chemical stability of fuels for jet engines. Based on this method, studies of fuels for jet engines of various production technologies have been carried out. The minimum chemical stability has a fuel based on kerosene fraction of hydrocracking. This fact is explained by the conversion of the hydrocarbon composition of the kerosene fractions in the hydrocracking process

Index UDK: 665.7.035.5

Keywords: Fuel for jet engines, chemical stability, oxidation, hydrocracking

1. Grishin N.N., Sereda V.V. Entsiklopediya khimmotologii [Encyclopedia of chemmotology]. Moscow, 2016, 960 p.
2. Seregin E.P. Razvitie khimmotologii [Development of chemotology]. Moscow, 2018, 880 p.
3. Ryabov V.A. Oil refining is the basis of economic development. Ekonomika i TEK segodnya, 2009, no.10, p. 25-27 (in Russian).
4. Khavkin V.A., Chernysheva E.A., Gulyaeva L.A. Gidrogenizatsionnye protsessy polucheniya motornykh topliv [Hydrogenation processes for the development of motor fuels]. Ufa: Izd. GUP INHP RB, 2013, 264 p.
5. Khavkin V.A., Gulyaeva L.A., Vinogradova N.Ya., Shmel’kova O.I. Hydrogenation processes at the refinery of Russia. Mir nefteproduktov, 2009, no. 3, p. 15-21 (in Russian).
6. Khavkin V.A., Galiev R.G., Gulyaeva L.A., Pugach I.A. About hydrogenation processing of oil residues. Mir nefteproduktov, 2009, no. 3, p. 15-19 (In Russian).
7. Shatalov K.V., Likhterova N.M., Seregin E.P. Jet fuel quality. Tekhnologii nefti i gaza, 2016, no. 1, p. 3-6 (in Russian).
8. Butin K.P., Waters W.A. Mechanisms of oxidation of organic compaunds. London, Wiley, 1966, 175 p. (Russ. ed.: Butin K.P., Waters W.A. Mekhanizm okisleniya organicheskikh soedineniy. Moscow, Mir Publ., 1966, 173 p.).
9. Semenov N.N. Development of the chain theory of oxidation of hydrocarbons. Problemy okisleniya uglevodorodov, 1954, p. 13-19 (in Russian).
10. Berezin I.V., Denisov E.T., Emanuel’ N.M. Okislenie tsiklogeksana [Cyclohexane oxidation]. Moscow, 1962, 303 p.
11. Emanuel’ N.M., Denisov E.T., Mayzus E.K. Tsepnye reaktsii okisleniya uglevodorodov v zhidkoy faze [Chain reactions of oxidation of hydrocarbons in the liquid phase]. Moscow, 1965, 375 p.
12. Kovalev G.I., Gogitidze L.D., Kuranova V.I., Denisov E.T. Natural jet fuel oxidation inhibitors. Neftekhimiya, 1981, vol. 21, no. 5, p. 718-725 (in Russian).
13. Denisov E.T., Kovalev G.I. Okislenie i stabilizatsiya reaktivnykh topliv. [Oxidation and stabilization of jet fuels]. Moscow, 1983, 272 p.
14. Khavkin V.A., Belousov A.I. Jet fuel production technologies. Neftepererabotka i neftekhimiya. Nauchno-tekhnicheskie dostizheniya i peredovoy opyt, 2014, no. 11, p. 5-7 (In Russian).
15. Kulik N.S., Aksenov A.F., Yanovskiy L.S., Boychenko S.V., Zaporozhets A.I. Aviatsionnaya khimmotologiya. Topliva dlya aviatsionnykh dvigateley. Teoreticheskie i inzhenernye osnovy primeneniya. [Aviation chemmatology. Jet fuels. Theoretical and engineering bases of application]. Kiev, 2015, 557 p.
16. Veselyanskaya V.M., Radchenko E.D., Englin B.A. Oxidizability of jet fuels T-6 and RT during long-term storage. Khimiya i tekhnologiya topliv i masel, 1983, no. 12, p. 27-28.
17. Instruktsiya ob organizatsii obespecheniya kachestva goryuchego v Vooruzhennykh Silakh Rossiyskoy Federatsii (prikaz ZMO RF 1994 goda № 105). Moscow, Voenizdat Publ., 1994, 220 p. (in Russian).

Measurement of gas dynamic parameters in slit during evaporation of walls
Technical sciences

Authors: Georgy V. BELJAKOV (b. 1936) graduated from the Moscow Engineering Phy- sics Institute in 1959. He is Candidate of Physical and Mathematical Sciences, Senior Researcher at the “Geomechanics and fluid dynamics” Laboratory of the Institute of Geosphere Dynamics of the Russian Academy of Sciences. He is author of over 50 publications in the field of physics of high speed chemical processes and mechanics of multiphase fluids.
E-mail: m5184@yandex.ru
Aliya A. TAIROVA graduated from the Moscow Institute of Physics and Technology in 2008. She is Candidate of Physical and Mathematical Sciences, Senior Researcher at the “Geomechanics and Fluid Dynamics” Laboratory of the Institute of Geosphere Dyna- mics of the Russian Academy of Sciences, Associate Professor at the Department of Theo- retical and Experimental Physics of Geosystems of the Moscow Institute of Physics and Technology. She is author of over 30 publications in the field of geomechanics and dyna- mics of fluids.
E-mail: moscouposte@gmail.com
Anatoly N. FILIPPOV (b. 1960) graduated from the M.V. Lomonosov Moscow State University in 1982. He is Doctor of Physical and Mathematical Sciences, Professor at the Department of Higher Mathematics, Leading Researcher at the Laboratory of Functional Aluminosilicate Materials of Gubkin Russian State University of Oil and Gas (National Research University). He is author of over 350 scientific papers in the field of physical-chemical mechanics, colloid chemistry and mathematics.
E-mail: filippov.a@gubkin.ru

Abstract: The results of laboratory measuring of gas-dynamic parameters in the fracture during evaporation of its walls are presented. The fracture of a shale layer was simulated by a slit created in plexiglass. The fracture was blown through by gas flow, its speed was experimentally measured. The values of flow rates, evaporation speed and entrainment of the mass of material from the surface of the slit are recorded. The shall recovery factor is calculated under laboratory conditions

Index UDK: 536.46

Keywords: exothermic reaction, evaporation of slit walls, gas flow, fracturing mo-deling, recovery factor

1. Kim J.K. Investigation on the turbulent swirling flow field within the combustion chamber of a gun-type gas burner. Transactions of the Korean Society of Mechanical Engineers, B, 2009, vol. 33, issue 9, p. 666-673.
2. Fujimoto T., Usami M. Monte-Carlo Simulation on Rarefied Gas Flow through Two-Dimen-sional Slits (Cases of High-Pressure Ratio). Transactions of the Japan Society of Mechanical Engineers, Series B, 1984, vol. 50, issue 459, p. 2717-2722.
3. Usami M., Fujimoto T., Kato S. Mass-Flow Reduction of Rarefied Gas by Roughness of a Slit Surface: (High-Speed Calculation of DSMC Method on the Vector Processor). Transactions of the Japan Society of Mechanical Engineers, Series B, 1988, vol. 54, issue 501, p. 1042-1050.
4. Sharipov F., Kozak D.V. Rarefied gas flow through a thin slit at an arbitrary pressure ratio. European Journal of Mechanics B/Fluids, 2011, vol. 30, p. 543-549.
5. Kim Y.W., Metzger D.E. Heat transfer and effectiveness on film cooled turbine blade tip models. Journal of Turbomachinery, 1995, vol. 117, issue 1, p. 12-21.
6. Tairova A.A., Belyakov G.V., Chervinchuk S.Yu. Ablation in the slit in combustion. Proceedings of the international conference on advanced materials with hierarchical structure for new techno- logies and reliable structures 2017 (AMHS’17). AIP Conference Proceedings, 2017, vol. 1909, 020216. https://doi.org/10.1063/1.5013897.
7. Belyakov G.V., Tairova A.A. The measurement of gas dynamics parameters in the gap during ablation of its walls. Dynamics processes in geospheres. Collected scientific papers of IDG RAS. M.: Geos, 2017, issue 9, p. 75-79.
8. Landau L.D., Lifshitz E.M. Teoreticheskaya fisika VI — Gidrodinamika. M.: Nauka, 1988, 736 p.
9. Sedov L.I. Mekhanika sploshnoi sredy. Vol. 2. M.: Nauka, 1984, 560 p.

New Technical Solutions to Remove Seasonal Restrictions of Thermal Power Plants and Increase Reliability and Efficiency of Power Systems During Summer Period
Technical sciences

Authors: Vasily A. ZUBAKIN graduated from Omsk Polytechnic Institute in 1980, Doctor of Economic Sciences, Head of the Department of Renewable Energy Sources of Gubkin Russian State University of Oil and Gas (National Research University), head of the Department of LUKOIL Oil Company. Specialist in the field of economics and forecasting of energy, the economy of renewable energy sources and distributed generation, risk management in the fuel and energy sector, economic and mathematical models of the electricity market. He is an author of more than 60 scientific publications. E-mail: zubakinva@gmail.com
Fedor Yu. OPADCHIY graduated from Moscow Engineering Physics Institute as an engineer-physicist in 1997. Since 2004 he has been working in the System Operator of the Unified Energy System of Russia, in 2012 he was appointed as a Deputy Chairman of the Ma- nagement Board of Joint-Stock Company “System Operator of the Unified Energy System”. He oversees the development of electricity markets and information technologies of Joint-Stock Company “System Operator of the Unified Energy System”. He is a member of expert councils on electric power industry under the Government of the Russian Federation and the Federal Anti-Monopoly Service of Russia, and is a member of the Supervisory Board of the Association “NP MARKET COUNCIL” of infrastructure organizations. He represents Joint-Stock Company “System Operator of the Unified Energy System” in international organizations, in 2018-2019 he is elected as a president of the Association of System Operators of the world’s largest energy systems GO15 (VLPGO). E-mail: fedor@so-ups.ru
Denis L. DOGADIN graduated from the Engineering and Low Temperature Physics Department at the Moscow Power Engineering Institute in 1994, Head of Department for Examination and Support of Projects of the Department of Energy Assets Development and Project Support of LUKOIL Oil Company. Author of several scientific publications on the problems of improving the efficiency of thermal power plants operation, energy efficiency in the systems of heat and electricity supply of industrial and municipal enterprises. He is an author of a number of useful models. E-mail: Denis.Dogadin@lukoil.com
Tatyana Yu. USPENSKAYA graduated from the Department of Industrial Heat and Power Systems of Moscow Power Engineering Institute in 2010, Leading Specialist of the Department for the Development of Energy Assets and Projects Support of LUKOIL Oil Company. She is an author of more than 10 scientific publications. E-mail: Tatyana.Yu.Uspenskaya@lukoil.com

Abstract: Specific features of the operation of one of the most dynamically developing energy systems of the country are analyzed. The functioning of the United Energy Systems of the South Region is associated on the one hand with a steady increase in summer loads, and on the other, with a steady trend for reduction of the generation capacity. These are both for technological reasons and because of the shutdowns of the generating equipment for repair. Methods for solving the above mentioned problem using absorption chillers and evaporative coolers are proposed. Pioneer experience of the LUKOIL Group companies of applying these methods in Russia is presented

Index UDK: 621.311.22

Keywords: power system, absorption chiller, evaporative coolers, removal of seasonal restrictions of thermal power plants

1. Informatsionnyy obzor “Edinaya energeticheskaya sistema Rossii: promezhutochne itogi” za 2012-2018 gg. [Information review “United Energy System of Russia: intermediate results” for 2012- 2018] Available at: http://so-ups.ru/?id=tech_ (accessed 24 January 2019).
2. Dogadin D.L., Krykin H.H., Latypov G.A. Teplovaya elektricheskaya stantsiya s absorbtsionnoy bromisto-litievoy kholodil’noy mashinoy [Thermal power plant with absorption lithium bromide refrigeration machine]. Patent RF, no. 119393, 2012.
3. Dogadin D.L., Krykin H.H., Latypov G.A. Teplovaya elektricheskaya stantsiya s absorbtsionnoy bromisto-litievoy kholodil’noy mashinoy [Thermal power plant with absorption lithium bromide refrigeration machine]. Patent RF, no. 119394, 2012.
4. Dogadin D.L. Teplovaya elektricheskaya stantsiya s absorbtsionnoy bromisto-litievoy kholodil’noy mashinoy, rabotayushchey v rezhime teplovogo nasosa [Thermal power plant with absorption lithium bromide chiller operating in heat pump model]. Patent RF, no. 127818, 2012.

Problems and models of multi-criteria risk assessment and efficiency of development of methane-coal depositsPart II.
Technical sciences

Authors: Yury P. STEPIN (born 1946) graduated from Gubkin Moscow Institute of Petrochemical and Gas Industry in 1969, specializing in “Industrial Electronics” in 1975 he completed his postgraduate course. He is Doctor of Technical Sciences, Professor of the Department of Automated Control Systems of Gubkin Russian State University of Oil and Gas (National Research University). He is author of 146 scientific and methodical papers, 118 scientific-papers, 23 teaching aids, 3 books and 2 patents. He has prepared 5 candidates of sciences. E-mail: stepin.y@gubkin.ru

Abstract: The article is devoted to solving problems of multi-criteria assessment of options for development projects of methane-coal deposits under conditions of uncertainty and risk. Risks are considered in a narrow and broad sense. It is shown that the solution of the problem, in the case of risk assessment in a broad sense, is reduced to solving a game with nature, in which: the determination of the states of nature is evaluated by many criteria; the effectiveness (loss) of development options is assessed using the criteria of efficiency and risks adopted in the theory of games with nature, including the interpretation of risk as a standard deviation; the choice of the best Bayesian strategy (option) of development for a specific criterion is calculated both under partial and full uncertainty conditions; multi-criteria evaluation and selection of the best development option is carried out on the basis of multi-criteria ranking and selection according to the Board rule

Index UDK: 681.5: 519.86

Keywords: multi-criteria evaluation, risk, Bayesian strategy, game with nature, convolution of criteria, partial uncertainty, total uncertainty, Bord rule, Pareto comparison, risk as standard deviation

1. Vishniykov J.D., Radaev N.N. Obschaiy teoriy riskov. M.: Akademiy, 2008, 368 р.
2. GOST R MEK 61511. Bezopasnost funktcionirovaniy. Sistemy bezopasnosti dliy promyshlennyh processov. М.: Stavdartinform, 2012.
3. GOST R MEK 61508. Upravlenie nadejnostiy. Analz riska tehnicheskih system. M.: Stavdartinform, 2008.
4. Andreev A.F., Zubareva V.D., Sarkisov A.S. Otcenka riskov neftegazovyh proektov. М.: Neft i gaz, 2002, 212 р.
5. Stepin Yu.P. Vibor strategiy obslujivaniy tehnologicheskogo oborudovania na obyektah nftegazovoy otrasli v usloviah neopredelennosti i riska. М.: Trudi RGU nefti i gaza (NIU) imeni I.М. Gubkina, 2016, no. 1 (282), р. 106-121.
6. Stepin Yu.P., Trakhtengerts E.A. Komp’yuternaya podderzhka upravleniya neftegazovymi tekhnologicheskimi protsessami i proizvodstvami. Metody i algoritmy formirovaniya upravlencheskikh resheniy. Kniga 1. Vektor TiS, 2007, 384 p. Kniga 2. М.: MAKS PressVektor TiS, 2008, 528 p.
7. Stepin Yu.P. Komp’yuternaya podderzhka formirovaniy mnogokriterialnogo ranjirovania i optimzacii upravlenchskih resheniy v neftegazovoy otrasli: Uchebnoe posobie. M.: ООО “Izdatelskiy dom Nedra”, 2016, 421 p.
8. Ventcel E.S. Issledovanie operatciy. М.: Sov. Radio, 1972, 552 p.
9. Nevejin V.P. Teoriy igr. Primery i zadachi. M.: FORUM, 2012, 128 р.
10. Matematicheskie metodi i modeli issledovania operaciy. Pod red. V.А. Каlemaeva. М.: UNITI, 2008, 592 p.

Calculation of Power Action of Wave on Support Devices of Marine Structures
Technical sciences

Authors: Alexander I. SUKHINOV is Doctor of Physical and Mathematical Sciences, Professor. Head of Department, Director of the Research Institute of Mathematical Modeling and Prediction of Complex Systems, of Don State Technical University (DSTU). Нe is author more than 230 scientific publications. E-mail: sukhinov@gmail.com
Natalya Alekseevna FOMENKO is Candidate of Physical and Mathematical Sciences. Associate Professor at the Department of Higher Mathematics of Gubkin Russian State University of Oil and Gas (National Research University). She is author of 27 scientific publications. E-mail: fomenko.nata.alex@gmail.com
Alexander E. CHISTYAKOV is Doctor of Physical and Mathematical Sciences, рrofessor of the Department of Software Computing and Automated Systems, of Don State Technical University (DSTU). Нe is author more than 170 scientific publications.
E-mail: sheese_05@gmail.ru

Abstract: The work is devoted to the development of a mathematical model of wave processes with respect for the hydrodynamic effect on supporting devices of various marine structures in the presence of surface waves in particular on support devices designed for operation at a depth of up to 40 meters. A full-scale experiment was conducted to measure various parameters of wave propagation in shallow water. On the basis of the experimental data, the values of the spectrum of the function of elevating the water level were obtained. A two-dimensional model of wave hydrodynamic processes describing the behavior of an aquatic environment near marine structures was developed. On the basis of the constructed algorithms, a set of programs was designed to simulate the propagation of wave hydrodynamic processes. The constructed program complex allows to specify the shape and intensity of the oscillation source, the geometry of the above-water object. On the basis of the developed software complex, the force influence of waves on structures with a support on the bottom of the reservoir was calculated

Index UDK: 519.6:532.5

Keywords: waves, shallow water, surface structures, support devices, power action

1. Sukhinov A.I., Chistyakov A.E., Alekseenko E.V. Numerical Realization of the Three- Dimensional Model of Hydrodynamics for Shallow Water Basins on a High-Performance System. Mathematisheskoe modelirovanie, t. 23, 2011, no. 3, p. 562-574.
2. Sukhinov A.I., Chistyakov A.E. Parallelnaya realizatsiya trekhmernoi modeli gidrodinamiki melkovodnykh vodoemov na supervychislitelnoi sisteme. Vychislitelnye metody i programmirovanie: novye vychislitelnye tekhnologii, t. 13, 2012, p. 290-297.
3. Rouch P. Vychislitelnaya gidrodinamika. M.: Mir, 1980, 618 р.
4. Fomenko N.A. Matematicheskoye modelirovaniye gidrodinamicheskikh vozdeystviy na kon- struktsii pri nalichii poverkhnostnykh voln v melkovodnykh vodoyemakh. Diss. kand. fiz.-math. nauk. Taganrog, 2012, 156 р.
5. Chistyakov A.E., Khachunts D.S., Timofeeva E.F., Fomenko N.A., Kuznetsova I.N. Program realization of discrete mathematical model of coastal wave processes calculation based on explicit schemes regularized by B.N. Chetverushkin is performed on computing system with massive parallelism, 2015, no. 12 (part 3), p. 540-544.
6. Sukhinov A.I., Chistyakov A.E., Fomenko N.A. Method of construction difference scheme for problems of diffusion-convection-reaction, takes into the degree filling of the control volume. Izvestiya SFedU. Engineering sciences. 2013, no. 4, p. 87-98.
7. Belotserkovskii O.M., Gushchin V.A., Shchennikov V.V. Use of the splitting method to solve problems of the dynamics of a viscous incompressible fluid. Computational Mathematics and Mathematical Physics, 15:1, 1975, p. 190-200.
8. Samarskii A.A. The Theory of Difference Schemes. M.: Nauka, 1989, 656 р.
9. Samarskii A.A., Nikolaev E.S. Numerical Methods for Grid Equations. M.: Nauka, 1978, 592 р.
10. Sukhinov A.I., Chistyakov A.E. Adaptive analog-SSOR iterative method for solving grid equations with nonselfadjoint operators. Matematisheskoe modelirovanie, t. 24, 2012, no. 1, p. 3-20.
11. Nikitina A.V., Chistjakov A.E., Fomenko N.A. Primenenie adaptivnogo modifizirovannogo poperemenno-treygol’nogo iterazionnogo metoda dlya shislennoy realizazii dvymernoi matematich- eskoy modeli dvicseniya vodnoi sredy. [Application of the adaptive analog-SSOR iterative method for numerical realization of two-dimensional mathematical model of movement of the aqueous medium]. Inženernyj vestnik Dona, 2012, t. 20, no. 2, p. 335-339