Статьи

Technical sciences

Development of models and algorithms of multi-criteria optimization of calendar planning of work of branched system of trunk oil pipelines
Technical sciences

Authors: Roman M. GORINOV graduated from Gubkin Russian State University of Oil and Gas (National Research University) in computer science and computer facilities in 2017. He is Post-graduate student of Gubkin Russian State University of Oil and Gas (National Research University). E-mail: romagorinov@mail.ru
Vitaly A. SHVECHKOV graduated from Gubkin Russian state University of Oil and Gas in computer science and computer facilities in 2002. He is Candidate of Technical Sciences, Associate Professor at the Department of Design and Operation of Oil and Gas Pipelines of Gubkin Russian State University of Oil and Gas (National Research University). He is author of 45 scientific and methodical works: 3 educational publications, 36 scientific works, 6 copyright certificates of state registration of computer programs.
E-mail: shvechkov.v@gubkin.ru
Yury P. STEPIN graduated from Gubkin Moscow Institute of Petrochemical and Gas Industry in 1969, specializing in “Industrial Electronics” in 1975 he completed his postgraduate course. He is Doctor of Technical Sciences, Professor at the Department of Automated Control Systems of Gubkin Russian State University of Oil and Gas (National Research University). He is author of 146 scientific and methodical papers, 118 scientific-papers, 23 teaching aids, 3 books and 2 patents. He has prepared 5 candidates of sciences. E-mail: stepin.y@gubkin.ru

Abstract: Various options were investigated and a combined scheme of compromise of criteria was proposed for the task of multi-criteria optimization of the operation of technological sections of an extensive system of trunk oil pipelines. An algorithm for searching quasi-optimal solutions was developed. This is based on the greedy search method with heuristics. The developed algorithm was tested on a branched trunk pipeline system, the results of testing were analyzed and conclusions were drawn on the applicability of the algorithm in the framework of monthly planning

Index UDK: 681.5:519.86

Keywords: branched oil pipelines system, multicriteria optimization, optimal planning, trunk pipeline operation planning

Bibliography:
1. Gorinov R.M., Shvechkov V.A., Stepin Yu.P. Matematicheskaya model’ mnogokriterial’noy optimizatsii kalendarnogo planirovaniya raboty razvetvlennoy sistemy magistral’nykh nefteprovodov. Trudy Rossiyskogo gosudarstvennogo universiteta nefti i gaza im. I.M. Gubkina, 2019, no. 4, p. 87-99.
2. Stepin Yu.P. Komp’yuternaya podderzhka formirovaniya mnogokriterial’nogo ranzhirovaniya i optimizatsii upravlencheskikh resheniy v neftegazovoy otrasli. M.: Nedra, 2016, 421 р.
3. Nakhlestkin A.A., Arkhireev A.G., Buslaev S.V. Optimizatsiya tekhnologicheskikh rezhimov perekachki nefti i nefteproduktov//Vestnik nauchnykh konferentsiy, 2017, no. 9, p. 95-97.
4. Veliev M.M. Nekotorye zadachi optimizatsii raspredeleniya gruzopotokov po seti magistral’nykh nefteprovodov: Dis. kand. tekhn. nauk. Ufa, 2001, 166 p.
5. Lazarev A.A., Gafarov E.R. Teoriya raspisaniy. Zadachi i algoritmy: Uchebnoe posobie. M.: MGU, 2011, 224 p.
6. Bellman R.E. Dinamicheskoe programmirovanie. M.: Izdatel’stvo inostrannoy literatury, 1960, 400 p.
7. Shcherbina O.A., Metaevristicheskie algoritmy dlya zadach kombinatornoy optimizatsii (obzor). Tavricheskiy vestnik informatiki i matematiki, 2014, no. 1, p. 56-72.
8. Nesterov Yu.E. Metody vypukloy optimizatsii. M.: MTsNMO, 2010, 281 p.

Effect of preparation methods on catalytic properties of microspherical aluminosilicate cracking catalysts
Technical sciences

Authors: Natalya P. MAKAROVA graduated from Gubkin Russian State University of Oil and Gas in 1984. She is Candidate of Chemical Sciences, associate Professor at the Department of Oil and Gas Processing Equipment of Gubkin Russian State University of Oil and Gas (National Research University). She is specialist in the field of processes and devices for oil and gas processing. She is author of more than 40 scientific publications. E-mail: natalyamakarova@mail.ru
Vyacheslav B. MEL’NIKOV graduated from Gubkin Moscow Institute of Oil-Chemical and Gas Industry in 1970. Doctor of Chemical Sciences, Рrofessor at the Engineering Mechanics Department of Gubkin Russian State University of Oil and Gas (National Research University). Specialist in the field of field gathering and processing of gas and gas condensate, processes and apparatus of oil and gas processing. He is the author of more than 190 scientific publications. E-mail: v.mel@mail.ru

Abstract: Currently, catalytic cracking is the largest among the catalytic processes of oil refining to produce fractions of high-octane gasoline and diesel fuel. In the process of catalytic cracking of different types of technological implementation and instrumentation aluminosilicate zeolite-containing catalysts are used. One of the main ways to improve the efficiency of catalytic cracking units is the use of more active and selective catalysts. The article considers the influence of methods of preparation of microspherical aluminosilicate zeolite-containing cracking catalysts on their catalytic properties. It is shown that the catalytic properties of zeolite-containing cracking catalysts are significantly influenced by the method of introducing zeolite REY into the aluminosilicate base and the zeolite content. The obtained results are important in the development of technologies for the preparation of catalytic cracking catalysts

Index UDK: 665.64:544.478:54.44

Keywords: cracking catalysts, catalytic cracking

Bibliography:
1. Khavkin V.A., Kapustin V.M., Gerzeliev I.M. The ways of catalytic cracking process develop-ment. The world of petroleum products. Bulletin of oil companies, 2016, no. 10, p. 4-9.
2. Doronin V.P., Sorokina T.P., Lipin P.V., Potapenko O.V., Gordenko V.I., Korotkova N.V. Development and introduction of zeolite containing catalysts for cracking with controlled contents of rare earth elements. Catalysis in Industry, 2015, t. 7, no. 1, p. 12-16.
3. Ishmijarov M.H., Smirnov V.K., Melnikov V.B., Luk’janchikov I.I., Vershinin V.I., Makaro- va N.P., Patrikeev V.A., Babaev M.I., Makarov A.E. Ball cracking catalyst with increased bulk weight and improved regeneration. Refining and petrochemicals, 2005, no. 7, p. 13-15.
4. Melnikov V.B., Levinbuk M.I., Pavlov M.L., Patrikeev V.A. The improvement of catalytic cracking process throught the utilization of new catalytic materials. ACS 5-th Int. Symp on the Advances in Fluid Catalytic Cracking. 22-26 august 1999, USA, New Orleans.
5. Gil’mutdinov A.T., Hisamova L.Z. Overview of modern catalysts used in catalytic cracking processes. Science and education, 2019, no. 5 (50), p. 10-15.
6. Levinbuk M.I., Melnikov V.B., Numan S., Pavlov M.L., Patrikeev V.A. The improvement of catalytic cracking process through the utilization of new catalytic materials. Studies in Surface Science and Catalysis, 2001, t. 134, p. 107-110.
7. Ross Dzh., Rua R., Got’e T., Anderson L.R. Fine-tune the CCF process according to the changing fuel market. Oil and gas technologies, 2006, no. 1, p. 96–100.
8. Bellami L. Infrared spectra of complex molecules. Moscow, Foreign literature, 1963, 590 p.
9. Modern methods of oil research. Edited by A.I. Bogomolov. Leningrad, Nedra, 1984, 430 р.

Influence of technological factors on slow pyrolysis of vegetable feed
Technical sciences

Authors: Ekaterina Yu. SERDYUKOVA graduated from Gubkin Russian State University of Oil and Gas (National Research University) in 2017. She is assistant lecturer at the Department of Oil Processing of Gubkin Russian State University of Oil and Gas (National Research Univer-sity). She is specialist in the field of technologies for processing of oil, gas, and biological raw materials. She is author of 25 scientific publications. E-mail: serdyukova.e@gubkin.ru
Elena A. CHERNYSHEVA graduated from Gubkin Moscow Institute of Petrochemical and Gas Industry in 1983. She is Candidate of Chemical Sciences, Professor at the Depart-ment of Oil Processing of Gubkin Russian State University of Oil and Gas (National Research University). She is specialist in the field of technologies for processing of oil and gas. She is author of more than 55 scientific publications. E-mail: elenchernysheva@mail.ru
Yuliya V. KOZHEVNIKOVA graduated from Gubkin State Academy of Oil and Gas in 1996. She is Candidate of Technical Sciences, Associate Professor of the Department of Oil Processing of Gubkin Russian State University of Oil and Gas (National Research University). She is specialist in the field of technologies for processing of oil, gas, and biological raw materials. She is author of 35 scientific publications. E-mail: kozhevnikova.y@gubkin.ru

Abstract: The article presents the results of studying the effect of changes in the technological parameters of the process of slow pyrolysis of plant biomass, such as the rate and final temperature of heating of raw materials, as well as the quantitative ratio of the obtained fractions. During the study of the obtained results, the dependence of the yield of products on the selected variant of the pro- cess was revealed, which made it possible to choose the optimal speed and the final heating temperature of the feed in order to obtain the maximum amount liquid product, with the possibility of its further use as a liquid environmentally friendly fuel component. The rate of heating of the feed was 5 °C/min, the final temperature of biomass heating was 500-550 °C, the yield of the liquid product at these parameters was 60-70 % by weight

Index UDK: 66.092. 665.6/7

Keywords: renewables sources, alternative fuel, slow pyrolysis, vegetable feed, biomass

Bibliography:
1. O stimulirovanii ispol’zovaniya vozobnovlyaemyh istochnikov energii na roznichnyh ryn- kah elektroenergii. Postanovlenie ot 23 yanvarya 2015 goda no. 47. URL: http://government.ru/docs/ 16633/
2. Kaluzhskij M.L., Saraev A.R. Ekonomika Omskoj oblasti: Uchebnoe posobie. Omsk: Izd. OmGTU, 2006, p. 263.
3. Ob’em i dinamika rossijskogo rynka sel’skohozyajstvennogo torfa URL: http://www.index-box.ru/news/rossijskij-rynok-selskohozyajstvennogo-torfa-pokazal-zamedlenie-rosta-potrebleniya-na-1-v-2017-g/
4. Kozhevnikova Yu.V., Chernysheva E.A., Serdyukova E.Yu. Osnovnye aspekty issledovanij po vovlecheniyu al’ternativnyh resursov v proizvodstvo toplivnyh biokomponentov, Neftepererabotka i neftekhimiya. Nauchno-tekhnicheskie dostizheniya i peredovoj opyt, 2018, no. 3, p. 39-43.
5. Lyamin V.A. Gazifikaciya drevesiny. M.: Lesnaya promyshlennost’, 1967, 152 p.

Tools for formation of design task bases on basis of decision tables
Technical sciences

Authors: Alena O. NAGIBINA graduated from Gubkin Russian State University of Oil and Gas in 2013. Specialist in the field of engineering technology. E-mail: kornipusi@yandex.ru

Abstract: In the article the reason of spending much time on adapting computer-aided design (CAD) of technological processes system for conditions of the concrete enterprise and of the concrete structural unit of this enterprise is stated. The article describes tools of one of the modules of the CAD system which enables technologists in different departments at the enterprise to fill up design tasks bases with required information which is presented in reference literature in the form of decision tables and to do it by themselves without administrator for reducing the time of adapting. An example of describing a design task on basis of a decision table with developed tools in specialized language is considered. The structure of specialized language operators used for describing is presented.

Index UDK: 004.9

Keywords: comprehensive technology automation system, decision tables, tools, design task bases

Bibliography: 1. Obshchemashinostroitel’nye normativy rezhimov rezaniya dlya tekhnicheskogo normirova- niya rabot na metallorezhushchikh stankakh. Chast’ I. Tokarnye, karusel’nye, tokarno-revol’vernye, almazno-rastochnye, sverlil’nye, strogal’nye, dolbezhnye i frezernye stanki [General machine-building standards of cutting conditions for technical rate setting of operations on cutting machines. Part I. Lathes, turning-and-boring lathes, turret lathes, diamond boring, drilling, planning, slotting and milling machines]. 2nd ed. M.: Mashinostroenie, 1974, 406 p.
2. Obshchemashinostroitel’nye normativy rezhimov rezaniya dlya tekhnicheskogo normirova- niya rabot na metallorezhushchikh stankakh. Chast’ II. Zuboreznye, gorizontal’no-rastochnye, rez’bonakatnye i otreznye stanki [General machine-building standards of cutting conditions for technical rate setting of operations on cutting machines. Part II. Gear-cutting, horizontal boring, thread-rolling and cutting-off machines]. 2nd ed. M.: Mashinostroenie, 1974, 200 p.

Gear mechanisms of periodic intermittent motion: designs, calculation methods, modeling
Technical sciences

Authors: Alexander N. SOBOLEV born in 1979, graduated from Moscow State University of Technology “STANKIN” in 2002 in the direction of the magistracy “Technology, Equipment and Automation of Engineering Industries”. He is Candidate of Technical Sciences, Assistant Professor of the Sub-department of Machines of MSUT “STANKIN”. He is expert in the theory of mechanisms and CAD. He is author and co-author of more than 65 scientific and educational works. E-mail: stankin-okm@yandex.ru
Alexey Ya. NEKRASOV born in 1971, graduated from Moscow State University of Technology “STANKIN” in 1994 by specialty “Machine tools and metalworking”. He is Candidate of Technical Sciences, Assistant Professor of Sub-department of Machines of MSUT “STANKIN”. He is expert in engineering. He is author and co-author of more than 65 scientific and educational works. E-mail: stankin-okm@yandex.ru
Michail O. ARBUZOV born in 1942, graduated from Moscow machine tool institute in 1964 by specialty “Mechanical engineering technology, machine tools and metalworking”. He is Candidate of Technical Sciences, Assistant Professor of Sub-department of Machines of MSUT “STANKIN”. He is expert in the field of designing and calculating machine parts. He is author and coauthor of more than 35 scientific and educational works. E-mail: stankin-okm@yandex.ru
Victor G. PIROZHKOV born in 1949, graduated from the Krasnoyarsk Polytechnic institute in 1971 with a degree in mechanical engineering technology, machine tools and metalworking. He is Candidate of Technical Sciences, Professor at the Department of Technical Mechanics of Gubkin Russian State University of Oil and Gas (National Research University). He is expert in the field of calculation of strength and reliability of elements of engineering structures. He is author of more than 60 scientific publications. E-mail: pirogkov.v@gubkin.ru

Abstract: Gear mechanisms of periodic intermittent motion (discontinuous kinematics) quite widely used in mechanical engineering. The main advantage of such mechanisms in comparison with the Maltese is the required lower accuracy and manufacturing cost. However, the calculation of the gear mechanisms of intermittent motion is of considerable complexity, which is due to both the presence of many geometric parameters and the variability of kinetic and dynamic characte-ristics. Consequently, modern software is needed that would simplify the calculation and modeling of the elements of the mechanisms under consideration. The article provides an overview of the designs, as well as the basis of the methodology for computer-aided design of gear mechanisms of periodic intermittent motion. The results of computer modeling and calculation of the elements of mechanisms are presented.

Index UDK: 621.0.01:621.8.02.024.5

Keywords: gear mechanisms of discontinuous kinematics, design automation, three-dimensional and two-dimensional modeling

Bibliography:
1. Sobolev A.N., Kosov M.G. Avtomatizaciya kinematicheskogo i dinamicheskogo analiza tehnologicheskih mashin. Vestnik MGTU “Stankin” [Messenger of Moscow State University of Technology “STANKIN”], 2010, no. 2, p. 32-36 (in Russian).
2. Nekrasov A.Ya., Sobolev A.N., Arbuzov M.O. Innovacionniy interaktivniy programmniy product kak sredstvo povisheniya effektivnosti proektirovaniya mehanizmov. Innovacii [Innovations], 2016, no. 8, p. 104-107 (in Russian).
3. Sobolev A.N., Nekrasov A.Ya. Sovershenstvovanie metodiki proektirovaniya cevochnogo zacepleniya na osnove novih programmnih sredstv rascheta i modelirovaniya. Vestnik MGTU “Stankin” [Messenger of Moscow State University of Technology “STANKIN”], 2015, no. 3, p. 34-38 (in Russian).
4. Yagolnitcer O.V., Sobolev A.N., Nekrasov A.Ya. Sovershenstvovanie metodiki proektirovaniya gidrociklonov na osnove avtomatizacii rasсhetov i parametricheskogo modelirovaniya. Vestnik MGTU “Stankin” [Messenger of Moscow State University of Technology “STANKIN”], 2016, no. 4, p. 98-102 (in Russian).
5. Sobolev A.N., Nekrasov A.Ya., Arbuzov M.O., Rivkin A.V. Sovershenstvovanie metodiki avtomatizirovannogo proektirovaniya gipocikloidalnih cevochnih peredach. Tehnologiya mashinostroeniya [Engineering technology], 2017, no. 10, p. 44-49 (in Russian).
6. Sobolev A.N., Nekrasov A.Ya., Rivkin A.V., Arbuzov M.O. Sovershenstvovanie metodiki interaktivnogo proektirovanya planetarno-cevochnih peredach. Tehnologiya mashinostroeniya [Engineering technology], 2017, no. 11, p. 32-36 (in Russian).
7. Spravochnik konstruktora tochnogo priborostroeniya [Reference instrument designer precision instrument]. Pod redakciey doktora tehnicheskih nauk, prof. F.L. Litvina. M.-L.: Mashinostroenie, 1964, 943 p.
8. Guschin V.G., Sobolev A.N., Kosov M.G. Avtomatizirovannoe proektirovanie maltiyskih mehanizmov. Vestnik MGTU “Stankin” [Messenger of Moscow State University of Technology “STANKIN”], 2010, no. 1, p. 40-47 (in Russian).
9. Sobolev A.N., Nekrasov A.Ya., Arbuzov M.O. Sintez i modelirovanie kulachkovih mehanizmov v CAD-sistemah. Vestnik MGTU “Stankin” [Messenger of Moscow State University of Technology “STANKIN”], 2014, no. 1, p. 81-86 (in Russian).
10. Sobolev A.N., Nekrasov A.Ya. Avtomatizirovannoe proektirovanie hrapovih mehanizmov. Vestnik MGTU “Stankin” [Messenger of Moscow State University of Technology “STANKIN”], 2016, no. 3, p. 38-41 (in Russian).
11. Sobolev A.N., Nekrasov A.Ya. Raschet i modelirovanie maltiyskih mehanizmov stankov v CAD/CAE-sistemah. STIN [STIN], 2015, no. 9, p. 2-6 (in Russian).
12. Sobolev A.N., Nekrasov A.Ya., Arbuzov M.O. Usovershenstvovannaya metodika proektirovaniya zubchatih i chervyachnih mehanizmov v CAD/CAE-sistemah. Vestnik MGTU “Stankin” [Messenger of Moscow State University of Technology “STANKIN”], 2014, no. 2, p. 102-106 (in Russian).
13. Sobolev A.N., Nekrasov A.Ya. Raschet i modelirovanie v CAD-sisteme evolventnih i cikloidalnih (chasovih) zubchatih peredach priborov. Vestnik MGTU “Stankin” [Messenger of Moscow State University of Technology “STANKIN”], 2016, no. 2, p. 13-16 (in Russian).
14. Kosov M.G., Sobolev A.N., Nekrasov A.Ya. Informacionnaya struktura sistemi netverdotelnogo modelirovaniya. Vestnik MGTU “Stankin” [Messenger of Moscow State University of Technology “STANKIN”], 2015, no. 1, p. 108-111 (in Russian).
15. Sobolev A.N., Kosov M.G., Nekrasov A.Ya. Modelirovanie konstrukciy korpusnih detaley s ispolzovaniem raschetnih makroelementov. Vestnik MGTU “Stankin” [Messenger of Moscow State University of Technology “STANKIN”], 2014, no. 3, p. 98-101 (in Russian).
16. Kosov M.G., Sobolev A.N. Avtomatizirovannoe proektirovanie na osnove metodologii netverdotelnogo modelirovaniya. Tehnologiya mashinostroeniya [Engineering technology], 2010, no. 3, p. 44-48 (in Russian).
17. Chekanin V.A., Chekanin A.V. Struktura dannih dlya zadachi trehmernoi ortogonalnoi upakovki obyektov. Vestnik MGTU “Stankin” [Messenger of Moscow State University of Technology “STANKIN”], 2015, no. 1, p. 112-116 (in Russian).
18. Kazakov A.A., Arbuzov M.O., Pirozhkov V.G., Saldadze A.D. Vliyanie pogreshnostey formi detali v raschetah tochnostey oborudovaniya. Neft, gaz i biznes [Oil, Gas and Business], 2012, no. 1-2, p. 98-101 (in Russian).
19. Pirozhkov V.G., Sobolev A.N., Nekrasov A.Ya., Arbuzov M.O. K voprosu formoobrazovaniya profilya cilindricheskih zubchatih koles pri elektroerozionnom virezanii. Trudi RGU nefti i gaza (NIU) imeni I.M. Gubkina [Proceedings of Gubkin Russian State University of Oil and Gas], 2018, no. 4, p. 118-131 (in Russian).
20. Pirozhkov V.G., Sobolev A.N., Nekrasov A.Ya., Arbuzov M.O. Avtomatizirovannoe proektirovanie i modelirovanie v mashinostroenii: ortogonalnie cilindro-konicheskie peredachi. Trudi RGU nefti i gaza (NIU) imeni I.M. Gubkina [Proceedings of Gubkin Russian State University of Oil and Gas], 2019, no. 2, p. 95-106 (in Russian).

Comprehensive evaluation of efficiency of creating infrastructure of liquefied natural gas in energy supply of regions
Technical sciences

Authors: Elena B. FEDOROVA graduated Gubkin Moscow Institute of Petrochemical and Gas Industry in 1984. She is Candidate of Technical Sciences, Associate Professor of the Department of Engineering Mechanics of Gubkin Russian State University of Oil and Gas (National Research University). She is specialist in the field of processes and apparatus of oil and gas processing, and of LNG production. She is author of more than 50 scientific publications. E-mail: fedorova.e@gubkin.ru
Vyacheslav B. MEL’NIKOV graduated Gubkin Moscow Institute of Oil-Chemical and Gas Industry in 1970. Doctor of Chemical Sciences, professor of the Engineering Mechanics Department of Gubkin Russian State University of Oil and Gas (National Research Univer-sity). Specialist in the field of field gathering and processing of gas and gas condensate, processes and apparatus of oil and gas processing. He is the author of more than 190 scientific publications. E-mail: v.mel@mail.ru

Abstract: The article provides a methodology for creating LNG infrastructure with a detailed description of each stage, including a comprehensive assessment of various options for energy supply to consumers and defines the term “LNG infrastructure”. The authors introduce the concept of the LNG efficiency coefficient for energy supply of socio-economic objects, the value of which shows which of the energy supply options will be more effective.

Index UDK: 661.91-404

Keywords: liquefied natural gas, LNG, LNG infrastructure, NGV fuel, alternative gasification, LNG efficiency

Bibliography:
1. Biscardini G., Schmill R., Adrian Del Maestro. Small going big. Why small-scale LNG may by the next big wave. Strategy&, 2017. Available at: https://www.strategyand.pwc.com/media/file/ Small-going-big.pdf (accessed 15 April 2019).
2. LNG Blue Corridors. Available at: www.lngbluecorridors.eu (accessed 12 December 2018).
3. Fedorova E.B., Mel’nikov V.B. Osnovnye problemy malotonnazhnogo proizvodstva i potreb-lenija szhizhennogo prirodnogo gaza [Basic problems of small-scale production and consumption of the liquefied natural gas]. Trudy RGU nefti i gaza imeni I.M. Gubkina [Proceedings of Gubkin University of Oil and Gas], 2014, no. 4, p. 112-123 (in Russian).
4. Fedorova E.B., Mel’nikov V.B. Perspektivy razvitija malotonnazhnogo proizvodstva szhiz-hennogo prirodnogo gaza v Rossii [Prospects for development of small scale liquefied natural gas in Russia]. NefteGazoHimija [OilGasChemistry], 2015, no. 3, p. 44-51 (in Russian).
5. Fedorova E.B., Mel’nikov V.B. Rol’ i znachenie malotonnazhnogo proizvodstva szhizhennogo prirodnogo gaza dlja Rossijskoj Federacii [Role and value of small scale LNG plants in Russia]. Gazovaja promyshlennost’ [Gas Industry], 2015, no. 8, p. 90-94 (in Russian).
6. Medvedeva O.N. Tehniko-jekonomicheskij analiz variantov gazosnabzhenija potrebitelej [Technical and economic analyze of gas supply options for consumers]. Fundamental’nye issledovanija [Fundamental Research], 2011, no. 4, p. 121-126 (in Russian).
7. Kohler T., Bruentrup M. Choose the best refrigeration technology for small-scale LNG production. Hydrocarbon Processing, 2014, no. 1, р. 45-52.
8. Frolov V.O. Razrabotka racional’nyh shem avtonomnogo gazosnabzhenija na baze szhizhennogo prirodnogo gaza [Development of rational autonomous gas supply schemes based on liquefied natural gas]. Autorized summary of Cand. Diss. Saratov, 2014, 18 p. (in Russian).
9. Osipova N.N. Razrabotka nauchnyh osnov sovershenstvovanija regional’nyh i poselkovyh sistem snabzhenija szhizhennym gazom [Development of scientific foundations for improving region- nal and village systems for LPG supply]. Autorized summary of Doct. Diss. Penza, 2016, 46 p. (in Russian).
10. Kliment’ev А.Yu., Mitrova Т., Sobko А. et al. Srednetonnazhnyj SPG v Rossii: mezhdu ne-bom i zemlej [Midscale LNG in Russia: between sky and ground]. Moscow School of Management “Skolkovo”, 2018. Available at: https://energy.skolkovo.ru/downloads/documents/SEneC/Research/ SKOLKOVO_EneC_RU_MediumDutyLNG_01122018.pdf (accessed 10 April 2019) (in Russian).

Principles of optimization of operation of gas-distributing unit taking into account non-stationary processes
Technical sciences

Authors: Alexander F. MAKSIMENKO graduated from Gubkin University majoring in Applied Mathematics in 1976. He is Doctor of Technical Sciences, Professor of the Department of Theoretical Mechanics of Gubkin Russian State University of Oil and Gas (National Research University). He is specialist in the field of research of processes in oil and gas reservoirs effected by underground explosions; industrial safety systems after use of explosive technologies in oil and gas fields. He is author of more than 75 scientific publications. E-mail: maf@gubkin.ru
Alexander S. KUZNECHIKOV graduated from Gubkin Russian State University of Oil and Gas in 2001. He is senior lecturer of Gubkin Russian State University of Oil and Gas (National Research University) and specialist in the field of shock wave processes in pipeline systems, standardization and quality management systems. He is author of more than 25 scientific publications.
E-mail: kas@gubkin.ru

Abstract: Оne of basic elements of the gas transmission system of Russia are compressor stations which allow to provide the required volumes of transportation of gas and uninterrupted supply of natural gas to consumers. At the same time every start or shutdown of gas-distributing units at compressor stations, fluctuation in gas consumption, change of temperature and hydraulic operating modes, etc. lead to changes of the operating mode of all elements of the gas pipeline. Therefore, the problem of optimization of operating modes of gas-distributing units is very relevant

Index UDK: 622.691; 533.6

Keywords: gas transmission system, gas transport, gas-distributing unit, system, natural gas

Bibliography:
1. Loitsyansky L.G. Mechanics of fluid and gas. M.: Nauka, 1991, 847 p.
2. Kuznechikov A.S., Maksimenko A.F. Use of methods of the asymptotic theory for calculation of intensity of the shock wave in pipeline systems Pipeline Transport. Theory and Practice, 2018, no. 1, p. 27-29 (in Russian).
3. Kuznechikov A.S., Maksimenko A.F. Analysis of basic options for design schemes for natural gas discharge and utilization systems (for gas-main pipelines). Oil, Gas and Business, 2008, no. 10, p. 55-60 (in Russian).
4. Kuznechikov A.S., Maksimenko A.F. Determination of the intensity of the shock wave as a function of the parameters of the initial state of the gas mixture (with forced discharge of a high-pressure fluid from the process pipeline). Oil, Gas and Business, 2009, no. 1, p. 65-67 (in Russian).
5. Kuznechikov A.S., Maksimenko A.F. Basic calculation relationships for determining the intensity of the shock wave (in pipeline branches for a one-dimensional design scheme of the shock-wave process). Oil, Gas and Business, 2009, no. 3, p. 57-58 (in Russian).
6. Kuznechikov A.S., Maksimenko A.F. Analysis of calculation formulas for the limiting stage of the forced natural gas discharge process. Gazovaya promyshlennost, august 2011, p. 48-50 (in Russian).
7. Kuznechikov A.S., Maksimenko A.F. Analysis of the influence of the degree of opening of the launching device’s channel on the intensity of the shock wave when a high-pressure gas is discharged from a high-pressure apparatus of a large volume. Oil, Gas and Business, 2012, no. 1-2, p. 106-109 (in Russian).
8. Kuznechikov A.S., Maksimenko A.F. The use of single-channel schemes for the calculation of a shock wave that has passed from a discharge pipeline to a collection manifold. Gazovaya promyshlennost, april 2013, p. 44-46 (in Russian).

Prospects for using cyclic airs cooling systems for gas turbine plants based on absorption refrigerating machines as part of compressor stations
Technical sciences

Authors: Tatyana V. POPOVA graduated from Gubkin Russian State University of Oil and Gas (National Research University) in 2015. She is postgraduate student, Assistant of the Department of Thermodynamics and Heat Engines at Gubkin Russian State University of Oil and Gas (National Research University). E-mail: popova_ttd@mail.ru
Mikhail A. VORONTSOV graduated from Bauman Moscow State Technical Universi- ty in 2007. He is Candidate of Technical Sciences, Head of the Field Compressor and Turbo Refrigeration Systems Sector at OOO “Gazprom VNIIGAZ”, Associate Professor of the Department of Thermodynamics and Heat Engines at Gubkin Russian State University of Oil and Gas (National Research University). E-mail: vorontsov.m@gubkin.ru

Abstract: The way for increasing the efficiency of exploitation of compressor stations, equipped with gas turbine gas pumping units, in the hot season using a cycle airs cooling system of gas turbine units based on absorption refrigerating machines is considered. The factors that allow to obtain a useful effect when using cyclic airs cooling systems as part of compressor shops of compressor stations are shown. The article presents applications of absorption refrigerating machines to increase the efficiency of gas turbine installations and the results of the calculations of the influence of the systems cooling cyclic airs of gas turbine installations on the main energy and operational indicators of gas pumping aggregates and compressor shops. Requirements for the characteristics of cyclic airs cooling systems are substantiated, which allows to obtain the greatest technological effect, a methodological approach to assessing the effectiveness of this energy saving event is developed. Various applications of absorption cooling machines as part of compressor shops with gas turbine gas pumping units are considered

Index UDK: 620.9

Keywords: gas pumping unit, gas turbine plant, compressor station, compressor shop, system of cooling cyclic airs gas turbine unit, absorption cooling machine, disposable power, utilization of heat of exhaust gas of gas pumping unit, energy saving event

Bibliography:
1. Gazoperekachivayushchie agregaty s gazoturbinnym privodom na magistral’nyh gazoprovodah. B.P. Porshakov, A.S. Lopatin, S.M. Kupcov, K.H. Shotidi. Uchebnoe posobie dlya vuzov. M.: OOO “Izdatelskij dom Nedra”, 2010, 245 p.
2. Ckhyaev A.D., Kuzmina T.G. Ispolzovanie ABHM v sistemah ohlazhdeniya vozduha
na vhode v compressor GTU. Turbiny I dizeli. Specializirovannyj informacionno-tekhnicheskij zhurnal, 2015, no. 5, p. 10-13.
3. Povyshenie energeticheskoj ehffektivnosti magistralnogo transporta gaza PAO “Gazprom” na osnove realizacii vysokoehffektivnyh tekhnologij utilizacii teplovoj ehnergii vyhlopnyh gazov gazo-turbinnyh ustanovok gazoperekachivayushchih agregatov. O.E. Aksyutin, A.G. Ishkov, G.A. Hvorov, M.V. Yumashev i dr. Gazovaya promyshlennost’, 2017, no. S1 (750), p. 64-69.
4. Popova T.V., Voroncov M.A. Utilizaciya teploty vyhlopnyh gazov na kompressornyh stan-ciyah. Opyt I perspektivy. Nauch.-tekh. sb. RGU nefti i gaza (NIU) imeni I.M. Gubkina. Magistralnye i promyslovye truboprovody: proektirovanie, stroitelstvo, ehkspluataciya, remont, M.: Izd. centr RGU nefti i gaza (NIU) imeni I.M. Gubkina, 2018, no. 2, p. 27-33.
5. Balzamov D.S., Timershin B.F. Perspektivnye tekhnologii dlya predpriyatij ehnergeticheskoj otrasli. Vesti v ehlektroehnergetike, 2017, no. 5 (91), p. 38-40.
6. Ohlazhdenie ciklovogo vozduha kompressora na PGU-110 (g. Astrahan’) s primeneniem absorbcionnyh bromisto-litievyh holodilnyh mashin (ABHM). D.L. Dogadin, A.B. Anohin, G.G. Latypov, I.N. Krykin. Gazoturbinnye tekhnologii, 2014, no. 7, p. 8-12.
7. Normy tekhnicheskogo proektirovaniya magistralnyh gazoprovodov. STO Gazprom-2-3-5-051-2006. M.: OAO “Gazprom”, 2006, 192 p.
8. Modelirovanie processov v ehnergotekhnologicheskom oborudovanii magistralnyh gazopro-vodov. Chast I. [Ehlektronnyj resurs]: Uchebnoe posobie. A.F. Kalinin, M.A. Voroncov. M.: RGU nefti i gaza (NIU) imeni I.M. Gubkina, 2018.
9. Energosberegayushchie tekhnologii pri magistral’nom transporte prirodnogo gaza. Uchebnoe posobie. B.P. Porshakov, A.S. Lopatin, A.F. Kalinin, S.M. Kupcov i dr. M.: Izd. centr RGU nefti i gaza imeni I.M. Gubkina, 2014, 408 p.

System for trainees’ actions automatic assessment in computer training complexes
Technical sciences

Authors: Tatiana M. PAPILINA graduated from Gubkin Russian State University of Oil and Gas in 2012. She is Candidate of Technical Sciences, assistant professor at the Department of Automated Control Systems of Gubkin Russian State University of Oil and Gas (National Research University). She is specialist in training software development and distributed and cloud systems design.
E-mail: papilina.tm@asugubkin.ru
Roman L. BARASHKIN graduated from Gubkin Russian State University of Oil and Gas in 2006. He is Candidate of Technical Sciences, assistant professor at the Department of Process Control of Gubkin Russian State University of Oil and Gas (National Research University). He is specialist in simulation modeling and process automation. He is author of more than 20 scientific publications. E-mail: barashkin.r@gubkin.ru
Nikita S. VASILYUK graduated from Gubkin Russian State University of Oil and Gas (National Research University) in 2018. He is Master’s degree student at the Department of Automated Control Systems, Gubkin University (National Research University). He is specialist in distributed data processing and analysis. E-mail: sowow359@ya.ru

Abstract: The paper summarizes the theoretical knowledge and practical experience in computer-training complexes (CTC) development and proposes a system for real time automatic student’s actions assessment. The system controls that students’ actions follow the regulated sequence taking into account achievement of target indicators and compliance with technological limitations. The system has been tested as part of gas treatment unit CPC. The results can be used in CTC for continuous technological processes control

Index UDK: 004.9:622.691+004.9:622.279

Keywords: training software, computer learning systems, automatic assessment of trainees’ actions, online learning, process control system

Bibliography:
1. Federal’nyy zakon ot 21.07.1997 No. 116-FZ (red. ot 29.07.2018) “O promyshlennoy bezopasnosti opasnykh proizvodstvennykh obektov”. [Elektronnyy resurs] Rezhim dostupa: http://www.consultant.ru/document/cons_doc_LAW_15234/ , svobodnyy.
2. Sträter O. Cognition and safety: an integrated approach to systems design and assessment. Routledge, 2005, 288 p.
3. Asiryan A.V., Grigor’ev L.I. K otsenke chelovecheskogo faktora v ergaticheskikh sistemakh. Avtomatizatsiya, telemekhanizatsiya i svyaz’ neftyanoy promyshlennosti, 2018, no. 9, p. 46-51.
4. Grigor’ev L.I., Sardanashvili S.A., Dyatlov V.A. Komp’yuterizirovannaya sistema podgotovki dispetcherskogo personala v transporte gaza. Neft’ i gaz, 1996, 195 p.
5. Grigor’ev L.I. K teorii avtomatizirovannogo dispetcherskogo upravleniya. Trudy Rossiyskogo gosudarstvennogo universiteta nefti i gaza imeni I.M. Gubkina, 2012, no. 3, p. 124-130.
6. Chistikov S.P., Lavrukhin V.K., Asanov T.A., Grigor’ev L.I., Ermolaev A.I. Tendentsii razvitiya integrirovannykh avtomatizirovannykh sistem upravleniya v gazodobyche. Gazovaya promyshlennost’, 2006, no. 5, p. 199-203.
7. Chikalo V.N., Grigor’ev L.I., Popad’ko V.E. Model’ raspredeleniya proizvoditel’nosti mezhdu UKPG v ASDU tekhnologicheskim protsessom dobychi gaza. Nauka i tekhnologiya uglevodorodov, 2003, no. 2, p. 77-80.
8. Martynov V.G., Sheynbaum V.S., Pyatibratov P.V., Sardanashvili S.A. Realizatsiya mezhdistsiplinarnogo obucheniya v virtual’noy srede proektnoy i proizvodstvennoy deyatel’nosti. Inzhenernoe obrazovanie, 2014, no. 14, p. 5-11.
9. Barashkin R.L., Kalashnikov P.K., Popad’ko V.E., Yuzhanin V.V. Opyt vnedreniya “Komp’yuternogo trenazhernogo kompleksa protsessov podgotovki nefti i gaza k transport” v obrazovatel’nyy protsess. Territoriya Neftegaz, 2017, no. 10, p. 12-19.
10. Abel J. Aging HPI workforce drives need for operator training systems. Hydrocarbon Processing, November 2011, p. 11-16.
11. Sardanashvili S.A., Mitichkin S.K., Leonov D.G., Shvechkov V.A. Innovatsii v podgotovke dispetcherskogo personala gazodobyvayushchikh i gazotransportnykh obshchestv. Gazovaya promyshlennost’, 2015, no. 3, p. 80-84.
12. Dozortsev V.M. Mirovoy rynok komp’yuternykh trenazherov dlya obucheniya operatorov: tendentsii, vyzovy, prognozy. Avtomatizatsiya v promyshlennosti, 2016, no. 2, p. 35-38.
13. SIMONE SOFTWARE Simulation. [Elektronnyy resurs] Rezhim dostupa: http://www.si-mone.eu/simone-simonesoftware-simulation.asp, svobodnyy.
14. Operator Training Simulator. [Elektronnyy resurs] Rezhim dostupa: https://www.yokoga-wa.com/solutions/services/training/operator-training-simulator/, svobodnyy.
15. Rasmussen J. Skills, rules, and knowledge; signals, signs, and symbols, and other distinctions in human performance models. IEEE transactions on systems, man, and cybernetics, 1983, no. 3, p. 257-266.
16. Kochueva O.N. Metody otsenki deystviy obuchaemogo v komp’yuternykh trenazhernykh kompleksakh dlya podgotovki dispetcherov v transporte nefti i gaza. Avtomatizatsiya, telemekhanizatsiya i svyaz’ v neftyanoy promyshlennosti, 2018, no. 6, p. 31-36.
17. Dozortsev V.M. Naskol’ko polezny komp’yuternye trenazhery dlya obucheniya operatorov? Golos pol’zovateley. Avtomatizatsiya v promyshlennosti, 2016, no. 7, p. 7-13.
18. Dedov D.L., Krasnyanskiy M.N., Rudnev A.A. Virtual’nyy trenazhernyy kompleks preduprezhdeniya i likvidatsii chrezvychaynykh situatsiy tekhnogennogo kharaktera na osnove modelirovaniya deyatel’nosti cheloveka-operatora. Vestnik TGTU, 2012, no. 4, p. 834-839.
19. Barashkin R.L., Zhedyaevskiy D.N., Kalashnikov P.K., Yuzhanin V.V. Modernizatsiya komp’yuternogo trenazhernogo kompleksa po protsessam podgotovki gaza k transportu dlya primeneniya v uchebnom protsesse vuza. Sovremennaya nauka: Aktual’nye problemy teorii i praktiki, 2019, no. 3/2, p. 5-10.

Causes for intensification of carbon dioxide corrosion of steel equipment and pipelines of oil and gas fields
Technical sciences

Authors: Ksenia V. NAKONECHNAYA graduated from Gubkin Russian State University of Oil and Gas (National Research University) in 2018. She is postgraduate student of the Department of Tribology and Technology of Repair of Oil and Gas Equipment. She is author of 9 scientific publications. E-mail: nakonechnaya.k@gubkin.ru
Oksana Y. ELAGINA graduated from Gubkin Moscow Institute of Petrochemical and Gas Industry in 1989. She is Doctor of Technical Sciences, Head of the Department of Tribology and Technology of Repair of Oil and Gas Equipment of Gubkin Russian State University of Oil and Gas (National Research University). She is Head of the Interdepartmental Center for the Study of New Materials for Fuel and Energy Complex Objects. She is author of over 100 scientific papers. E-mail: elaguina@mail.ru

Abstract: The article is devoted to the reasons causing the intensification of carbon dioxide corrosion. Methods of its identification are considered on the example of production of wells of the Karazhanbas field. The results of the studies showed the pos-sibility of using X-ray structural analysis of corrosion deposits as a method of corrosion monitoring. The necessity to isolate wells with a pH value of 6,5 and below was revealed with an increase in partial pressure up to 3 kPa and above at the temperature of the produced fluid of 50 °C to a complicated pool for selecting equipment in corrosion-resistant design.

Index UDK: 620.193/197:622.692.4

Keywords: carbon dioxide corrosion, corrosion rate, intensification of the corrosion process.

Bibliography:
1. Markin A.N., Nizamov R.E. SO2-korroziya neftepromyslovogo oborudovaniya. [CO2 corrosion of oilfield equipment]. Moscow, 2003, 188 p.
2. Erekhinsky B.A., Chernukhin V.I., Popov K.A., Shiryaev A.G., Rekin S.A., Chetverikov S.G. [Oil country tubing resistant to carbon dioxide corrosion]. Territory neftegaz [Territory neftegaz], 2016, no. 6, p. 72-76.
3. Avtorskiy nadzor za realizatsiey proektnogo dokumenta na razrabotku mestorozhdeniya Karazhanbas. [Designer supervision of the implementation of the project document for the development of the Karazhanbas field. Report of KazNIPImunaygas JSC]. Otchet AO «KazNIPImunaygaz». Almaty, 2016, 135 p.