Статьи

Oil and gas processing, chemistry of oil and gas

Activation of methane in trifluoroacetic acid
Oil and gas processing, chemistry of oil and gas

Authors: Marina V. VISHNETSKAYA graduated from M.V. Lomonosov Moscow State University University. She is Doctor of Chemistry, Professor of the Department of Industrial Ecology of Gubkin Russian State University of Oil and Gas. She is author of over 120 scientific papers in the field of homogeneous and heterogeneous catalysis, fundamental problems of chemical engineering, chemical dynamics, reactivity and chemical kinetics. E-mail: mvvishnetskaya@mail.ru
Oleg M. SVICHKAREV graduated from Gubkin Russian State University of Oil and Gas in 2013. He is Master of Engineering and Technology. E-mail: caba_iz_ct@mail.ru
Maria S. IVANOVA graduated from Gubkin Russain State University of Oil and Gas in 2010. She is Ph.D., Associate Professor of the Department of Mining and Petroleum Engineering of the Ammosov North-Eastern Federal University in Mirny. E-mail: ims.06@mail.ru
Mikhail Y. MELNIKOV graduated from M.V. Lomonosov Moscow State University in 1969. He is Doctor of Chemistry, Professor of the Department of Chemical Kinetics of M.V. Lomonosov Moscow State University University. He is author of over 220 scientific papers. E-mail: melnikov46@mail.ru

Abstract: Activation of methane for its chemical use is an urgent task. The transformation of methane occurs with the formation of a gummy product in anhydrous trifluoroacetic acid (TFA) at room temperature and atmospheric pressure. Spiking ions with masses of 684 and 700 are observed in MALDI-TOF spectra of the dry residue of the transformation products of methane

Index UDK: УДК 541.128

Keywords: molecular oxygen activation, methane, C–C bond, trifluoroacetic acid

Bibliography:
1. Nishigushi T., Nakata K., Fujiwara Y. A novel aminomethylation reaction of gaseous alkanes. Chemical Letters, 1992, p. 1141.
2. Periana R.A., Mironov O., Taube D., Bhalla G., Jones C.J. Science, 2003, no. 301, p. 814.
3. Shibamoto A., Sakaguchi S., Ishii Y. Tetrahedron Letters, 2002, no. 43, p. 8859.
4. Kitamura T., Ishida Y., Yamagi T., Fujiwara Y. Bulletin of Chemical Society, Japan, 2003, no. 76, p. 1677.
5. Asadullah M., Kitamura T., Fujiwara Y. Angewandte. Chemie International Edition, 2000, no. 39, p. 2475.
6. Asadullah M., Taniguchi Y., Kitamura T., Fujiwara Y. Applied Catalysys. A, 2000, no. 194-195, p. 443.
7. Asadullah M., Kitamura T., Fujiwara Y. Chemical Letters, 1999, p. 449.
8. Taniguchi Y., Hayashida T., Shibasaki H., Piao D., Kitamura T., Yamaji T., Fujiwara Y. Organic Letters, 1999, no. 1, p. 557.
9. Asadullah M., Kitamura T., Fujiwara Y. Applied Organometallic Chemistry, 1999, no. 13, p. 539.
10. Asadullah M., Taniguchi Y., Kitamura T., Fujiwara Y. Tetrahedron Letters, 1999, no. 40, p. 8867.
11. Nizova G.V., Su¨ss-Fink G., Stanislas S., Shul’pin G.B. Chemical Communication, 1998, p. 1885.
12. Asadullah M., Taniguchi Y., Kitamura T., Fujiwara Y. Applied Organometallic Chemistry, 1998, no. 12, p. 277.
13. Lin M., Sen A. Nature, 1994, no. 368, p. 613.
14. Nakata K., Yamaoka Y., Miyata T., Taniguchi Y., Takaki K., Fujiwara Y.J. Organometallic Chemistry, 1994, no. 473, p. 329.
15. Piao D.G., Inoue K., Shibasaki H., Taniguchi Y., Kitamura T., Fujiwara Y.J. Organometallic Chemistry, 1999, no. 574, p. 116.
16. Zerella M., Mukhopadhyay S., Bell A.T. Organic Letters, 2003, no. 5, p. 3193.
17. Zerella M., Mukhopadhyay S., Bell A.T. Chemical Communications, 2004, p. 1948.
18. Chempath S., Bell A.T. Journal of American Chemical Society, 2006, no. 128, p. 4650.
19. Reis P.M., Silva J.A.L., Palavra A.F., Frau´sto da Silva J.J.R., Kitamura T., Fujiwara Y., Pombeiro A.J.L. Angewandte Chemie International Edition, 2003, no. 42. p. 821.
20. Periana R.A., Mironov O., Taube D., Bhalla G., Jones C.J. Science, 2003, no. 301, p. 814.
21. Kirillova M.V., Kuznetsov M.L., Reis P.M., da Silva J.A.L., da Silva J.J.R.F., Pombeiro A.J.L. Jornal of American Chemical Society, 2007, vol. 129, no. 34, p. 10531.
22. Vishnetskaya M.V., Ivanova M.S., Budynina E.M., Melnikov M.Ya. Journal of physical chemistry, 2011, vol. 85, no. 12, pp. 2287–2290.

Correlation of viscosity and thermal conductivity of fluorobenzene over a temperature range from the triple point to 700 k with pressures up to 100 mpa
Oil and gas processing, chemistry of oil and gas

Authors: Boris A. GRIGORIEV was born in 1941. He graduated from the Acad. M.D. Millionshtchikov Grozny Oil Institute in 1963. He is corresponding member of the Russian Academy of Sciences, Professor, Head of the Department of Study of Petroleum Reservoir Systems at Gubkin Russian State University of Oil and Gas. He is author of over 300 scientific papers in the field of thermo-physical properties of materials, author of the textbook for high schools on Heat and Mass Transfer, and a series of monographs. E-mail: trudyrgung@gubkin.ru
Igor S. ALEXANDROV was born in 1979. He graduated from Kaliningrad State Technical University in 2004. He is Ph.D., Associate Professor of the Department of Heat and Gas Supply and Ventilation at Kaliningrad State Technical University. He is author of more than 30 scientific papers in the field of thermo-physical properties of substances. E-mail: trudyrgung@gubkin.ru
Anatoly A. GERASIMOV was born in 1950. He graduated from the Acad. M.D. Millionshtchikov Grozny Oil Institute in 1972. He is Professor, Head of the Department Heat and Gas Supply and Ventilation at Kaliningrad State Technical University. He is author of over 100 scientific papers in the field of thermo-physical properties of substances, including three monographs. E-mail: trudyrgung@gubkin.ru

Abstract: Based on the most reliable experimental data, the equations for calculation of viscosity and thermal conductivity of fluorobenzene have been developed. The proposed equations can be applied over a temperature range from the triple point to 700 k with pressures up to 100 MPa. The equations were developed in variables «temperature-density» using a nonlinear optimization procedure based on the random search method. The article presents the results of the comparison with the available experimental data. In addition, the article presents diagrams that calculated based on the new equations and showing the good extrapolation behavior of the proposed equations. The proposed equations correctly reproduce the surface of state and allow the calculation of thermophysical properties with accuracy that is close to the experimental error. The estimated uncertainties of viscosity calculated using the new equation do not exceed 2 %, and of thermal conductivity – 1 %.

Index UDK: УДК 536.22

Keywords: fluobenzene, temperature, density, thermal conductivity, viscosity

Bibliography:
1. Alexandrov I.S., Gerasimov A.A., Grigor’ev E.B. Baza eksperimental’nykh dannykh o termodinamicheskikh svoystvakh galogenozameshchennykh benzola [Experimental database of thermodynamic properties of halogenated benzenes]. Sbornik nauchnykh statey. Aktual’nye voprosy issledovaniya plastovykh sistem mestorozhdeniy uglevodorodov [Relevant issues of studies of field hydrocarbon formation: collection of scientific articles]. M.: „Gasprom VNIIGAS”, 2013, no. 1 (12). pp. 199–203.
2.
Ishhanov Yu.B. Dinamicheskaya vyazkost’ ftorbenzola, khlorbenzola, ikh rastvorov s benzolom. Cand., Diss. [Dynamic viscosity of fluorobenzene, chlorobenzene, their mixtures with benzene. Cand. Diss.]. Baku, 1984, 174 p. (in Russian).
3. Lemmon E.W., Jacobsen R.T. Viscosity and thermal conductivity equations for nitrogen, oxygen, argon, and air. Int. Jour. of Thermophysics, 2004, v. 25, no. 1, p. 21–69.
4.
Alexandrov I.S., Grigor’ev B.A., Gerasimov A.A. Sovremennyy podkhod v razrabotke fundamental’nykh uravneniy sostoyaniya tekhnicheski vazhnykh rabochikh veshchestv [A modern approach to the development of fundamental equations of state for technically important working substances]. Sbornik nauchnykh statey. Aktual’nye voprosy issledovaniya plastovykh sistem mestorozhdeniy uglevodorodov [Relevant issues of studies of field hydrocarbon formation: collection of scientific articles. Part 2.]. M.: „Gasprom VNIIGAS”, 2011, pp. 124–137.
5.
Olchowy G.A. A simplified representation for the thermal conductivity of fluids in the critical region. G.A. Olchowy, J.V. A Sengers. Int. J. Thermophys, 1989, p. 417–426.
6. Assael M.J. Reference Correlation of the Thermal Conductivity of Benzene from the Triple Point to 725 K and up to 500 MPa. M.J. Assael, E.K. Mihailidou, M.L. Huber and R.A. Perkins. Journal of Physical and Chemical Reference Data, 2012, vol. 41, no. 4, p. 043102-1-043102-9.

Pour point depressants interaction with paraffinic hydrocarbons in diezel fuel
Oil and gas processing, chemistry of oil and gas

Authors: Valentina A. LYUBIMENKO graduated from the Faculty of Chemistry of Lomonosov Moscow State University in 1974. She is Candidate of Chemical Sciences, associate professor of the Department of Physical and Colloid Chemistry at Gubkin Russian State University of Oil and Gas. She specializes in colloid, physical chemistry and quantum-chemical calculations. She is author of about 40 publications. E-mail: ljubimenko@mail.ru

Abstract: The interaction energy of the C16–C21 paraffinic hydrocarbons molecules with pour point depressants based on copolymers of alkyl acrylates and α-olefins using semi empirical quantum-chemical method PM6 are calculated. Changes of the size and shape of crystals of n-alkanes forming from the diesel fuel at low temperatures are explained. The applicability of the method of molecular modeling and quantum chemical calculations for the study of the phenomena observed in fuels in the presence of additives is concluded

Index UDK: УДК 539.196.3:544.147:544.773:665.753.5:665.7.038.64

Keywords: diesel fuel, depressant additives, C16–C21 paraffin hydrocarbons, intermolecular interaction energy, quantum-chemical calculations

Bibliography:
1. GOST 5066—91.Topliva motornye. Metody opredelenija temperatury pomutnenija, nachala kristallizacii i kristallizacii.
2. GOST 20287–91. Nefteprodukty. Metody opredelenija temperatur tekuchesti i zastyvanija.
3. GOST 22254–92. Toplivo dizel’noe. Metod opredelenija predel’noj temperatury fil’truemosti na holodnom fil’tre.
4. Mahmotov E.S. Depressornye prisadki k nefti. Vestnik KazNTU, 2010, t. 80, no. 4, p. 619— 637. http://vestnik.kazntu.kz/files/newspapers/28/619/619.pdf
5. Kondrasheva N.K., Kondrashev D.O., Valid Nasif, Hasan Al’-Rezk C.D., Popova S.V. Nizko-temperaturnye svojstva smesevyh dizel’nyh topliv s depressornymi prisadkami. Jelektronnyj zhurnal «Neftegazovoe delo», 2007, no. 1. www.ogbus.ru/authors/.pdf
6. Patent US 4240916. Pour Point Depressant Additive for Fuels and Lubricants, 1980.
7. Patent US 7354462 B2. Systems and Methods of Improving Diezel Fuel Performance in Cold Climates. 2008.
8. Terterjan R.A. Depressornye prisadki k neftjam, toplivam i maslam. M.: Himija, 1990, 238 р.
9. Patent US no. 6172015. Copolymer derived from olefinic monomer and alpha, beta-unsa-turated carbonyl compound as polar monomer, 1999.
10. Grishina I.N. Fiziko-himicheskie osnovy i zakonomernosti sinteza, proizvodstva i primene-nija prisadok, uluchshajushhih kachestvo dizel’nyh topliv. M.: Neft’ i gaz, 2007, p. 230.
11. MOPAC 2009, James J. P. Stewart, Stewart Computational Chemistry, Version 9.03CS web: http://OpenMOPAC.net
12. Stall D., Vestram Je., Zinke G. Himicheskaja termodinamika organicheskih soedinenij. M.: Mir, 1971, p. 806.
13. Hobza P., Zagradnik R. Mezhmolekuljarnye kompleksy: rol’ vandervaal’sovyh sistem v fizicheskoj himii i biodisciplinah. M.: Mir, 1989, p. 376.
14. Ljubimenko V.A. Komp’juternoe modelirovanie struktury i svojstv mezhmolekuljarnyh kom-pleksov v dizel’nyh toplivah v prisutstvii depressorno-dispergirujushhih prisadok. Trudy Rossijskogo gosudarstvennogo universiteta nefti i gaza imeni I.M. Gubkina, 2014, no. 2, p. 43–51.

Development of new power-preservative oils based on oxidized petrolatums
Oil and gas processing, chemistry of oil and gas

Authors: Igor R. TATUR graduated from Gubkin Moscow Institute of Petrochemical and Gas Industry in 1979. He is Ph.D., assistant professor of the Department of Chemistry and Technology of Lubricants and Chemmotology. He is author of more than 80 scientific papers. E-mail: igtatur@yandex.ru
Evgenia A. TISHINA graduated from Gubkin Moscow Institute of Petrochemical and Gas Industry in 1975. She is Ph.D., senior researcher at the FAA, „25 Research Institute of Chemmotology of the Russian Ministry of Defense”. She is author of 47 scientific publications. E-mail: 25gosniihim@mil.ru
Marseille A. SADYKOV graduated from the Ufa State Aviation Technical University in 1995. He is Director of „Polytech” JSC, author 2 scientific publications. E-mail: marsvlad@rambler.ru
Dmitry N. SHERONOV graduated from Gubkin Russian State University of Oil and Gas in 2008. He is graduate student of the Department of Chemistry and Technology of Lubricants and Chemmotology. He is author of 2 scientific publications. E-mail: r75opposite@mail.ru

Abstract: An analogue of the K-17 power-preservative oil with a new composition of additives on the basis of available in Russia raw materials is proposed. The composition of the power-preservative oil comprises a mixture of transformer and aviation oil, oxidized petrolatum and viscosity index improver. The proposed composition offers high protective properties in various corrosive environments, being superior to K-17 as a moisture displacer for metal surfaces

Index UDK: УДК 665.6/7

Keywords: power-preservative oil, protective properties, atmospheric corrosion, petrolatum, temporary corrosion protection

Bibliography:
1. Gureev A.A., Shehter Ju.N., Timohin I.A. Sredstva zashhity avtomobilej ot korrozii [Agents of automobiles protection against corrosion]. Moscow, 1983, 104 p.
2. State standard 9.054–1975. Preservation oils, lubricants and inhibited film-forming oil compositions. The accelerated test methods of protective ability. Moscow, Goskomitet SSSR Publ., 1975, 15 p. (in Russian).
3. State standard 9.513–1997. Military equipment. Forecasting method of protection period by lubricants. Moscow, Standartinform Publ., 2008, 15 p. (in Russian).
4. State standard 15150–1969. Machines, instruments and other technical items. Realization for different climatic regions. Category, condition of exploitation, serving, transportation according to climatic factors of environment. Moscow, Goskomitet SSSR Publ., 1969, 50 p. (in Russian).
5. State standard 9.014–1978. Temporary anticorrosion protection of items. General requirements. Moscow, Goskomitet SSSR Publ., 1985, 55 p.

Using compressed natural gas as motor fuel
Oil and gas processing, chemistry of oil and gas

Authors: Artem M. KHISAMUTDINOV is a student of Gubkin Russian State University of Oil and Gas. He is specialist of the Department of Development and Exploitation of Oilfields. E-mail: mailto:.khisam@gmail.com
Almira R. MUKHAMETIAROVA is a student of Gubkin Russian State University of Oil and Gas. He is specialist of the Department of Development and Exploitation of Oilfields. E-mail: almira1692@gmail.com

Abstract: This article analyzes the use of motor fuel worldwide with focus on the Russian Federation. Statistics on the number of CNG filling stations and natural gas vehicles in a number of countries is presented. The advantages and disadvantages of using natural gas as a motor fuel are considered. The basic problems of the transition of the Russian fleet to compressed natural gas are identified. A number of measures to address these problems, based on the experience of the leading countries in the use of motor fuel are proposed

Index UDK: УДК 656.13

Keywords: gas fuel, compressed natural gas, benefits of NGV fuel, recommendations

Bibliography:
1. Nacional’naja gazomotornaja associacija. URL: http://www.ngvrus.ru.
2. Pinson A.B. Rukovodstvo po organizacii jekspluatacii gazoballonnyh avtomobilej, rabotajushhih na komprimirovannom prirodnom gaze, 2002. URL: http://base.consultant.ru/cons/cgi/ online.cgi?req=doc;base=EXP;n=382314
3. Oficial’nyj sajt “Gazproma”. URL: http://www.gazprom.ru/
4. Mezhdunarodnyj nauchno-tehnicheskij zhurnal „Transport na al’ternativnom toplive”, 2013, № 1 (31).
5. Pronin E.N. SShA: razvitie rynka avtometana. Mezhdunarodnyj nauchno-tehnicheskij zhurnal „Transport na al’ternativnom toplive”, 2012, № 6 (30).
6. Panov Ju.V. Gazoballonnye avtomobili. Mezhdunarodnyj nauchno-tehnicheskij zhurnal „Transport na al’ternativnom toplive”, 2012, № 4 (28).
7. Upravlenie informacii OAO „Gazprom”. Razvitie gazomotornogo rynka v Rossii. Mezhdunarodnyj nauchno-tehnicheskij zhurnal „Transport na al’ternativnom toplive”, 2012, № 4 (28).
8. Perechen’ dejstvujushhih AGNKS Rossii. URL: http://agnks.ru/agnks_map. (Data obrashhenija 28.04.2014).
9. Analiz realizacii gaza po AGNKS Sterlitamakskogo LPUMG.

Study of thermo-oxidative stability of liquids for step-by-step hydroshift gear and stepless gear
Oil and gas processing, chemistry of oil and gas

Authors: Maria I. YAGODA graduated from Gubkin Russian State University of Oil and Gas in 2009 and received Master’s Degree in 2011 in Engineering and Technology in the field of Chemical Engineering of Fuel and Gas. Currently she is postgraduate student of the Department of Chemistry and Engineering of Lubricants and Chemmotology specializing in chemical technology of fuels and high-energy substances. E-mail: yagodamasha@mail.ru
Leonid N. BAGDASAROV graduated from Tashkent Motor-Road Institute, speciali- zing in „Automobiles and Automobile Industry”. He is Associate Professor, Candidate of Technical Sciences. In 1988 he complete postgraduate course of studies at Gubkin Russian State University of Oil and Gas and defended his thesis „Development of Working-Conservation Oils for Worm Gears” (1991). He is author of 104 publications and holder of 14 patents. E-mail: lebage1963@mail.ru
Boris P. TONKONOGOV was born in 1951. He graduated from Gubkin Moscow Institute of Petrochemical and Gas Industry in 1973. He is Doctor of Chemical Sciences, Professor, Head of the Department Chemistry and Engineering of Lubricants and Chemmotology at Gubkin Russian State University of Oil and Gas. His research interests include obtaining of alternative motor fuels based on natural gas, production and application of lubricants and additives, including those for alternative motor fuels. He is author of over 100 scientific works, inventions, training and teaching aids. E-mail: bpt@gubkin.ru

Abstract: The Russian fleet of vehicles with automatic transmission is growing very rapidly. In this regard, the task of developing oils for automatic transmissions based on domestic raw materials is becoming very urgent. We studied the low-viscosity base oils of API Group III to determine their applicability for automatic gear to meet present-day requirements. Comparative testing of ATF (automatic transmission fluid) samples showed that oils prepared using domestic LUKOIL VHVI 4 (isomerization product of wax concentrates) as a base oil are of high quality and can be used both in hydro-mechanical transmissions requiring oils of DEXRON®-VI level and stepless transmissions. At the same time the oils show highthermo-oxidative stability, excellent low temperature pumpability and excellent viscosity-temperature properties

Index UDK: УДК 665.6

Keywords: thermal stability, fluid for stepless gearboxes (automatic transmission), continuously variable transmission (CVT), ATF, base oil of API group III, Yubase 4, LUKOIL VHVI 4

Bibliography:
1.Sborka i lokalizatsiya inomarok v Rossii: marketingovyy otchet, sentyabr’ 2013. Analiti-cheskoe agentstvo AVTOSTAT, р. 63.
2.Topliva, smazochnye materialy, tekhnicheskie zhidkosti. Assortiment i primenenie: Spravochnik. Pod red. V.M. Shkol’nikova. M.: Izdatel’skiy tsentr „Tekhinform”, 1999, р. 596.
3.Automatic Transmission Fluid Qualification Program and Procedures. Dexron®-VI. General Motors. Pontiac, Michigan, USA, 2005, 39 p.
4.Tim Sullivan. Lube Report. Lubes’n’Greases Magazine and Lubricants Industry Sourcebook are published by LNG Publishing Co., Inc. [Elektronnyy resurs]. Rezhim dostupa: http://www.imake-news.com/lng/e_article000384801.cfm?x=b11,0,w.
5.Specification Handbook. Afton Chemical. [Elektronnyy resurs] https://www.aftonchemi-cal.com/ Lists/Brochure/Attachments/40/Specification_Handbook.pdf
6.Automatically First. Afton Chemical. Bracknell, UK, 2011, р. 81.
7.James Dickey The History of ATF, 1939-2006 [Elektronnyy resurs]. Rezhim dostupa: http://www.lifeautomotive.com/pdfs/history_of_atf.pdfprolonged.
8.Automatic Transmission Fluid Oxidation Testing. Intertek laboratory. [Elektronnyy resurs]. Rezhim dostupa: http://www.intertek.com/automotive/atf/oxidation/
9.Design practices — passenger car automatic transmissions. 4th ed. SAE International.
10.Standard Test Method for Corrosiveness and Oxidation Stability of Hydraulic Oils, Aircraft Turbine Engine Lubricants, and Other Highly Refined Oils — ASTM International, 2004.
11.Tekhnicheskoe opisanie zhidkosti TOTAL FLUIDMATIC CVT MV. [Elektronnyy resurs]. http://www.totaloil.com.au/pages/content/nt0001302a.pdf

Computer modeling of structure and properties of intermolecular complexes in diesel fuels using depressor and dispersant additives
Oil and gas processing, chemistry of oil and gas

Authors: Valentina A. LYUBIMENKO graduated from the Department of Chemistry of Lomonosov Moscow State University in 1974. She is Ph.D., Associate Professor of the Department of Physical and Colloid Chemistry Gubkin Russian State University of Oil and Gas. She is a specialist in the field of colloid chemistry, physical chemistry, quantum-chemical calculations. She is author of about 40 scientific publications. E-mail: ljubimenko@mail.ru

Abstract: Computer simulation methods were used to study the structure and properties of intermolecular complexes of paraffins using components of depressor-dispersant additive in diesel fuel. The semi-empirical quantum chemical PM6 method was applied to calculate the interaction energy of molecules in intermolecular com-plexes. Based on the calculations the mechanism of action of depressor-disper-sant additive is proposed

Index UDK: УДК 539.196.3:544.147:544.773:547.74

Keywords: diesel, depressor-dispersant additives, mechanism, intermolecular complexes, interaction energy, quantum chemical calculations

Bibliography:
1. Internet-resurs http://www.creonenergy.ru/consulting/detailConf.php?ID=109871.
2. Danilov A.M. Prisadki k toplivam. Razrabotka i primenenie v 1996-2000 gg. Himija i tehnologija topliv i masel [Chemistry and Technology of Fuels and Oils], 2001, no. 6, p. 43-50.
3. Mitusova T.N., Polina E.V., Kalinina M.V. Sovremennye dizel’nye topliva i prisadki k nim. M.: Tehnika, OOO «Tuma Grup», 2002, 64 p.
4. Danilov A.M. Primenenie prisadok v toplivah. M.: Mir, 2005, p. 288.
5. Danilov A.M. Klassifikacija prisadok i dobavok k toplivam. Neftepererabotka i neftehimija [Oil Refining and Petrochemistry], 1997, no. 6, p. 11-14.
6. Bashkatova S.T. Prisadki k dizel’nym toplivam. M.: Himija, 1994, p. 256.
7. Danilov A.M. Razrabotka i primenenie prisadok k toplivam v 2006–2010 gg. Himija i tehnologija topliv i masel [Chemistry and Technology of Fuels and Oils], 2011, no. 6, p. 41-51.
8. Danilov A.M. Sovremennoe sostojanie proizvodstva i primenenija prisadok pri vyrabotke dizel’nyh topliv EVRO-3, 4, 5. Doklad na sovmestnom zasedanii uchenogo soveta VNII NP i Komiteta po toplivam i maslam ANN RF. M.: Izdatel’stvo «Sputnik+», 2009, p. 27.
9. Danilov A.M. O sovmestimosti prisadok k toplivam. Himija i tehnologija topliv i masel [Chemistry and Technology of Fuels and Oils], 1998, no. 5, p. 14-15.
10. Grishina I.N. Fiziko-himicheskie osnovy i zakonomernosti sinteza, proizvodstva i primenenija prisadok, uluchshajushhih kachestvo dizel’nyh topliv. M.: Neft’ i gaz, 2007, p. 230.
11. Grishina I.N., Ljubimenko V.A., Kolesnikov I.M., Vinokurov V.A. Mehanizm dejstvija depressorno-dispergirujushhih prisadok k dizel’nym toplivam. Materialy VI mezhdunarodnoj nauch- notehnicheskoj konferencii «Glubokaja pererabotka neftjanyh dispersnyh sistem». M., 2011, p. 118-120.
12. Grishina I.N., Ljubimenko V.A., Kolesnikov I.M., Vinokurov V.A. Vyjavlenie mehanizma dejstvija depressorno-dispergirujushhih prisadok k dizel’nym toplivam. Tez. dokl. IX Vserossijskoj na-uchno-tehnich. konf. «Aktual’nye problemy razvitija neftegazovogo kompleksa Rossii». 30 janvarja — 1 fevralja 2012 g. Ch. 1. Sekcii 1-4. M., 2012, p. 241.
13.

Danilov A.M. Primenenie prisadok v toplivah dlja avtomobilej: Sprav. M.: Himija, 2000, p. 232.
14. Borshh V.N., Kolesnikov I.M., Grishina I.N., Ljubimenko V.A. Kvantovohimicheskoe issledovanie kompleksoobrazovanija sukcinimida s uglevodorodami. Trudy RGU nefti i gaza im. I.M. Gubkina, 2009, no. 2, p. 112-119.
15. Borshh V.N., Ljubimenko V.A., Kil’janov M.Ju., Kolesnikov I.M., Vinokurov V.A. Kvantovohimicheskoe issledovanie kompleksoobrazovanija maleinimida s molekulami benzola i vody. Hi-micheskaja fizika [Chemical Physics], 2011, t. 30, no. 8, p. 11-21.

Study of oxidizability of cellulosic raw material with hydrogen peroxide over colloidal cata-lyst based on iron oxide (iii)
Oil and gas processing, chemistry of oil and gas

Authors: Yakov A. MASYUTIN completed Master’s degree Gubkin Russian State University of Oil and Gas in 2012, specializing in „Chemical Technology and Biotechnology”. He is currently doing a postgraduate course of studies at Gubkin Russian State University of Oil and Gas and occupies the position of engineer of the Department of Physical and Colloid Chemistry of the named university. He is a specialist in the sector of biofuels synthesis of ionic liquids, application of spectroscopic methods for the analysis of petroleum and petroleum products. He is author of 20 scientific publications.E-mail: YMA1989@mail.ru
Roman I. KLYUKIN completed Bachelor’s degree in Kazakhstan branch of the Lomonosov Moscow State University University (Astana) in 2012, majoring in „Ecology and NatureManagement”. He is currently doing a graduate course at Gubkin Russian State University of Oil and Gas and occupies the position of engineer of the Department of Physical and Colloid Chemistry of the named university. The area of his research includes environmental impact assessment of oil and gas industry, including pipeline transportation, as well as methods of producing alternative energy sources.E-mail: klyukin_roman@bk.ru
Andreу A. NOVIKOV completed Master’s degree of the Perm State University majoring in „Chemistrу” in 2007. In 2010, he graduated from the graduate school at Gubkin Russian State University of Oil and Gas. He is Candidate of Chemical Sciences, Head of the Laboratory „Center for Nanodiagnostics” Gubkin Russian State University of Oil and Gas. He is a specialist in the field of organic chemistry, microbiology and nanodiagnostics, author of more than 30 scientific publications. E-mail: gubkin.biotech@gmail.com
Vladimir A. VINOKUROV graduated from Gubkin Moscow Institute of Petrochemical and Gas Industry in 1972 as „Manufacturing Engineer”. He is Doctor of Chemical Sciences, Head of the Department of Physical and Colloid Chemistry at Gubkin Russian State University of Oil and Gas. He is well-known a specialist in the field of surface chemistry and disperse systems, synthesis and stabilization of nanoparticles, and biotechnology. He is author of over 200 scientific publications.:E-mail: vinok_ac@mail.ru

Abstract: We have studied the oxidation of pre-radiated and original cellulosic feedstock (pine sawdust, bamboo chips) with dilute solutions of hydrogen peroxide over a catalyst based on colloidal iron oxide (III). As a result, it was found that the combined pretreatment by radiation and catalytic oxidation with hydrogen peroxide is an effective method of preparation of lignocellulosic feedstock for hydrolysis. This is due to the reduced content of lignin, the degree of polymerization and the crystallinity of cellulose. The byproducts (water solutions of oxidative degradation products of lignin) obtained during pretreatment can be used as plant growth stimulants or additives for animal feed. Analysis of the by-products by the me- thod of capillary electrophoresis revealed single, two-and tribasic carboxylic acids, while the gas chromatography-mass spectrometry analysis confirmed the presence of aldehydes, alcohols, esters, and nitrogen-containing heteroatomic compounds besides carboxylic acids

Index UDK: УДК 663.031.7 + 544.478.42 + 66.094.3.097 + 66.097.3-039.672

Keywords: lignocellulose, irradiation pretreatment, hydrogen peroxide, colloid particles of iron (III) oxide, carboxylic acids

Bibliography:
1. Sun R.C. Cereal Straw as a Resource for Sustainable Biomaterials and Biofuels. Chemistry, Extractives, Lignins, Hemicelluloses and Cellulose. Publ.: Elsevier, 2010, 300 р.
2. Tretyakov V.F., Makarfi Yu.I., Tretyakov K.V. Catalytic conversion of bioethanol into hydrocarbon fuels. Kataliz v promyshlennosti [Catalysis in industry], 2010, no. 5, pp. 11–32. (in Russian).
3. Varfolomeev S.D., Moiseev I.I., Myasoedov B.F. Energy carriers obtained from renewable raw materials. Vestnik Rossiyskoy akademii nauk [Bulletin of Russian Academy of Sciences], 2009, vol. 79, no. 7, pp. 595–607. (in Russian).
4. Makarfi Yu.I., Trushin A.A., Tretyakov V.F. Resource-saving and energy-saving technologies in chemical and petrochemical industry: Tezisy dokladov pervoy mezhdunarodnoy konerencii RKhO imeni D.I. Mendeleeva. [Abstracts of the 1st international conference of Russian Chemical Society named after Dmitriy Mendeleev, Moscow], 2009, p. 48. (in Russian).
5. Berberov A.B., Masyutin Ya.A., Afonin D.S., Borzaev H.H. Application of the colloid catalyst based on iron (III) oxide and polymetallic nanocatalyst (Fe-Co-Ni) for modification of lignocellulose structure. Izvestiya Kabardino-Balkarskogo nauchnogo centra RAN [Proceedings of Kabardino-Balkar Scientific Center of RAS], 2013, vol. 1, no. 6 (56), pp. 72-78. (in Russian).
6. Lesin V.I., Pisarenko L.M., Kasaikina O.T. Colloid catalysts based on iron (III) oxide. 1. Hydrogen peroxide decomposition. Kolloidnyy zhurnal [Colloid journal], 2012, vol. 74, no. 1, pp. 90-95. (in Russian).
7. Kasatkina O.T., Pisarenko L.M., Lesin V.I. Colloid catalysts based on iron (III) oxide. 2. Features of catalytic oxidation of palm oil. Kolloidnyy zhurnal [Colloid journal], 2012, vol. 74, no. 4, pp. 503-508. (in Russian).
8. Kropotkina V.V., Khmelyova A.N., Vereshchagin A.L. Pod red. Leonov G.V. The mechanism of growth-promoting action of ultra-low doses of natural organic acids. Innovatsionnye tekhnologii: proizvodstvo, economika, obrazovanie: materialy Vserossiyskoy nauchno-prakticheskoy konferencii 24 Sentyabrya 2009 goda [Innovative Technologies: production, economics, education: materials of All-Rusaian scientific and practical conference. September, 24, 2009]. Altai State Technical University, BTI. — Biysk: Publishing house of Altai State Technical University, 2009, pp. 372–375. (in Russian).
9. New corrective feed additive „Ekolin-4” for high-producing cows. G.V. Naumova, A.I. Ko-zinets, N.L. Makarova, T.F. Ovchinnikova, N.A. Zhmakova, O.G. Golushko. Prirodopolzovanie [Natural management], 2011, Issue 20, pp. 117-122. (in Russian).

Applying conservation compositionsfor corrosion protection of heat exchange and storage equipment
Oil and gas processing, chemistry of oil and gas

Authors: Igor R. TATUR graduated from Gubkin Moscow Institute of Petrochemical and Gas Industry in 1979. He is Candidate of Chemical Sciences, Associate Professor of the Department of Chemistry and Technology of Lubricants and Chemmotology. He is author of more than 80 scientific publications. E-mail: igtatur@yandex.ru.
Dina V. SHARAFUTDINOVA graduated from Gubkin Russian State University of Oil and Gas in 2009. She is Candidate of Technical Sciences. She is technical a specialist at LLC „STANDARD”. She is author of 15 scientific publications. E-mail: shara-dina@yandex.ru.
Vladimir A. LAZAREV graduated from Gubkin Moscow Institute of Petrochemical and Gas Industry in 1971. He is Candidate of Chemical Sciences, Deputy Director for R&D at LLC „Palette”. He is author of 95 scientific publications.E-mail: vlanlaz@mail.ru.
Dmitry N. SHERONOV graduated from Gubkin Russian State University of Oil and Gas in 2008. He is postgraduate student of the Department of Chemistry and Technology of Lubricants and Chemmotology. He is author of 2 scientific publications. E-mail: r75opposite@mail.ru.

Abstract: A conservation composition comprising a waste protective liquid, amine-type corrosion inhibitor, demulsifier, surpassing the performance characteristics of that currently used in the VNIINM-33/80 composition. It is used to conserve heat exchangers and storage equipment at machine-building enterprises. Its high demulsibility permits to combine the process of applying this composition on the inner surface with the process of hydraulic testing of equipment.

Index UDK: УДК 665.6/7

Keywords: conservation composition, waste protection fluid, corrosion inhibitor, demulsifier, corrosion rate hydro testing of equipment

Bibliography:
1. Tatur I.R., Jakovlev D.A., Lazarev V.A. VNIINM-PAV-31/87-sostav dlja konservacii sovmestno s gidroispytanijami teploobmennogo i emkostnogo oborudovanija [VNIINM-PAV-31/87 as a reagent for simultaneous conservation and hydrotesting of heat exchanging and storage equipment]. Himicheskoe i neftjanoe mashinostroenie [Chemical and petroleum refining machinery], 1989, no. 9, p. 38–39 (in Russian).
2. Tatur I.R., Timohin I.A., Prigul’skij G.B. Prognozirovanie sroka zashhity teploobmennogo i emkostnogo oborudovanija konservacionnym maslom VNIINM-31/80 [Forecasting the protection time of heat exchanging and storage equipment by conservative oil type VNIINM-31/80]. Himicheskoe i neftjanoe mashinostroenie [Chemical and petroleum refining machinery], 1991, no. 9, p. 7–8 (in Russian).
3. Shehter Ju.N., Shkol’nikov V.M., Krjejn S.Je., Teterina L.N. Maslorastvorimye poverhnostno-aktivnye veshhestva [Oil-soluble surface-active substances]. Moscow, 1978, 304 p.
4. Frolov Ju.G. Kurs kolloidnoj himii. Poverhnostnye javlenija i dispersnye sistemy [Course of colloid chemistry. Surface properties and dispersed systems]. Moscow, 1988, 464 p.
5. Fuks I.G., Tumanjan B.P. Kolloidnaja himija nefti i nefteproduktov [Colloid chemistry of oil and oil products]. Moscow, 2001, 96 p.
6. K. Mittel. Micellobrazovanie, soljubilizacija i mikrojemul’sii [Micelles formation, solubilization and microemulsion]. Moscow, 1980, 600 p.

Near-infrared spectroscopy for monitoring quality of commodity and raw material flows of gasoline blending station
Oil and gas processing, chemistry of oil and gas

Authors: Ravilya Z. SAFIEVA graduated from Lomonosov Moscow State University in 1978. She is Doctor of Technical Sciences, Full Professor of the Department of Organic Chemistry and Petroleum Chemistry of Gubkin Russian State University of Oil and Gas. She is a specialist in the field of physical chemistry of oil disperse systems and methods of research. She is author of over 100 scientific publications. E-mail: safieva@gubkin.ru
Irina V. IVANOVA graduated from Kazan State University named after VI Ulyanov-Lenin in 2006. She is postgraduate student of the Department of Organic Chemistry and Petroleum Chemistry at Gubkin Russian State University of Oil and Gas. She is a specialist in the field of molecular spectroscopy. E-mail: irina20051984@rambler.ru

Abstract: Near-infrared spectroscopy (NIR) is becoming an effective and popular analytical technique in the petrochemical and refining industries, mainly because of the reliability and convenience for routine use. In this paper we have accumulated and systematized a large amount of spectral data obtained for the raw materials and commodity flows of gasoline blending station using near-infrared spectrometer with Fourier transform (FT-NIR) in ON-LINE mode. A correlation between the spectral data and the quality parameters, namely, octane numbers using research and motor methods, density, content: aromatic hydrocarbons, benzol and olefinic hydrocarbons; fractional composition, saturated vapors pressure. We have constructed and validated calibration models for these parameters and proposed these for use in real-time. The prediction error of the obtained gauge model lies within the reproducibility of the standard methods for each parameter

Index UDK: УДК 665.773.3

Keywords: infrared spectrometer with Fourier transform, spectroscopy of near-in-frared (NIR) range, commodity flows, commercial gasoline, gauge model, independent verification of models

Bibliography:
1. Barsamian A. Get the Most Out of Your NIR Analyzers. Hydrocarbon Processing, January, 2001, p. 69-72.
2. Espinosa M.S. et al. On-line NIR Analysis and Advanced Control Improve Gasoline Blending. Oil and Gas Journal, Oct. 17, 1994.
3. Reboucas M.V., Dos Santos J.B., Domingos D. and Massa A.R. Near-infrared spectroscopic prediction of chemical composition of a series of petrochemical process streams for aromatics production. Vibr. Spectrosc. 52, 97 (2010). oi: 10.1016/j.vibspec.2009.09.006.
4. Watari M., Ozaki Y. Du and Y. Variations in predicted values from near-infrared spectra of samples in vials by using a calibration model developed from spectra of samples in vials: causes of the variations and compensation methods, Appl. Spectrosc. 61(4), 397 (2007). doi: 10.1366/ 000370207780466244.
5. Chung H. Applications of near infrared spectroscopy in refineries and important issues to address. Appl. Spectrosc. Rev. 42(3), 251 (2007). doi: 10.1080/05704920701293778.
6. Hoeil Chung, Hyuk-Jin Choi, and Min-Sik Ku. Rapid Identification of Petroleum Products by Near-Infrared spectroscopy. Bull. Korean Chem. Soc. 1999, vol. 20, no. 9.
7. Tonkov M.V. Fourier spectroscopy —maximum information for minimum time. Sorosovskiy education journal, t. 7, no. 1, 2001. (in Russian).
8. Carlos-A. Baldrich Ferrer, Luz-Angela Novoa Mantilla. Infrared spectrophotometry, a rapid and effective tool for characterization of direct distillation naphthas. CT&F, Colombia, 2005, no. 3.
9. Chung H., Ku M.S., Lee J.S. Comparison of near-infrared and mid-infrared spectroscopy for the determination of distillation property of kerosene. Vib. Spectrosc. 1999, no. 20, p. 155–163.
10. Ingrid Komorizono de Oliveira, Werickson F. de Carvalho Rocha, Ronei J. Poppi Application of near infrared spectroscopy and multivariate control charts for monitoring biodiesel blends. Analytica Chimica Acta, 2009, 642, p. 217–221.
11. Monteiro M.R., Ferreira A.G. Determination of biodiesel blend levels in different diesel samples by 1H NMR. Fuel, 2009, no. 88, p. 691–696.
12. Peinder P., Visser T. Partial least squares modeling of combined infrared, 1H NMR and 13C NMR spectra to predict long residue properties of crude oils. Vibrational spectroscopy, 2009, p. 8.
13. Narve Aske, Harald Kallevik, and Johan Sjoblom Determination of saturate, aromatic, resin, and asphaltenic (SARA) components in crude oils by means of infrared and near-infrared spectroscopy. Energy & Fuels, 2001, no. 15, p. 1304–1312.
14.< Safieva R.Z. Physics chemistry of crude oil. М.: Chemistry, 1998, 448 с. (in Russian).
15. http://www.fda.gov/cder/OPS/PAT.htm.
16. Krichenko V.P. Near Infrared spectroscopy, M., 1997. (in Russian)
17. Burns D.A., Ciurczak E.W. Handbook of Near-Infrared Analysis; Marcel Dekker: New York, USA, 1992.
18. Belova O.A. Operativno and Dostoverno. Article in Lukoil Sintez, 2012, no. 49, 1 p. (in Russian).
19. Filatov V.M., Safieva R.Z. Chemometrics for analysis refinery and petro chemistry products; Neftepererabotka and Neftechimistry, 2009, no. 9, p. 33–38. (in Russian).
20. Purevseren Sarangerel. Express method for analysis of crude oils and crude oil fractions properties during crude oil refining. Dokt, Diss., Moscow, Gubkin Russian State University of Oil and Gas, 2003, 177 p. (in Russian).
21. Filatov V.M. Razrabotka xemometricheskix metodik express-analisa pokazateley kachestva I sostava neftyanix system s primeneniem metoda blizhney infrakarasnoy spectroscopii, Dokt, Diss., Moscow, Gubkin Russian State University of Oil and Gas, 2010, 117 p. (in Russian).
22. Balabin P.M. Sozdanie express metodov analisa pokazateley kachestva distillyatnix fracsii na osnove kolebatelnoy spectroskopii. Dokt, Diss., Moscow, Gubkin Russian State University of Oil and Gas, 2013, 110 p. (in Russian).
23. Balabin R.M., Lomakina E.I. Support vector machine regression (SVR/LS-SVM) — an alternative to neural networks (ANN) for analytical chemistry. Comparison of nonlinear methods on near infrared (NIR) spectroscopy data. Analyst 136, 1703, 2011.
24. Balabin R.M., Safieva R.Z. Near-infrared (NIR) spectroscopy for biodiesel analysis: Fractional composition, iodine value, and cold filter plugging point from one vibrational spectrum. Energy & Fuels 25, 2373, 2011.
25. Balabin R.M., Safieva R.Z., Lomakina E.I. Gasoline classification using near infrared (NIR) spectroscopy data: Comparison of multivariate techniques. Anal. Chim. Acta 671, 27, 2010.
26. Balabin R.M., Safieva R.Z. Gasoline classification by source and type based on near infrared (NIR) spectroscopy data. Fuel 87, 1096, 2008.
27. Balabin R.M., Smirnov S.V. Variable selection in near-infrared (NIR) spectroscopy: Benchmarking of feature selection methods on biodiesel data. Anal. Chem. Acta 692, 63, 2011.
28. ASTM 1655-04 Standard Practices for Infrared Multivariate Quantitative Analysis.
29. ASTM 6122 Standard Practice for Validation of Multivariate Process Infrared Spectrophotometers.
30. www.brukeroptics.com/www.bruker.ru.
31. Martens, H.; Naes, T. M. Multivariate Calibration; John Wiley and Sons: New York, USA, 1989, p. 116.
32. Massart D.L.: Chemometrics: a textbook, Elsevier, NY, 1988.