Articles Archive

№ 2/295, 2019

Title
Authors
Category
Geochemical parameters interpretation of organic matter of Paleozoic deposits of Pre-Ural foredeep
Geosciences

Authors: Alexander V. OSIPOV graduated from Gubkin Russian State University of Oil and Gas in 2010. He is Candidate of Geological and Mineralogical Sciences, Assistant Professor of the Department Theoretical Fundamentals of Prospecting and Exploration of Oil and Gas of Gubkin Russian State University of Oil and Gas (National Research University). He is author of more than 50 scientific publications. E-mail: alexander.v.osipov@gmail.com
Islam I. RASULOV graduated from Gubkin Russian State University of Oil and Gas (National Research University) in 2017. He is specialist in pneumatic testing oil and gas pipelines at Halliburton International GmbH. He is author of 3 scientific publications.
E-mail: rasulovislamm@gmail.com
Kanshaubiy Kh. MALKAROV graduated from Gubkin Russian State University of Oil and Gas (National Research University) in 2017. He is specialist in pneumatic testing oil and gas pipelines at Halliburton International GmbH. He is author of 3 scientific publications.
E-mail: kanshaubi.m@gmail.com

Abstract: This article is devoted to the study of petroleum properties of Paleozoic deposits of the southern part of the Pre-Urals foredeep on the basis of which the probable oil-material strata of the section were substantiated. The reason for this research was the low efficiency of geological exploration in the region of the study due to underestimated geochemical criteria. According to the results of the research it was found that within the southern part of the Pre-Ural foredeep, deposits of Middle-Upper Carboniferous and Lower Permian systems are characterized by oil and gas deposits, which are characterized by good generation potential

Index UDK: 550.8.055

Keywords: kerogen, organic matter, source rocks, bitumen, Rock-Eval, vitrinite, Pre-Ural foredeep, source rocks.

Bibliography:
1. Ermolkin V.I., Kerimov V.Y., Filippov V.P., Filin A.S. Oil and gas prospects of the Orenburg part of the Pre-Ural regional trough. Neftegazovaya Geologicheskaya nauka — XXI century: XVII Gubkin Readings (December 9-10, 2004, Moscow). — Tez. report. Sec 1: Geology M.: RGU nefti i gaza imeni I.M. Gubkina, 2004, p. 44-51.
2. Peters K.E., Cassa M.R. Applied source rock geochemistry. The petroleum system — from source to trap, AAPG Memoir 60, 1994, p. 93-120.
3. Osipov A.V., Voctrukhov M.E., Osipova E.V., Monakova A.S. Geochemical characteristics of organic matter of paleozoic deep horizons of the southern part of the Orenburg Pre-Urals (Pre-Urals Foredeep). Oil, gas and business, 2014, no. 9, p. 35-43.
4. Osipov A.V., Mustaev R.N., Osipova E.V., Monakova A.S. Geochemical characteristics of organic matter of paleozoic deep horizons of the southern part of the Orenburg Pre-Urals (Sol-Iletsky Arc). Oil, gas and business, 2014, no. 10, p. 30-38.

Diagenesis processes and their effect on reservoir properties of the Lower Miocene reservoirs in the Garmian block, Kurdistan, Iraq
Geosciences

Authors: Kardo Sardar MOHAMMED graduated from the University of Sulaimani in 2002 (B.Sc.), in 2010 (M.Sc.) in the same university, and graduated from the Gubkin State University of Oil and Gas in 2016 (M.Sc.). He is post-graduate student at the Department of Geology of Hydrocarbon Systems of Gubkin University. His scientific interests are related to petrophy-sical analysis and reservoir modeling. He is author of 2 scientific publications. E-mail: kardo80@yahoo.com
Marina I. TRUNOVA graduated from Gubkin Russian State University of Oil and Gas in 1982. She is Candidate of Geological and Mineralogical Sciences, associate Professor, senior lecturer of the Department of Geology of Petroleum Systems of Gubkin University. She is specialist in the field of oil and gas fields exploration. She is author of more than 20 scientific publications.
E-mail: mtrunova@gmail.com

Abstract: In the Iraqi Kurdistan, the most significant oil deposits are concentrated in the Cretaceous and lower Miocene sediments. In this paper we used data on the recently discovered Sarqala and Shakal oilfields. The Lower Miocene formations of Euphrates and Jeribe are the main target objects of the tertiary oil and gas system in the Iraqi Kurdistan. The formations are composed of carbonates with a few interbeds of evaporites of the Dhiban formation. The rocks of the studied formations are affected by a number of diagenetic processes, including dolomitization, micritization, cementation, neomorphism, leaching, compaction, styllolitization, pyritization and anhydration. The most significant of these are the processes of dolomitization, dissolution, neomorphism, cementation and compaction. The processes of dolomitization and dissolution improve the quality of reservoirs, while neomorphism, carburization and compaction have a negative effect. Fracturing plays a significant role in the increased porosity and permeability of the rocks studied, mainly in calcareous mudstone and wackestone.

Index UDK: 552.5 (419)

Keywords: diagenesis processes, reservoir properties, lower miocene forma-tions, Jerib, Dhiban, Euphrates, Kurdistan, Iraq

Bibliography:
1. Jassim S.Z., Goff J.C. Geology of Iraq. Dolin, Prague, and Moravian Museum Brno, Czech Republic, 2006, 341 p.
2. Aqrawi A.A.M., Goff J.C., Horbury A.D., Sadooni F.N. Petroleum Geology of Iraq. Scientific press Lt Po box 21, Beaconsfield, Bucks HP9 1NS, UK, 2010, 424 p.
3. Buday T., Jassim S.Z. The Regional Geology of Iraq, Tectonism, Magmatism, and Meta- morphism. State Establishment of Geological Survey and Mineral Investigation, Baghdad, Iraq, 1987, 352 p.
4. Al-Juburi A.I., McCann T., Ghazal M.M. Rekonstraktsiia istochnikov snosа dlja peschanikov miotsena Severnogo Iraka (na osnovanii petrograficheskogo analiza, analiz veshchestvennogo sostava i himii mineralov oblomochnoij sostavliajiyshchej). Geologja i geofisika, 2009, t. 50, no. 6, p. 670-690 (in Russian).
5. Al-Juboury A.L., Al-Tarif A.M., Al-Eisa M. Basin analysis of the Burdigalian and Early Langhian successions, Kirkuk Basin, Iraq. 7-In: B.C. Schreiber, S. Lugli, & M. Babel. (eds). Evaporites Through Space and Time. Geological Society, London, Special Publications, 2007, no. 285, p. 53-68. https://doi.org/10.1144/SP285.4
6. Bellen R.C., Dunnington H.V., Wetzel R., Morton D. Lexique Stratigraphique International Asie, Iraq, 1959, vol. 3C, no. 10a, 333 p.
7. Al-Ameri T.K., Zumberg J., Markarian Z.M. Hydrocarbons in the Middle Miocene Jeribe Formation Dyala Region, NE Iraq. Journal of Petroleum Geology, 2011, vol. 34, no. 2, p. 199-216.
8. Evamy B.D., Shearman D.J. The development of overgrowth from echinoderm fragments in limestones. Sedimentology, 1965, vol. 5, p. 211-233.
9. Sibley D.F. The origin of common dolomite fabrics: clues from the Pliocene//Journal of Sedi- ment Research. — 1982. — Vol .52. — P. 1087-1100.
10. Longman M.W. Carbonate diagenetic textures from near surface diagenetic environments. AAPG Bulletin, 1980, vol. 64, no. 4, p. 461-487.
11. Tucker M.E., Wright V.P. Carbonate Sedimentology. Blackwell Science Ltd., Oxford, 1990, 496 p.
12. Flugel E. Microfacies analysis of limestones. Translated by K. Christenson. Berlin: Springer, 1982, 633 p.
13. Searl A. Diagenesis of the Gully Oolite (Lower Carboniferous), South Wales. Geological Journal, 1989, vol. 24, p. 275-293.
14. Flugel E. Microfacies of carbonate rocks: analysis, interpretation and application. Springer Verlag, Berlin, 2004, 976 p.
15. Choquette P.W., Pray L.C. Geologic nomenclature and classification of porosity in sedimentary carbonates. American Association of Petroleum Geologists Bulletin, 1970, vol. 54, p. 207-250.
16. Scoffin T.P. Introduction to carbonate sediments and rocks. Glasgow: Blackie, 1987, 274 p.

Lithological and facial characteristics of formation of reservoir rocks of middle permian sedimentations in Western Sulige gas field (China)
Geosciences

Authors: Mingyu HE is postgraduate student of thе Department of General and Oil and Gas Production Geology of Gubkin Russian State University of Oil and Gas (National Research University). E-mail: hemingyu567890@gmail.com

Abstract: Based on the analysis of core and thin sections of the middle Permian sedimentations in the western Sulige gas field, three main types of sedimentary facies have been identified i.e. meander, anastomosis and braided river. This paper analyzed sedimentary facies in a single well, and determined the lithology and sedimentary facies of each layer. The construction of paleogeological profiles in the profile and paleogeographic maps on the plane is based on the results of well logging data and comprehensive analysis of each well. It was revea- led that in this region the paleochannel sandstones in the lower part of forma- tion He8 (h8x) are characterized by braided river. In the upper part of forma- tion He8 (h8s) braided river changed into meander and anastomosis. In the formation of Shanxi1 (s1), two or three anastomoses developed in the direction from north to south

Index UDK: 550.8

Keywords: Ordos Basin, Western Sulige Gas Field, sedimentary facies, analysis of cores and thin sections, paleogeological profile

Bibliography:
1. Lobusev A.V., Zezhang Song. Ocenka gazosoderzhaniya slancevogo kollektora na primere S-regiona v bassejne Ordos. Tezisy dokladov odinnadcatoj Vserossijskoj konferencii molodyh uche- nyh, specialistov i studentov «Novye tekhnologii v gazovoj promyshlennosti (gaz, neft’, energetika)». Moskva, 2015.
2. Lobusev M.A., Dzhedzhang Song, Dzhensyue Dzyang. Prognozirovanie plastovogo davleniya v glinisto-slancevyh kollektorah na primere S-regiona v bassejne Ordos. Territoriya «NEFTE-GAZ», 2015, no. 8, p. 20-28.
3. Lobusev M.A., Zezhang S., Guangdi L., Zhenxue J. Tekhnologiya del’ta LogR dlya ocenki Corg nizkozrelogo slancevogo kollektora na primere C-regiona bassejna Ordos. Delovoj zhurnal Neftegaz.RU, 2016, no. 10, p. 86-92.
4. Lobusev M.A., Zechzhan Son, Dzhensyuz Dzyang. Povyshenie effektivnosti prognozirovaniya soderzhaniya prirodnogo gaza v kontinental’nyh slancevyh porodah na primere bassejna Ordos. Gazovaya promyshlennost’, 2017, no. 6 (753), p. 14-20.

Construction and practical application of four component diagram for bazhen suite sedimentary rocks
Geosciences

Authors: Milena R. GANAEVA graduated from Gubkin Russian State University of Oil and Gas (National Research University) in 2016. She has been post-graduate student of the Department of Lithology since 2016. She works as the main specialist in lithology, geomechanics and geological modeling at OOO RN-SakhalinNIPImorneft. She is author of more than 10 scientific publications including three scientific papers. E-mail: milenagana@gmail.com

Abstract: A new approach to Bazhen suite rocks typing is proposed. This is based on the mathematical framework and conforms to the conventional sedimentary rocks classification. This approach takes into account the quantity of four basic Bazhen rocks components. They are kerogen, carbonate, clay and silica. Using these data a four component tetrahedron diagram was created. This diagram helps to observe the mutual relations of the complicated Bazhen rocks, to find some genesis correlations, define the unit boundaries and the most perspective reservoirs in the normal frameworks of the Bazhen formation

Index UDK: 552.24

Keywords: Bazhen suite, unconvential reservoirs, sedimentary rocks classification, oil-source rocks, Western Siberia

Bibliography:
1. Dorofeeva T.V., Krasnov S.G., Lebedev B.A., Petrova G.V., Pozinenko B.V. Kollektory nefti bazhenovskoj svity Zapadnoj Sibiri [Oil reservoirs of Bazenov suite of Western Siberia]. Leningrad: Nedra, 1983, 131 p.
2. Shvanov V.N., Frolov V.T., Sergeeva E.I. Sistematika I klassifikatsii osadochnykh porod i ikh analogov [Systematics and Classification of sedimentary rocks and its analogues]. St. Petersburg: Nedra, 1998, 352 p.
3. Braduchan J.V., Gurari F.G., Zakharov V.A. Bazhenovskij gorizont Zapadnoy Sibiri [Bazhenov horizon of Western Siberia]. Novosibirsk: Nauka, 1986, 217 p.
4. Kulyapin P.S., Sokolova T.F. Ispolzovanie statisticheskogo podkhoda pri interpretatsii dannykh GIS v neftematerinskikh porodakh bazhenovskoj svity Zapadno-Sibirskoj neftegazonosnoj provintsii [Practical use of statistical method for well logging interpretation in source rocks of Bazhen suite of Western-Siberian oil and gas province]. Tekhnologii seismorazvedki, 2013, no. 3, p. 28-42.
5. Jurchenko A.J. Formirovanie vtorichnykh karbonatnykh porod verkhneabalaksko-bazhenov-skoj tolshi Salymskogo, Pravdinskogo i Malobalykskogo neftanykh mestorozhdenij [Genesis of se- condary carbonate rocks of upper Abalak suite and Bazhenov suite of Salymskoe, Pravdinskoe and Malobalykskoe oil fields]. Dissertation abstract. Moscow, 2017, 22 p.

Issues of capital repair of gas pipelines in zones of natural and technogenic risks
Geosciences

Authors: Alexey S. LOPATIN graduated from Gubkin Moscow Institute of Petrochemical and Gas Industry in 1979. He is Doctor of Technical Sciences, professor, Head of Dept. of Termodynamics and Heat Engines of Gubkin Russian State University of Oil and Gas (National Research University). Author of over 350 papers in the field of diagnostics, energy saving in the transport of gas and energy efficiency. E-mail: Lopatin.a@gubkin.ru
Ashot R. AKOPIAN graduated from Gubkin Moscow Institute of Petrochemical and Gas Industry in 1986. He is Deputy Director General, Chief Engineer of ZAO «Gazprom Armenia», specialist in improving the reliability and efficiency of main gas pipelines.
E-mail: inbox@gazpromarmenia.am
Mikhail M. ZADERIGOLOVA graduated from the Dnepropetrovsk Mining Institute in 1962. He is Candidate of Technical Sciences, Director General of OOO «Altumgeo», author of about 150 scientific papers and patents in the field of geodynamic safety of large-scale national projects. E-mail: Lopatin.a@gubkin.ru

Abstract: Optimization of the choice of facilities for repair work and the volume of their financing can be carried out on the basis of reliable diagnostic data on both the technical condition and integrity of the pipe itself and the soils of the near-pipe space. Traditional methods of diagnostics are not quite suitable for monitoring and forecasting emergencies in areas of natural and man-made risks (landslides, karst, tectonic disturbances, faults, underground mining, etc.). A significant step in solving the problem can be made by incorporating into the diagnostics system radio wave methods, which have been successfully implemented at a number of facilities of OOO «Gazprom». These are aimed at eliminating the possibility of accidents at the earliest stages of natural and man-made processes.

Index UDK: 621.6.029

Keywords: geodynamic monitoring, dangerous geological processes, gas pipeline, capital repair, radio-wave method, diagnostics

Bibliography:
1. Dmitrievskij A.N. Formirovanie i dinamika ehnergoaktivnyh zon v geologicheskoj srede. Doklady Akademii nauk, 2006, t. 411, no. 3, р. 395-399.
2. Neobhodimost’ povysheniya ehffektivnosti capital’nogo remonta uchastkov LCHMG OAO «GAZPROM» na osnove kompleksnogo analiza ih tekhnicheskogo sostoyaniya. A.A. Filatov, I.I. Veliyulin, D.K. Migunov i dr. Gazovaya promyshlennost’, 2015, no. 3, p. 33-35.
3. Zaderigolova M.M., Lopatin A.S. Primenenie radiovolnovogo metoda kontrolya dlya obespecheniya bezopasnosti gazotransportnyh sistem. M: Izd. centr RGU nefti i gaza imeni Gubkina, 2014, 72 p.
4. Zaderigolova M.M., Lopatin A.S., Suslikov S.P. Problemy geodinamicheskoj bezopasnosti ehkspluatacii gazoprovoda «CHusovoj-Berezniki-Solikamsk». Trudy RGU nefti i gaza (NIY) imeni I.M. Gubkina, 2016, no. 4 (285), p. 84-93.
5. Geodinamicheskaya bezopasnost’ magistral’nyh gazoprovodov. B.V. Budzulyak, A.A. Apostolov, A.S. Lopatin, M.M. Zaderigolova. Truboprovodnyj transport: teoriya i praktika, 2018, no. 3, p. 50-54.
6. Svod pravil po inzhenernym izyskaniyam dlya stroitel’stva SP-11-105-97, ch. IV. Pravila proizvodstva geofizicheskih issledovanij. M: Gosstroj RF, 2004, 51 p.
7. Zaderigolova M.M. Obespechenie geodinamicheskoj bezopasnosti gazotransportnyh sistem radiovolnovymi metodami. M: Nauchnyj mir, 2009, 398 p.
8. Zaderigolova M.M., Lopatin A.S. Kriterii ocenki prognozirovaniya vnezapnoj opasnosti katastroficheskih aktivizacij gruntov okolotrubnogo prostranstva. Oborudovanie i tekhnologii dlya neftegazovogo kompleksa, 2018, no. 6, p. 73-80.
9. Zaderigolova M.M. Ustrojstvo dlya monitoringa lokal’nyh neodnorodnostej geodinami- cheskih i korrozionnyh zon verhnej chasti geologicheskogo razreza. Patent RF no. 123546 ot 27.12.2012 g.
10. Selyukov E.I., Stigneeva L.T. Kratkie ocherki prakticheskoj mikrogeodinamiki. SPb: Piter, 2010, 175 р.

Analysis and systematization of risk management processes in design of offshore pipelines
Geosciences

Authors: Vladimir P. BEZKOROVAYNYY the postgraduate course from Gubkin Moscow Institute of petrochemical and gas industry in 1978. He is Doctor of Technical Sciences, Professor of the Department of Computer Aided Design of Oil and Gas Industry Facilities of Gubkin Russian State university of Oil and Gas (National Research University). He is specialist in the field of design automation and project management. He is author of more than 180 scientific publications. E-mail: vpbp@mail.ru
Pavel S. YAKOVENKO graduated from Gubkin Russian State University of Oil and Gas (National Research University) in technological machines and equipment. E-mail: yakovenko_p@hotmail.com

Abstract: The paper considers the approach to risk management in the design of offshore pipelines. The methodology is based on the analysis of hazardous factors of production by HAZOP method. The main characteristics of the analysis and its algorithms are presented. The practical use of these methods in project ma- nagement is explained.

Index UDK: 621.644.07

Keywords: risk management, offshore pipelines, safety integrity level, hazard and operability, project management

Bibliography:
1. GOST R 51901.11-2005. Menedzhment riska. Issledovanie opasnosti i rabotosposobnosti. Prikladnoe rukovodstvo, р. 7-12.
2. PD Tеrminal po priеmu, hranеniyu i rеgazifikacii szhizhеnnogo prirodnogo gaza (SPG) v Kalinigradskoj oblasti.
3. Primenenie metodov analiza opasnostej HAZID i HAZOP pri proektirovanii gazotransport-nogo terminala. M.V. Lisanov, V.V. Simakin, A.I. Makushenko, P.I. Dvornichenko, A.V. Еremeev-Rajhert. Bezopasnost’ truda v promyshlennosti, 2008, no. 8, p. 4-10.
4. Doan Dyk Nya. Otsеnka riskov v proеktah podvodnyh truboprovodov v usloviyah shеl’fa V’еtnama. Diss. na soiskanie uchenoj stepeni kandidata tekhnicheskih nauk, 2015, p. 47-50.

Method of pipeline construction in swamplands with use of refrigeration circuit
Geosciences

Authors: Evgeniy A. GILMIYAROV graduated from Tyumen Industrial University in 2018, specializing in Petroleum Engineering.
E-mail: egilmiyarov@list.ru
Irina G. SILINA graduated from Tyumen Industrial University in 2018, specializing in Petroleum Engineering.
E-mail: i_g_silina@mail.ru
Sergei I. SENTSOV graduated from Gubkin Russian State University of Oil and Gas in 1978, he is Doctor of Technical Sciences, Professor of the Department of Construction and Repairs of Gas and Oil Pipelines and Storage Facilities of Gubkin Russian State University of Oil and Gas (National Research University). He is specialist in the field of construction of gas and oil pipelines and storage facilities. He is author of over 80 scientific and educational methodical works. E-mail: srgnp@mail.ru
Vadim A. IVANOV is Professor, Doctor of Technical Sciences of Tyumen Industrial University, Honored Scientist of the Russian Federation, member of the International Academy of Ecology and Life Protection sciences, author of more than 400 scientific works. E-mail: ivanov_v_a@list.ru

Abstract: The article describes the method of pipeline construction in swamps of II and III types. The choice of working fluid was established and formulae for approximate calculating of refrigerating circuit parameters were presented. Moreover, the ways of the development of the described method were identified

Index UDK: 622.692.4

Keywords: trunk lines, swampland, refrigeration circuit, refrigerant, ice wall

Bibliography:
1. GOST 12.1.007-76. Sistema standartov bezopasnosti truda (SSBT). Vrednyye veshchestva. Klassifikatsiya i obshchiye trebovaniya bezopasnosti.
2. GOST 28084-89. Zhidkosti okhlazhdayushchiye nizkozamerzayushchiye. Obshchiye tekhnicheskiye usloviya.
3. GOST 6221-90. Ammiak bezvodnyy szhizhennyy. Tekhnicheskiye usloviya.
4. Dimov L.A., Bogushevskaya E.M. Magistral’nyye truboprovody v usloviyakh bolot i obvodnennoy mestnosti. M.: Gornaya kniga, 2010, 392 p.
5. Karnaukhov N.N., Kushnir S.Ya., Gorelov A.S., Dolgikh G.M. Mekhanika merzlykh gruntov i printsipy stroitel’stva neftegazovykh ob’yektov v usloviyakh Severa. M.: TsentrLitNefteGaz, 2008, 432 p.
6. SP 86.13330.2014. Magistral’nyye truboprovody.

Causes for intensification of carbon dioxide corrosion of steel equipment and pipelines of oil and gas fields
Technical sciences

Authors: Ksenia V. NAKONECHNAYA graduated from Gubkin Russian State University of Oil and Gas (National Research University) in 2018. She is postgraduate student of the Department of Tribology and Technology of Repair of Oil and Gas Equipment. She is author of 9 scientific publications. E-mail: nakonechnaya.k@gubkin.ru
Oksana Y. ELAGINA graduated from Gubkin Moscow Institute of Petrochemical and Gas Industry in 1989. She is Doctor of Technical Sciences, Head of the Department of Tribology and Technology of Repair of Oil and Gas Equipment of Gubkin Russian State University of Oil and Gas (National Research University). She is Head of the Interdepartmental Center for the Study of New Materials for Fuel and Energy Complex Objects. She is author of over 100 scientific papers. E-mail: elaguina@mail.ru

Abstract: The article is devoted to the reasons causing the intensification of carbon dioxide corrosion. Methods of its identification are considered on the example of production of wells of the Karazhanbas field. The results of the studies showed the pos-sibility of using X-ray structural analysis of corrosion deposits as a method of corrosion monitoring. The necessity to isolate wells with a pH value of 6,5 and below was revealed with an increase in partial pressure up to 3 kPa and above at the temperature of the produced fluid of 50 °C to a complicated pool for selecting equipment in corrosion-resistant design.

Index UDK: 620.193/197:622.692.4

Keywords: carbon dioxide corrosion, corrosion rate, intensification of the corrosion process.

Bibliography:
1. Markin A.N., Nizamov R.E. SO2-korroziya neftepromyslovogo oborudovaniya. [CO2 corrosion of oilfield equipment]. Moscow, 2003, 188 p.
2. Erekhinsky B.A., Chernukhin V.I., Popov K.A., Shiryaev A.G., Rekin S.A., Chetverikov S.G. [Oil country tubing resistant to carbon dioxide corrosion]. Territory neftegaz [Territory neftegaz], 2016, no. 6, p. 72-76.
3. Avtorskiy nadzor za realizatsiey proektnogo dokumenta na razrabotku mestorozhdeniya Karazhanbas. [Designer supervision of the implementation of the project document for the development of the Karazhanbas field. Report of KazNIPImunaygas JSC]. Otchet AO «KazNIPImunaygaz». Almaty, 2016, 135 p.

Computer-aided design and modeling in machine building: orthogonal cylinder-bevel gears
Technical sciences

Authors: Aleksey Ya. NEKRASOV born in 1971, graduated from Moscow State Technological University «STANKIN» in 1994 by specialty «Designing machine tools and tools». The candidate of Technical Sciences, assistant professor of Sub-department of Machines of MSTU «STANKIN». The specialist in engineering. The author and co-author of more than 60 scientific and educational works. E-mail: stankin-okm@yandex.ru
Alexander N. SOBOLEV born in 1979, graduated from Moscow State Technological University «STANKIN» in 2002 in the direction of the magistracy «Technology, Equipment and Automation of engineering industries». Candidate of Technical Sciences. Assistant professor of the Sub-department of Machines of MSTU «STANKIN». The specialist in the theory of mechanisms and machines, CAD. The author and co-author of more than 60 scientific and educational works. E-mail: stankin-okm@yandex.ru
Michail O. ARBUZOV born in 1942, graduated from Moscow machine tool institute in 1964 by specialty «Designing machine tools». The candidate of Technical Sciences, assistant professor of Sub-department of Machines of MSTU «STANKIN». The specialist in the field of designing and calculating machine parts. The author and co-author of about 35 scientific and educational works.
E-mail: stankin-okm@yandex.ru
Victor G. PIROZHKOV born in 1949, graduated from the Krasnoyarsk Polytechnic Institute in 1971 with a degree in mechanical engineering technology, machine tools and metalworking. He is Candidate of Technical Sciences, Professor at the Department of Technical Mechanics of Gubkin Russian State University of Oil and Gas (National Research University). He is expert in the field of calculation of strength and reliability of elements of engineering structures. He is author of more than 60 scientific publications.
E-mail: pirogkov.v@gubkin.ru

Abstract: Orthogonal cylinder-bevel gears have been applied since ancient times. The main advantage of such transmission versus the traditional conical one is the possibility of some axial displacement of the gear that significantly simplifies the mounting of the gear. However, the geometric calculations required in the manufacture of this type of transmission are extremely complex. Therefore, effective software, that would simplify the geometric modeling of transmission elements, is needed. The article describes the scope of orthogonal cylinder-bevel gears in modern engineering. An algorithm for the geometric calculation of the elements of cylinder-bevel gear, implemented using the application program module developed by the authors, is presented

Index UDK: 621.0.01:621.833.2

Keywords: orthogonal cylinder-bevel gear, geometric calculations, software module

Bibliography:
1. Sobolev A.N., Kosov M.G. Avtomatizaciya kinematicheskogo i dinamicheskogo analiza tehnologicheskih mashin. Vestnik MGTU «Stankin» [Messenger of Moscow State University of Technology «STANKIN»], 2010, no. 2, p. 32-36 (in Russian).
2. Kosov M.G., Sobolev A.N. Avtomatizirovannoe proektirovanie na osnove metodologii netverdotelnogo modelirovaniya. Tehnologiya mashinostroeniya [Engineering technology], 2010, no. 3, p. 44-48 (in Russian).
3. Kissling U., Beermann S. Face Gears: Geometry and Strength [M]. USA: Gear Technology, 2007, vol. 1, p. 54-61.
4. Litvin F. L., Wang J. C., Bossler R. B. Application of face gear drives in helicopter trans- missions. Journal of Mechanical Design, Transactions of the ASME, 1994, vol. 3, no. 116, p. 672-676.
5. Litvin F.L., Fuentes A. Gear Geometry and Applied Theory, second ed., Cambridge University Press. Cambridge, 2004, 818 p.
6. Spravochnik konstruktora tochnogo priborostroeniya [Reference instrument designer precision instrument]. Pod redakciey doktora tehnicheskih nauk, prof. F.L. Litvina. M., L.: Mashinostroenie, 1964, 943 p.
7. Litvin F.L. Teoriya zubchatih zacepleniy [Gearing theory]. M., Nauka, 1968, 584 p.
8. Kazakov A.A., Arbuzov M.O., Pirozhkov V.G., Saldadze A.D. Vliyanie pogreshnostey formi detali v raschetah tochnostey oborudovaniya. Neft, gaz i biznes [Oil, Gas and Business], 2012, no. 1-2, p. 98-101 (in Russian).
9. Nekrasov A.Ya., Arbuzov M.O., Pirozhkov V.G. Primenenie universalnoy sistemi avtomatizirovannogo analiza shemi raspredeleniya nagruzki megdu elementami v mnogokontaktnih kinema-ticheskih parah (dlya vibora chisla zubiev menshego shkiva v zubchato-remennoy peredache). Neft’, gaz i biznes [Oil, Gas and Business], 2010, no. 7-8, p. 69-74 (in Russian).
10. Nekrasov A.Ya., Sobolev A.N., Arbuzov M.O. Innovacionniy interaktivniy programmniy product kak sredstvo povisheniya effektivnosti proektirovaniya mehanizmov. Innovacii [Innovations], 2016, no. 8, p. 104-107 (in Russian).
11. Pirozhkov V.G., Sobolev A.N., Nekrasov A.Ya., Arbuzov M.O. K voprosu formoobrazovaniya profilya cilindricheskih zubchatih koles pri elektroerozionnom virezanii. Trudi RGU nefti i gaza (NIU) imeni I.M. Gubkina [Proceedings of Gubkin Russian State University of Oil and Gas], 2018, no. 4, p. 118-131 (in Russian).
12. Sobolev A.N., Kosov M.G., Nekrasov A.Ya. Modelirovanie konstrukciy korpusnih detaley s ispolzovaniem raschetnih makroelementov. Vestnik MGTU «Stankin» [Messenger of Moscow State University of Technology «STANKIN»], 2014, no. 3, p. 98-101 (in Russian).
13. Kosov M.G., Sobolev A.N., Nekrasov A.Ya. Informacionnaya struktura sistemi netverdotelnogo modelirovaniya. Vestnik MGTU «Stankin» [Messenger of Moscow State University of Technology «STANKIN»], 2015, no. 1, p. 108-111 (in Russian).
14. Nekrasov A.Ya., Arbuzov M.O. Matematicheskaya model nagrugeniya zveniev mehanicheskih ustroistv s mnogoparnim silovim kontaktom. Vestnik MGTU «Stankin» [Messenger of Moscow State University of Technology «STANKIN»], 2012, no. 1, p. 32-35 (in Russian).
15. Sobolev A.N., Nekrasov A.Ya. CAD/CAE Modeling of Maltese Cross Mechanisms in Machine Tools. Russian Engineering Research, 2016, vol. 36, no. 4, p. 300-302.
16. Sobolev A.N., Nekrasov A.Ya., Arbuzov M.O. Usovershenstvovannaya metodika proekti- rovaniya zubchatih i chervyachnih mehanizmov v CAD/CAE-sistemah. Vestnik MGTU «Stankin» [Messenger of Moscow State University of Technology «STANKIN»], 2014, no. 2, p. 102-106 (in Russian).
17. Sobolev A.N., Nekrasov A.Ya. Raschet i modelirovanie v CAD-sisteme evolventnih i cikloidalnih (chasovih) zubchatih peredach priborov. Vestnik MGTU «Stankin» [Messenger of Moscow State University of Technology «STANKIN»], 2016, no. 2, p. 13-16 (in Russian).
18. Chekanin V.A., Chekanin A.V. Evristicheskiy algoritm optimizacii resheniy zadachi pryamougolnogo raskroya. Vestnik MGTU «Stankin» [Messenger of Moscow State University of Techno-logy «STANKIN»], 2014, no. 4, p. 210-213 (in Russian).

Authors: Konstantin V. SHATALOV graduated from the Ulyanovsk Higher Military Technical School named after B. Khmelnitsky in 1988, the Military Academy of Logistics and Transport in 1998. Candidate of Technical Sciences, Associate Professor. Head of the department of qualification assessment of fuels and oils of the FAE «The 25th State Research Institute of Chemmotology of Ministry of Defense of the Russian Federation». His research interests are chemotology, quality assessment of fuels and oils, metrological assurance of testing fuels and oils. He is author of more than 80 scientific publications. E-mail: 1499090@mail.ru.
Lidiya A. VLASENKOVA, Post-Graduate Student, Gubkin Russian State University of Oil and Gas (National Research University). The main direction of research is the jet fuel chemmotology. E-mail: vlasenkova.l@ya.ru.
Natalya M. LIKHTEROVA graduated from Gubkin Moscow Institute of Petrochemical and Gas Industry in 1968. Doctor of Technical Sciences, Professor. Leading Researcher of the department for the qualification assessment of fuels and oils of the FAE «The 25th State Research Institute of Chemmotology of Ministry of Defense of the Russian Federation». Her research interests are oil refining technology, chemical and motor fuel chemmotology, dispersed oil systems, heavy oil feedstock processing. She is author of more than 289 scientific publications. E-mail: 1499090@mail.ru.

Abstract: The article shows the need to study the chemical stability of fuels for jet engines, which contain components of deep oil refining, and suggests a method for studying the chemical stability of fuels for jet engines. Based on this method, studies of fuels for jet engines of various production technologies have been carried out. The minimum chemical stability has a fuel based on kerosene fraction of hydrocracking. This fact is explained by the conversion of the hydrocarbon composition of the kerosene fractions in the hydrocracking process

Index UDK: 665.7.035.5

Keywords: Fuel for jet engines, chemical stability, oxidation, hydrocracking

Bibliography:
1. Grishin N.N., Sereda V.V. Entsiklopediya khimmotologii [Encyclopedia of chemmotology]. Moscow, 2016, 960 p.
2. Seregin E.P. Razvitie khimmotologii [Development of chemotology]. Moscow, 2018, 880 p.
3. Ryabov V.A. Oil refining is the basis of economic development. Ekonomika i TEK segodnya, 2009, no.10, p. 25-27 (in Russian).
4. Khavkin V.A., Chernysheva E.A., Gulyaeva L.A. Gidrogenizatsionnye protsessy polucheniya motornykh topliv [Hydrogenation processes for the development of motor fuels]. Ufa: Izd. GUP INHP RB, 2013, 264 p.
5. Khavkin V.A., Gulyaeva L.A., Vinogradova N.Ya., Shmel’kova O.I. Hydrogenation processes at the refinery of Russia. Mir nefteproduktov, 2009, no. 3, p. 15-21 (in Russian).
6. Khavkin V.A., Galiev R.G., Gulyaeva L.A., Pugach I.A. About hydrogenation processing of oil residues. Mir nefteproduktov, 2009, no. 3, p. 15-19 (In Russian).
7. Shatalov K.V., Likhterova N.M., Seregin E.P. Jet fuel quality. Tekhnologii nefti i gaza, 2016, no. 1, p. 3-6 (in Russian).
8. Butin K.P., Waters W.A. Mechanisms of oxidation of organic compaunds. London, Wiley, 1966, 175 p. (Russ. ed.: Butin K.P., Waters W.A. Mekhanizm okisleniya organicheskikh soedineniy. Moscow, Mir Publ., 1966, 173 p.).
9. Semenov N.N. Development of the chain theory of oxidation of hydrocarbons. Problemy okisleniya uglevodorodov, 1954, p. 13-19 (in Russian).
10. Berezin I.V., Denisov E.T., Emanuel’ N.M. Okislenie tsiklogeksana [Cyclohexane oxidation]. Moscow, 1962, 303 p.
11. Emanuel’ N.M., Denisov E.T., Mayzus E.K. Tsepnye reaktsii okisleniya uglevodorodov v zhidkoy faze [Chain reactions of oxidation of hydrocarbons in the liquid phase]. Moscow, 1965, 375 p.
12. Kovalev G.I., Gogitidze L.D., Kuranova V.I., Denisov E.T. Natural jet fuel oxidation inhibitors. Neftekhimiya, 1981, vol. 21, no. 5, p. 718-725 (in Russian).
13. Denisov E.T., Kovalev G.I. Okislenie i stabilizatsiya reaktivnykh topliv. [Oxidation and stabilization of jet fuels]. Moscow, 1983, 272 p.
14. Khavkin V.A., Belousov A.I. Jet fuel production technologies. Neftepererabotka i neftekhimiya. Nauchno-tekhnicheskie dostizheniya i peredovoy opyt, 2014, no. 11, p. 5-7 (In Russian).
15. Kulik N.S., Aksenov A.F., Yanovskiy L.S., Boychenko S.V., Zaporozhets A.I. Aviatsionnaya khimmotologiya. Topliva dlya aviatsionnykh dvigateley. Teoreticheskie i inzhenernye osnovy primeneniya. [Aviation chemmatology. Jet fuels. Theoretical and engineering bases of application]. Kiev, 2015, 557 p.
16. Veselyanskaya V.M., Radchenko E.D., Englin B.A. Oxidizability of jet fuels T-6 and RT during long-term storage. Khimiya i tekhnologiya topliv i masel, 1983, no. 12, p. 27-28.
17. Instruktsiya ob organizatsii obespecheniya kachestva goryuchego v Vooruzhennykh Silakh Rossiyskoy Federatsii (prikaz ZMO RF 1994 goda № 105). Moscow, Voenizdat Publ., 1994, 220 p. (in Russian).