Articles Archive

№ 1/294, 2019

Geoinformation environment of remote methods of geoecological research of oil and gas complex objects

Authors: Viktor G. AKOVETSKY graduated from Moscow Institute of Geodesy, Aerial Photo- graphy and Cartography specializing in aerofotogeodesy in 1973, in 1978 he graduated from the Moscow Institute of Physics and Technology with a degree in Automation of Experimental Research, and in 2006 he graduated from the Institute for Advanced Studies of the Russian Federal Center for Forensic Expertise “IPK RFTSSE”) specializing in “Investigation of ecological state of objects of soil-geological origin”. He is Doctor of Technical Sciences, Professor of the Department of Geoecology of Gubkin Russian State University of Oil and Gas (National Research University), specialist in environmental geoscience, aerospace research of the Earth, photogrammetry, geoinformatics, mapping and geodesy, author of over 150 scientific papers. E-mail:
Alexey V. AFANASYEV graduated from the Moscow State Forest University with a degree in Applied Mathematics. He is Candidate of Technical Sciences. Associate Professor of the Department of Geoecology of Gubkin Russian State University of Oil and Gas (National Research University), specialist in the field of modeling and programming. He is author of more than 25 scientific works.
Ekaterina R. MATROSOVA graduated from Gubkin Russian State University of Oil and Gas (National Research University) with a degree in ecology and nature management in 2017. She is Master student of Gubkin Russian State University of Oil and Gas (National Research University). E-mail:

Abstract: Particular attention is paid to the problems of the development and use of digital platforms for working with spatial data obtained on the basis of remote sensing systems (Earth remote sensing). The key task in this list is to develop the technologies for automated processing of remote sensing data, based on the use of methods of interpretation, modeling and visualization. The results of experimental studies of the construction of the geoinformation environment in the tasks of geoecological research on the basis of remote sensing technologies for the implementation of oil and gas complex projects are presented

Index UDK: 528(075.8)

Keywords: geoinformation environment, remote sensing of the Earth, digital economy, technological platform, geospatial data, geoecological research

1. Program “Digital Economy of the Russian Federation”, approved by the order of the Government of the Russian Federation of July 28, 2017, no. 1632-r.
2. Federal Law No. 431-FZ of the Russian Federation of December 30, 2015 “On Geode- sy, Cartography and Spatial Data and on Amending Certain Legislative Acts of the Russian Fede- ration”.
3. “Plan for the phased introduction of information modeling technologies in the field of industrial and civil engineering in the design”. Order of the Ministry of Construction and Housing and Communal Services of the Russian Federation, no. 926/pr dated December 29, 2014.
4. Akovetsky V.G. Aerospace monitoring of oil and gas fields. Textbook for high schools. M.: LLC “Nedra-Business Center”, 2008, 454 p.
5. Aerospace monitoring of oil and gas facilities, Monograph, edited by V.G. Bondura, Moscow: Nauchniy mir, 2012, 558 p.
6. Akovetsky V.G. Engineering survey and geoinformation environment in the tasks of oil and gas complex risk management. Engineering Survey, 2015, no. 9, p. 54-62.

Technologies and Features of Development of Hydrocarbon Deposits in Shallow-Water Transit Zones of the Kara Sea Priyamalsk Shelf

Authors: Alexander D. DZUBLO graduated from Gubkin University in 1972. He is Doctor of Geological and Mineralogical Sciences, Professor of the Department of Development of Offshore Oil and Gas Fields of the Gubkin Russian State University of Oil and Gas (National Research University). He is specialist in the field of geology and geophysics of oil and gas fields and author of more than 130 scientific publications. E-mail:
Ksenia V. ALEKSEEVA graduated with honors from Gubkin Russian State University of Oil and Gas (National Research University) in 2018 with Master Degree in development of offshore oil and gas fields. She specializes in the development of offshore oil and gas fields. She has participated in international scientific and technical conferences, and has authored 4 publications.

Abstract: Deposits Kharasaveyskoe and Kruzenshternskoye are located on the Arctic shelf of the Kara Sea. The main difficulties encountered during the development are the harsh Arctic climate, the navigation period of 2-3 months, permafrost, shallow depths of the sea with a thick stratum of mud up to 20 m. Taking into account the climatic and geological conditions, the article suggests various options for the development of hydrocarbon deposits in shallow-water transit zones of the Priyamalsk shelf of the Kara Sea. We propose to use up-to-date technologies and methods of arrangement: to construct artificial islands and drill inclined wells from the shore

Index UDK: 622.276.031:532.11 (571.56)

Keywords: shallow water, arctic climate, hydrocarbons, drilling wells from shore, artificial island

1. Vyakhirev R.I., Nikitin B.A., Mirzoev D.A. Construction and development of offshore oil and gas fields. M.: Publishing house of the Academy of Mining Sciences, 1999, 373 p.
2. Zolotukhin A.B., Gudmetad O.T., Ermakov A.I. Basics of development of offshore fields and construction of offshore structures in the Arctic. M.: State Unitary Enterprise “Oil and Gas” of the RGU of Oil and Gas named after I.M. Gubkin, 2000, 770 p.
3. Badu Yu.B. The gas-bearing structures and cryogenic strata of the Yamal peninsula cryolithology provinces. Engineering Geology, 2017, no. 1, p. 23-34.
4. Mirzoev D.A. Fundamentals of offshore oil and gas field business. T. 1. Construction and operation of offshore oil and gas fields. M.: Russian State University of Oil and Gas named after I.M. Gubkin, 2014, 272 p.
5. Mirzoev D.A. The fundamentals of the offshore oil and gas field. T. 2. Offshore oil and gas field engineering facilities — facilities for offshore oil and gas fields. M.: Russian State University of Oil and Gas named after I.M. Gubkin, 2015, 286 p.
6. Nikitin B.A., Dziublo A.D., Shuster V.L. Geological and geophysical assessment of oil and gas potential prospects of deep-lying horizons of the Yamal Peninsula and the Priyamalsky shelf of the Kara Sea. Oil Industry, 2014, no. 11, p. 102-106.
7. Khalikova D.F. In the Arctic shallow water: the definition of a constructive type of an SPBU for exploration drilling. Oil & Gas Journal Russia, 2012, issue 5 (60), p. 52-57.

Petrophysical Model of Dependence between Resistivity Saturation Factor and Normalized Effective Porosity

Authors: Kazimir V. KOVALENKO is Doctor of Geological and Mineralogical Sciences, Professor of the Geophysical Information Systems Department, Gubkin Russian State University of Oil and Gas (National Research University). His research interests focus on algorithmical formalization of petrophysical interpretation of well-logging data. He is author and co-author of more than 50 scientific publications. E-mail:
Ziyun CHENG is student of the master’s program at the Geophysical Information Systems Department, Gubkin Russian State University of Oil and Gas (National Research University). Her research interests are petrophysics and well logging analysis.

Abstract: На основании разработанной модели предложены алгоритмы расчета коэффициента нефтегазонасыщенности и способы контроля результатов интерпретации данных комплекса геофизических исследований скважин (ГИС). The paper considers derivation of the dependence between resistivity saturation factor and normalized effective porosity in the zone of maximum hydrocarbon saturation of the reservoir. Verification of the developed parametric model showed good agreement between the calculated values of the resistivity saturation factor and the results of the laboratory petrophysical measurements on core samples from terrigenous reservoirs of Western Siberia.
On the basis of the developed model algorithms for calculating oil and gas saturation coefficient and methods for monitoring the interpretation results of well logging data are proposed

Index UDK: 550.83

Keywords: petrophysical modeling, resistivity saturation factor, effective porosity

1. Dahnov V.N. Geofizicheskie metodi opredeleniya kollektorskih svoystv I neftegazonasisheniya gornih porod [Geophysical methods for determining reservoir properties and oil and gas saturation of reservoirs]. M.: Nedra, 1975, 344 p. (in Russian).
2. Dobrinin V.M., Vendelshteyn B.Yu., Kozhevnikov D.A. Petrofizika (Fizika gornih porod) [Petrophysics (Physics of rocks)]. M.: Neft I gas, 2004, 368 p. (in Russian).
3. Kozhevnikov D.A., Kovalenko K.V. Izuchenie kollektorov nefti i gaza po dannim adaptivnoy interpretacii geofizicheskih issledovaniy skvazhin [The study of oil and gas reservoirs based on the results of adaptive interpretation of well logging data]. Moscow, 2011, 219 p. (in Russian).
4. Kozhevnikov D.A., Kovalenko K.V. Princip petrofizicheskoy invariantnosti kollektorov I ego primemenie pri geomodelirovanii mestorozhdeniy nefti i gaza [The principle of petrophysical invariance of reservoirs and its use in geomodeling oil and gas reservoirs]. Doklady Earth Sciences, 2011, v. 440, no. 4, p. 530-532 (in Russian).
5. Leontyev E.I. Modelirovaniye v petrofizike [Petrophysics Modeling]. M.: Nedra, 1978, 125 p. (in Russian).

Oil-Gas Potential of Chengbei Sag in Bohai Bay Basin (China)

Authors: Shiqi LIU is PHD student of the Department of Lithology of Gubkin Russian State University of Oil and Gas (National Research University). Her research interests are geology and lithology of oil and gas field.

Abstract: Chengbei sag is one of the structure units of the Bohai Bay basin, which is a major oil and gas field in China. It is a graben basin depositing on the basement of Precambrian and mainly developing Cenozoic sedimentation. The hydrocarbon potential and saturation of these deposits are considered

Index UDK: 551.24:553.98(510)

Keywords: the source rock, Dongying formation, Chengbei sag, oil-gas saturation, alluvial system

1. Limonov A.F., Burlin Ju.K. Stroenie, razvitie i neftegazonosnost’ bassejna Bohaj (KNR). Geologija nefti i gaza, 1988, no. 10, p. 53-57.
2. Rejnek G.Je., Singh I.B. Obstanovki terrigennogo osadkonakoplenija. M.: Nedra, 1981, 438 p.
3. Fu Zhaohui, Qin Weijun, Li Min. Depositional Characteristics and Hydrocarbon Traps of the Palaeogene in Chengbei Sag, Bohai Bay Basin. Marine Geology Frontiers, 2015, no. 31 (1), p. 9-15.
4. Fu Zhaohui, Zhang Zaizhen, Li Dechun, et al. Analysis on Sedimentary Systems and Hydrocarbon Accumulation of Palaeogene, CB Sag. ACTA SEDIMENTOLOGICA SINICA, 2009, no. 1, p. 26-31.
5. Gao Xilong. Sequence stratigraphic characteristics and hydrocarbon exploration targets of Dongying Formation in Eastern Slope Area of Chengdao Oilfield. Fault-Block Oil and Gas Field, 2013, no. 20 (2), p. 140-146.
6. Hao Fang, Zhou Xinhuai, Zou Huayao, Teng Changyu, Yang Yuanyuan. Petroleum Char- ging and Leakage in the BZ25-1 Field, Bohai Bay Basin. Journal of Earth Science, 2012, no. 23 (3), p. 253-267.
7. Hua Liu, Donggao Zhao, Youlu Jiang, etc. Hydrocarbon accumulation model for Neogene traps in the Chengdao area, Bohai Bay Basin, China. Marine and Petroleum Geology, 2016, no. 77, p. 731-745.
8. He Yun. Development situation analysis of reservoir formation Dongying, field Chengdao. Inner Mongolia Petrochemical Industry, 2014, no. 3, p. 40-41.
9. Liu Yin, Chen Qinghua, Hu Kai. Comparison of the Bohai Bay Basin and Subei-South Yellow Sea Basin in the Structural Characteristics and Forming Mechanism. Geotectonica et Metallogenia, 2014, no. 38 (1), p. 38-51.
10. Ryder R.T., Qiang Jin, McCabe P.J., etc. Shahejie—Shahejie/Guantao/Wumishan and Carbo- niferous/Permian Coal−Paleozoic Total Petroleum Systems in the Bohaiwan Basin, China (based on geologic studies for the 2000 World Energy Assessment Project of the U.S. Geological Survey): U.S. Geological Survey Scientific Investigations Report, 2011, 5010, 2012, 89 p.
11. Song Guoqi, Hao Xuefeng, Liu Keqi. Tectonic evolution, sedimentary system and petroleum distribution patterns in dustpan-shaped rift basin: a case studу from Jiyang Depression, Bohai Bay Basin. Oil and Gas geology, 2014, no. 35 (3), p. 303-309.
12. Tan Heqing. Analysis of oil and gas resource potential in Chengbei sag, Southern Bohai Basin. Journal of Jiang Han Pet Roleum Institute, 2004, no. 26 (1), p. 39-41.
13. Yuexia D., Shang Y., Lei C., et al. Braided river delta deposition and deep reservoirs in the Bohai Bay Basin: A case study of the Paleogene Sha 1 Member in the southern area of Nanpu Sag. Petroleum Exploration and Development, 2014, no. 4, p. 429-436.
14. Zhu Weilin, Wu Jingfu, Zhang Gongcheng, et al. Discrepancy tectonic evolution and petro- leum exploration in China offshore Cenozoic basins. Earth Science Frontiers, 2015, no. 22 (1), p. 88-101.
15. Zhao Yuehan. Gravity Flow Sedimentary Characteristics and Facies Model for Dongying Formation on East Slope of Chengdao, Jiyagn Depression. Special Oil and Gas reservoirs, 2017, no. 24 (4), p. 24-31.

Features of Logging While Drilling in Horizontal Wells to Estimate Reservoir Properties

Authors: Maria A. SREBRODOLSKAYA graduated from Gubkin Russian State University of Oil and Gas (National Research University) in 2013 with Master Degree in Petroleum Engineering with honors. She is Candidate is Ph.D student in geology and mineralogy. Her research scope is petrophysics, log data processing in complicated reservoirs, well logging in horizontal wells. She is author of more than 40 scientific publications. E-mail:

Abstract: The features of logging while drilling (LWD) in horizontal wells are considered. When logging while drilling, geophysical tools are incorporated in the bottom-hole assembly (BHA) above the bit. The composition of the BHA when drilling horizontal wells and offsets of sensors depending on the drilling method (RSS or DDM) are considered. Features of image data recording in horizontal wells with azimuthal tools are described. The factors influencing the BHA composition are analyzed, some of them being: the tasks to be solved, the drilling method, the well design and technical conditions in it, the presence or absence of geosteering service. The environment (lithological conditions) influencing the LWD complex is shown. The limitations imposed on the LWD complex are listed. Various information channels and peculiarities of data transmission in real time mode are considered. It is shown that both information channels transmitting data to the surface and autonomous channels for recording data limit the volume of the logging while drilling complex

Index UDK: 550.832

Keywords: horizontal wells, logging while drilling (LWD), bottom-hole assembly (BHA), azimuthal tools

1. Molchanov A.A., Luk’yanov E.E., Rapin V.A. Geofizicheskie issledovaniya gorizontal’nykh neftegazovykh skvazhin: Uchebnoe posobie. S.-Peterburg: Mezhdunaodnaya akademiya nauk ekologii, bezopasnosti cheloveka i prirody (MANEB), 2001, 298 р.
2. Burenie naklonno-napravlennykh i gorizontal’nykh skvazhin na sushe i na more: Uchebnoe posobie. A.I. Arkhipov, S.V. Vorob’ev, I.V. Dorovskikh, V.V. Zhivaeva, V.V. Kul’chitskiy, O.A Nechaeva. Samara: Samar. gos. tekhn. un-t, 2010, 120 p.
3. Strel’chenko V.V. Geofizicheskie issledovaniya skvazhin: Uchebnik dlya vuzov. M.: OOO “Nedra-Biznestsentr”, 2008, 551 p.
4. Srebrodol’skaya M.A., Fedorova A.Yu., Frolov V.M. Issledovanie gorizontal’nykh skvazhin azimutal’nymi priborami. Zapadno-Sibirskiy neftegazovyy kongress [West-Siberian petroleum congress]. Sbornik nauchnykh trudov XI Mezhdunarodnogo nauchno-tekhnicheskogo kongressa studencheskogo otdeleniya obshchestva inzhenerov-neftyanikov. Tyumen’: TIU, 2017, 169 p. (in Russian).
5. Srebrodol’skaya M.A., Fedorova A.Yu. Skvazhinnye skaniruyushchie ustroystva: sravnitel’nyy analiz i interpretatsiya imidzhey. Prirodnye protsessy v neftegazovoy otrasli. [Geonature 2017 = Natural processes in oil and gas field]. Sbornik nauchnykh trudov Mezhdunarodnoy nauchno-prakticheskoy konferentsii. Tyumen’: TIU, 2017, 343 p. (in Russian).
6. Srebrodol’skaya M.A., Frolov V.M. Zadachi kavernometrii v gorizontal’nykh skvazhinakh. Prirodnye protsessy v neftegazovoy otrasli. [Geonature 2017 = Natural processes in oil and gas field]. Sbornik nauchnykh trudov Mezhdunarodnoy nauchno-prakticheskoy konferentsii. Tyumen’: TIU, 2017, 343 p. (in Russian).
7. Chepik V.S. Osobennosti primeneniya razlichnyh tekhnologii bureniya v processe stroitel’stva skvazhiny. Molodoj uchenyj, 2018, no. 3, p. 55-59. — URL (date of reference 04. 11. 2018).
8. (date of reference 04.11.2018).
9. (date of reference 04.11.2018).

Biomarker characterizations of the Upper Cretaceous Shiranish formation in the south-eastern part of Iraqi Kurdistan, Northern Iraq

Authors: Rebaz A. HAMA AMIN graduated from University of Sulaimani in 2012, Gubkin State University of Oil and Gas (National Research University) in 2016. Post-graduate student in the Department of Geology of Hydrocarbon Systems in Gubkin State University of Oil and Gas (National Research University). Scientific interests are related with geochemical studies of oils and source rock samples and basin modeling study. He is an author of 1 scientific publication. E-mail:
Natalia N. KOSENKOVA graduated from Lomonosov Moscow State University in 1980, and Post-graduate degree in 1987. Candidate of Geological and Mineralogical Sciences, teaching on the discipline “Formation of hydrocarbon systems” in Gubkin State University of Oil and Gas (National Research University). Specialist in the field of oil and gas fields’ exploration. She is author of 4 monographs and more than 20 scientific publications in Russian and foreign issues. E-mail:

Abstract: The geochemical studies were performed for the core samples of Shiranish formation in the depth interval of (3680-3950) from the south-eastern part of Iraqi Kurdistan. These rock samples comprise shale rocks. The geochemical investigation of biomarker parameters were performed for extract rock samples from Shiranish formation using gas chromatography GC, gas chromatography-mass spectrometry GC/MS — for saturated and aromatic hydrocarbons, and GC/MS/ MS — for saturated hydrocarbon. In addition, performed carbon isotope analysis of saturated and aromatic fractions. The extract samples are characterized by a high Pr/Ph ratio (> 1,0), a relatively high oleanine ratio, an abundance of mode- rate C27 regular steranes and disteranes, a relatively high C30 sterane index, presence of tricyclic terpanes, relatively low dibenzothiophene/phenanthrene ratios, a high CPI ratio (³ 1,0) and high Pr/n-C17 values in combination with low Ph/n-C18 values.
All of the above parameters indicate on the mixed type of organic matter: kerogen type II + III with a predominance of type II. According to the results of diagnostics, Source rock, represented by calcareous marls, were deposited under weak reducing conditions during diagenesis and have a high degree of maturity.

Index UDK: 551.24

Keywords: biomarker, Shiranish formation, Iraqi Kurdistan, organic matter, oil, depositional environment, maturity

1. Bacon C.N., Calver C.R., Boreham C.J., Lenman D.E., Morrison K.C., Revill A.T. and Volkman J.K. The Petroleum Potential of Onshore Tasmania: a review, Geological Survey Bulletin, 2000, 71, p. 1-93.
2. Buday T. The Regional Geology of Iraq, Volume 1, Stratigraphy and Paleogeography. Dar Al-Kutub (Mosul University, Iraq), 1980, 445 р.
3. Jassim S. Z., Goff J.C. Geology of Iraq. Published by Dolin, Brague Moravian Museum, Berno, 2006, 345 p.
4. Hill R.J., Jarvie D.M., Zumberg J., Henry M., Pollastro R.M. Oil and Gas geochemistry and Petroleum Systems of the Fort Worth Basin, AAPG, 2007, vol. 91, no. 4, p. 445-473.
5. Killops K. and Killops V. Introduction to Organic Geochemistry, second edition, black well publishing, 2005, 393 p.
6. Osuji L.C., Antia B.C. Geochemical Implication of some Chemical Fossils as Indicators of Petroleum Source Rocks, AAPL Journal, Sci. Environ. Mgt., 2005, vol. 9, no.1, p. 45-49.
7. Peters K.E., Fowler M.G. Applications of petroleum geochemistry to exploration and reservoir management, Review, Organic Geochemistry, 2002, vol. 33, p. 5-36.
8. Peters K.E., Walters C.C., Moldowan J.M. The Biomarker Guide, Second Edition. Volume II. Biomarkers and Isotopes in Petroleum Systems and Earth History, United Kingdom at the Cambridge University Press, 2005, 684 p.
9. Philp R.P. Formation and Geochemistry of Oil and Gas, in Treatise on Geochemistry, Holland, H.D. and Turekian, K.K. (Executive eds.), vol. 7. Sediments, Diagenesis and Sedimentary Rocks, Mackenzie F.T. (Volume Editor). Elsevier pergamon, 2003, p. 223-256.
10. Rohrback B.G. Crude Oil Geochemistry of the Gulf of Suez, Advances in Organic Geochemistry, 1983, p. 39-48.
11. Sadi Kan Jan Kaka. Sediment logical study of Shiranish formation well DD-1 (N-IRAQ), bull. Iraq nat. Hist. Mus., 2010, p. 47-56.
12. Shanmugam G. Significance of coniferous rain forests and related organic matter in genera- ting commercial quantities of oil, Gippsland Basin, Australia. AAPG Bulletin, 1985, no. 69 (8), p. 1241-1254.
13. Sletten E.B. A comparison of Petroleum from Reservoirs and Petroleum Inclusions in Authigenic Mineral Cements-Haltenbanken. University of Oslo, Department of Geology, 2003, p. 80-107.
14. Sofer Z. Stable carbon isotope compositions of crude oils-application to source depositional environments and petroleum alteration. AAPG Bulletin, 1984, v. 68, no. 1, p. 31-49.
15. Younes M.A., Philp R.P. Source Rock Characterization based on Biological Marker Distribution of Crude Oils in the Southern Gulf of Suez Egypt. Journal of Petroleum Geology, 2005, vol. 28, no. 3, p. 301-317.

Study of Potassium Formate-Based Drilling Fluid Influence on Core-Samples’ Permeability Characterized by AHFP.

Authors: Daria M. GUSEVA is currently a postgraduate student at the Drilling Department of Gubkin Russian State University of Oil and Gas (National Research University). She is specialist in drilling and completion fluids. E-mail:
Sergey V. KOSTESHA graduated from Saratov State University in 2002 with a degree in industrial chemicals of drilling fluids and oil processing. He is author of “Colloid Chemistry of Drilling fluids”, a study guide for students and drilling fluid engineers, 2000.

Abstract: Formation drilling in abnormally high formation pressure zones adversely affects well construction efficiency.
The application of barite-free potassium formate-based drilling fluid ensures high-quality wellbore cleaning and minimizes the irreversible process of formation damage.
The impact of potassium formate-based drilling fluid and oil-based drilling fluid on core samples permeability was assessed, the applicability of drill-in fluids mentioned above was validated

Index UDK: 622.245.549

Keywords: potassium formate, return permeability, abnormally high formation pressure, weighted drilling fluids

1. Ovchinnikov V.P., Aksenova N.A., Grosheva T.V., Rozhkova O.V. Contemporary drilling fluid compositions: Workbook. Tyumen: TyumGNGU, 2013, 156 p.
2. Ryazanov Ya.A. Drilling Fluids Encyclopedia. Orenburg: Publisher “Letopis”, 2005, 664 р.
3. Nediljka Gaurina-eEðimurec, Borivoje Pasic, Katarina Simon, Davorin Matanovic, Matija Malnar. Formate-Based Fluids: Formulation and Application, Rudarsko-geološko-naftni zbornik. Zagreb, 2008, р. 41-49.
4. Downs J.D., Howard S.K., Carnegie A. Improving Hydrоcarbon Production Rate Through the Use of Formate Fluids — SPE 97694, 2005.

Authors: Petr V. PYATIBRATOV (born in 1979) graduated from Gubkin Russian State University of Oil and Gas in 2002, he is Candidate of Technical Sciences, assistant professor of the Department of Oil Field Development of Gubkin Russian State University of Oil and Gas (National Research University). He is specialist in the development and hydrodynamic modeling of oil and gas fields, and author of more than 30 scientific publications. E-mail:
Rinat А. KHABIBULLIN (born in 1978) graduated from Ufa State Aviation Technical University in 2000. He is Candidate of technical Sciences, assistant professor of the Department of Oil Field Development of Gubkin Russian State University of Oil and Gas (Natio- nal Research University). He is specialist in petroleum engineering and author of more than 30 scientific publications.
Daniil S. SKOROV (born in 1997) graduated from Gubkin Russian State University of Oil and Gas (National Research University) in 2018 with Bachelor degree in “Petroleum Engineering”. He is Master student of the Department of Oil Field Development of Gubkin Russian State University of Oil and Gas (National Research University). E-mail:
Vladislav V. MIKHALKIN (born in 1995) graduated from Gubkin Russian State University of Oil and Gas (National Research University) in 2014 (bachelor). Currently he is studying at “Offshore Field Development Technology” joint degree program of Gubkin Russian State University of Oil and Gas (National Research University) and Stavanger University. E-mail:

Abstract: Along with currently available research focused on the properties of foamy oil in the heavy oil field development, this article describes a method for modifying re- lative permeabilities, which simultaneously takes into account the presence of gas in a dispersed state and high mobility of the gas phase during steam injection

Index UDK: 622.276

Keywords: heavy oil, foamy oil, relative permeabilities modification, steam drive

1. Chen J.Z., Maini B. Numerical Simulation of Foamy Oil Depletion Tests. Canadian International Petroleum Conference. Calgary, Alberta: Petroleum Society of Canada, 2005.
2. Maini B. Foamy-Oil Flow. Journal of Petroleum Technology. University of Calgary: Society of Petroleum Engineers, 2001.
3. Mastmann M., Moustakis M.L., Bennion D.B. Predicting Foamy Oil Recovery. SPE Western Regional Meeting. Bakersfield, California: Society of Petroleum Engineers, 2001.
4. Shen C. A Practical Approach for the Modeling of Foamy Oil Drive Process. SPE Canada Heavy Oil Technical Conference. Calgary, Alberta, Canada: Society of Petroleum Engineers, 2015.
5. Sheng J.J., Maini B.B., Hayes R.E., Tortike W.S. Experimental Study of Foamy Oil Stability. Journal of Canadian Petroleum Technology. Banff, Alberta: Petroleum Society of Canada, 1997.
6. Mihajlov D.N. Dinamika techeniya nefti s uchetom obrazovaniya mikropuzyr’kov gaza v potoke. Trudy Rossijskogo gosudarstvennogo universiteta nefti i gaza imeni I.M. Gubkina. M.: Rossijskij gosudarstvennyj universitet nefti i gaza (nacional’nyj issledovatel’skij universitet) imeni I.M. Gubkina, 2011, no. 1 (262), p. 55-67.
7. Mihajlov D.N. Osobennosti processa vytesneniya nefti pri nalichii mikropuzyr’kov v fil’tra-cionnom potoke. Prikladnaya mekhanika i tekhnicheskaya fizika. Novosibirsk: Izdatel’stvo Sibirskogo otdeleniya RAN, 2012, p. 68-83.
8. Strizhov I.N., Pyatibratov P.V., Mihajlov A.I., Nechaeva E.V. Fazovye pronicaemosti, ispol’-zuemye pri raschete debitov skvazhin, ehkspluatiruemyh s zabojnymi davleniyami nizhe davleniya nasyshcheniya. Neftyanoe hozyajstvo. M.: AO Izdatel’stvo “Neftyanoe hozyajstvo”, 2006, p. 80-82.

Complex Approach to Optimization of Nitrogen Lifting Operation Using Coiled Tubing

Authors: Victor P. TELKOV (b.1982) graduated from Gubkin Russian State University of Oil and Gas in 2003. He is Candidate of Technical Sciences, assistant professor of the Department of Development and Exploitation of Oil Fields of Gubkin Russian State University of Oil and Gas (National Research University). He is Specialist in the field of well stimulation and well productivity operation. He is author of more than 60 scientific publications. E-mail:
Ivan SAVIC (b. 1995) graduated from Gubkin Russian State University of Oil and Gas (National Research University) in 2018 as bachelor in Oil and Gas Business. E-mail:

Abstract: This paper presents the results of a series of numerical experiments conducted with self-developed software, which is based on an original algorithm. This algorithm models the nitrogen lifting process. A list of most common problems related to this well operation is given. Our qualitative conclusions could help to predict the work of lifting equipment for different combinations of technological parameters. We recommend the new methodology, based on computer modelling for solving the considered problems

Index UDK: 622.276

Keywords: well unloading, coiled tubing, nitrogen lifting, gas lift annular flow, two-phase flow in annuli, optimization, lift performance relationship

1. Bulatov A.I. Koltyubingovie tehnologii pri burenii, zakanchivanii i remonte neftyanih i gazovih skvazhin. Krasnodar: Prosveshenie-Yug, 2008, 370 p. (in Russian).
2. Mischenko I.T. Skvazhinnaya dobicha nefti. M.: Neft i gaz, 2007, 826 p. (in Russian).
3. Molchanov A.G. Mashiny i oborudovaniye dlya dobichi nefti i gaza. М.: Alyans, 2010, 588 p. (in Russian).
4. Barnea D. Effect of Bubble Shape on Pressure Drop Calculations in Vertical Slug, Int. J. Multiphase Flow (1990) 16, р. 79-89.
5. Cachard F., Delhaye J.M. A Slug-Churn Flow Model for Small-Diameter Airlift Pumps, Int. J. Multiphase Flow (1996) 22, no. 4, р. 627-649.
6. Fuladgar A.M. et al. Optimization of Unloading Operation with Coiled Tubing (Nitrogen Lifting) in One of the Southern Iranian Oil Fields, paper presented at the The 8th International Chemical Engineering Congress & Exhibition (IChEC 2014) Kish, Iran, 24-27 February, 2014.
7. Gu H., Walton I.C. Development of a Computer Wellbore Simulator for Coiled-Tubing Operations, paper SPE 28222 presented at the SPE Petroleum Computer Conference held in Dallas, Texas, USA, 3 July — 3 August 1994.
8. Lage A., Time R. An Experimental and Theoretical Investigation of Upward Two-Phase Flow in Annuli, SPE 64525 presented at the SPE Asia Pacific Oil and Gas Conference and Exhibition held in Brisbane, Australia, 16–18 October 2000.
9. Misselbrook J., Wilde G., Falk K. The Development and Use of a Coiled-Tubing Simulation for Horizontal Applications, paper SPE 22822 presented at the 66th Annual Technical Conference and Exhibition of the Society of Petroleum Engineers held in Dallas, TX, 6-9 October 1991.
10. Papadimitriou D.A., Shoham O. A Mechanistic Model for Predicting Annulus Bottomhole Pressures in Pumping Wells, paper SPE 21669 presented at 1991 Production Operations Symposium, Oklahoma City, 7-9 April.
11. Salim P., Li J. Simulation of Liquid Unloading from a Gas Well with Coiled Tubing Using a Transient Software, paper SPE 124195 presented at the 2009 SPE Annual Technical Conference and Exhibition held in New Orleans, Louisiana, USA, 4-7 October 2009.
12. Xu Z., Maurera J., Shields C. Well Displacement Hydraulics — A Field Case Study and Si- mulation Investigation, paper SPE 137342 presented at the Abu Dhabi International Petroleum Exhibition & Conference held in Abu Dhabi, UAE, 1-4 November 2010.
13. Zhou Y., Smalley E., Opel S. Determination of Optimum N2 Rate for Unloading Gas Wells with Coiled Tubing, paper 143337 was prepared for presentation at the SPE/ICoTA Coiled Tubing and Well Intervention Conference and Exhibition held in The Woodlands, Texas, USA, 5-6 April 2011.

Мooring type positioning system in arctic shelf conditions

Authors: Vadim B. KHAZEEV graduated from Gubkin Russian State University of Oil and Gas “Offshore Oil & Gas structures” speciality of Mechanical Faculty in 2009. Author of 10 publications published. E-mail:
Genghis S. GUSEINOV graduated from the Faculty of Oilfield Development of Azerbaijan Industrial Institute in 1957, and graduate school of Gubkin Moscow Institute of Petroche- mical and Gas Industry in 1963, the Department of Transportation and Storage of Oil and Gas. He is Doctor of Technical Sciences, Professor of Computer Aided Design of Facilities of the Oil and Gas Industry of Gubkin Russian State University of Oil and Gas (National Research University). He is author of over 300 published works.

Abstract: The article describes outstanding difficulties of Arctic shelf development requiring underwater floating platforms introduction. Authors compare mooring positioning for newly proposed underwater platform with the conventional semi-submersible rig. Based on calculation results a conclusion is made regarding significantly lower environmental loads on underwater platforms and consequent reasonability of application of such units for Arctic shelf development

Index UDK: 622.691.4

Keywords: offshore platforms, Arctic Shelf, environmental loads, mooring systems, underwater systems

1. Khazeev V.B., Huseynov Ch.S. Ocenka vneshnikh vozdeisvyi na pogruzhnie i podvodnie morskie neftegazovie soorusheniyа. Burenie i nepht, 2018, no. 3, 2 p.
2. Kulmach P.P. Yakornie sistemi uderzhaniya plavuchih objektov. M.: Sudostoenie, 1980, 336 p.
3. Huseynov Ch.S. Podvodnaya ekspluatazionnaja platforma. Patent No 2503800 ot 13.07.2011, opublikovan 10.01.2014.
4. SP 38.13330. Nagruzki i vozdeistviya na gidrotehnicheskie soorusheniay. М., 2012.