Articles Archive

№ 4/293, 2018

Title
Authors
Category
Mechanism of formation of primary porosity in Vendian-Cambrian biocenoses
Geosciences

Authors: Victoria A. LOSHKAREVA graduated from Gubkin Russian State University of Oil and Gas (National Research University) in 2016, she is Assistant Lecturer of the Department of Lithology of Gubkin Russian State University of Oil and Gas (National Research University). E-mail: viyurr@gmail.com
Olga V. POSTNIKOVA is Doctor of Geological and Mineralogical Sciences. She graduated in 1979 from Gubkin Moscow Institute of Petrochemical and Gas Industry. Her academic interest is the lithology of reservoirs. She is author of more than 80 scientific publications, including 35 articles in journals from the list of the Higher Attestation Commission of the Russian Federation.
E-mail: olga.postnikova@yandex.ru
Irina A. KITAEVA is Assistant Lecturer of the Department of Lithology of Gubkin Russian State University of Oil and Gas (National Research University). She is author of 33 scientific publications. E-mail: irina_kitaeva@bk.ru

Abstract: The paper isolated and described various types of cyano-bacterial biocenoses lying in base of Vend-Cambrian reservoir rocks. The mechanism of formation of primary porosity of carbonate reservoir rocks of productive horizons of oil and gas fields of Nepsko-Botuoba anteclise was identified

Index UDK: 552.54

Keywords: Eastern Siberia, Nepsko-Botuoba anteclise, vendian-cambrian, cyano-bacterial biocenoses, kaltsibionty, stromatolites, primary porosity, reservoir rock

Bibliography:
1. Bacterial paleontology. M.: PIN RAS, 2002, 188 p.
2. Maslov V.P. Stromatolites (Their genesis, methods of study, connection with facies, and geological significance on the example of the Ordovician of the Siberian platform). Tr. GIN AN SSSR. M.: Nauka, 1960, vyp. 41, 188 p.
3. Terleev A.A., Luchinina V.A. New facts on the establishment of the nature of the genus Epiphyton Bornemann, 1886. News of paleontology and stratigraphy. Ad. to the journal. “Geology and geophysics”, 2000, vyp. 2-3, p. 173-177.
4. Maslov V.P. Atlas of rock-forming organisms. M.: Nauka, 1973.

Updating geological and production parameters of complex jura reservoirs based on interwell correlation and tracer analysis (for eastern slope of Surgut arch deposits)
Geosciences

Authors: Alexander V. LOBUSEV graduated from Gubkin Moscow Institute of petrochemical and Gas Industry in 1980, from the Geological Faculty. Professor, Doctor of Geological and Mineralogical Sciences of Gubkin Russian State University of Oil and Gas (National Research University). He is the author of more than 130 scientific publications. E-mail: lobusev@gmail.com
Olga V. TYUKAVKINA she graduated from Tomsk State University in 1997, with a degree in Geological Survey, Prospecting and Exploration. Associate Professor, Candidate of Geological and Mineralogical Sciences of Gubkin Russian State University of Oil and Gas (National Research University). She is the author of more than 70 scientific publications. E-mail: kpgng@gubkin.ru
Nikolay V. MILETENKO, deputy Director of the Department of State Policy and Regulation in the Field of Geology and Subsoil Use of the Ministry of Natural Resources of the Russian Federation. Doctor of Geological and Mineralogical Sciences, Professor.
E-mail: minprirody@mnr.gov.ru
Alexander P. POZDNYAKOV graduated from Gubkin Moscow Institute of petrochemical and Gas Industry in 1978, from the specialty Applied Mathematics, he have finished a postgraduate study in 1981, in 2004, doctoral studies there. Professor, Doctor of Technical Science of Gubkin Russian State University of Oil and Gas (National Research University). He is the author of more than 100 scientific works and inventions, more than 10 teaching and methodical works, one monograph. E-mail: kpgng@gubkin.ru
Ирина Сергеевна ПЕРМЯКОВА, резервуарный инженер, ООО “СЖЖ Восток”. Автор 2 научных публикаций.
E-mail: kpgng@gubkin.ru

Abstract: Interwell correlation of the complex object YuS2 was carried out on the basis of an integrated approach and an integrated procedure for interpreting the results of indicator studies of various types of cross sections (type 1, 2, 3), using the example of the fields on the eastern slope of the Surgut arch. Simultaneous use of several types of tracers made it possible to detail the data on the hydrodynamic connection between the injection and production wells, determine the existence of inter-layer flows and establish the nature of the distribution of filtration flows and the filtration rate of the tracer fluid. The presented studies increase the information content of field data, provide an opportunity to justify and make design decisions for the development of reserves within a complex reservoir

Index UDK: 550.8.012

Keywords: tracer studies, indicator, hydrodynamic coupling, filtration properties, well, ammonium rodanide, trisodium phosphate, concentration

Bibliography:
1.Barkov S.L., Kachalov O.B., Muzy’ka A.V. Problemy i opyt razrabotki nizkoproduktivnyx zalezhej OAO “Surgutneftegaz”. Voprosy geologii, bureniya i razrabotki neftyanyx i gazovyx mestorozhdenij Surgutskogo regiona. Sbornik trudov SurgutNIPIneft’. M.: VNIIOENG, 1997, 303 р.
2.Kovalev A.G., Kuzneczov A.M., Kuzneczov V.V., Kolesnik V.B., Medvedev N.Ya. Issledovaniya svojstv kollektorov nefti v yurskix otlozheniyax Surgutskogo svoda. Voprosy geologii, bureniya i razrabotki neftyanyx i gazovyx mestorozhdenij Surgutskogo regiona. Sbornik trudov SurgutNIPIneft`. M.: VNIIOE`NG, 1997, 303 p.
3.Lobusev A.V., Lobusev M.A., Maxamatxanov R.A., Bakieva A.B. Zakonomernosti, vyayav-lennye v xode trassernyx issledovanij po utochneniyu geologicheskogo stroeniya slozhnopostroennyx zalezhej nefti. Territoriya neftegaz, 2013, no. 10, p. 32-37.
4.Popov A.Yu., Vakulenko L.G. Svyaz’ mineralogo-petrograficheskix xarakteristik alevrito-peschanyx otlozhenij gorizonta Yu2 Shirotnogo Priob’ya s ix fil’tracionno-emkostnymi svojstvami. Interekspo Geo-Sibir’, 2014, t. 2, no. 1, p. 120-124.
5.Tyukavkina O.V., Eshimov G.K. Izuchenie morfologicheskogo stroeniya i litologo-petrogra-ficheskix xarakteristik slozhnopostroennyx kollektorov Surgutskogo svoda. Materialy 1 Mezhdunarodnoj nauchno-prakticheskoj konferencii “Dostizheniya i perspektivyx estestvennyx i texnicheskix nauk”. Stavropol’: Centr nauchnogo znaniya “Logos”, 2012, p. 246, p. 221-227.
6.Tyukavkina O.V. Sovremennye metody vyavleniya zon slozhnopostroennyx kollektorov s trudnoizvlekaemymi zapasami dlya prinyatiya effektivnyx proektnyx reshenij. Nauchno-texnicheskij zhurnal Izvestiya vysshix uchebnyx zavedenij. Gornyj zhurnal, 2013, no. 8, p. 50-58.

Undiscovered oil and gas accumulations of Bukharo-Khiva region forecast based on statistical analysis of resources
Geosciences

Authors: Tatiana V. SIVAYKOVA graduated from Lomonosov Moscow State University in 2009 and Gubkin State University of Oil and Gas in 2011. She is post-graduate student of the Department of Geology of Hydrocarbon Systems at Gubkin State University of Oil and Gas (National Research University). Her research interests are associated with statistical analysis of oil and gas resources. She is author of 3 scientific publications. E-mail: tsivaykova@gmail.com
Sergey F. KHAFIZOV graduated from Gubkin Russian State University of Oil and Gas in 1987. He is Doctor of Geological and Mineralogical Sciences, professor, member of the Russian Academy of Natural Sciences and AAPG, Head of the Department of Geo- logy of Hydrocarbon Systems at Gubkin Russian State University of Oil and Gas (National Research University). He is specialist in the field of oil and gas fields exploration. He is author of 4 monographs and more than 60 scientific publications in Russian and foreign periodicals. E-mail: khafizov@gubkin.ru

Abstract: The article briefly reviews the features of Bukharo-Khiva region resources analysis, the methodology used and the results achieved. The geological concept of this region based on the available geological, geophysical as well as statistical data was reviewed. For that purpose 2 base methodologies were applied: discovered and undiscovered oil and gas accumulations distribution according to the reserves volumes [6] and functional relation of the discovered accumulations distribution according to their reserves volumes [4]. The first methodology allowed calculation of the expected accumulations amount and their resources volumes in Bukharo-Khiva region, while the second one provided us with their more precise approximate volumes in 4 different oil and gas accumulation areas with reference to different plays. On the basis of the available data the expected fluid types and probable accumulations localization forecast was conducted as well.

Index UDK: 550.812.1

Keywords: accumulation, Bukharo-Khiva region, distribution, gas, hydrocarbons, oil, resources

Bibliography:
1. Gutman I.S., Saakyan M.I. Metody podscheta zapasov i otsenki resursov nefti i gaza: Uchebnik dlya vuzov. M.: OOO “Izdatel’skiy dom Nedra”, 2017, 366 p.
2. Kontorovich A.E., Demin V.I. Metod otsenki kolichestva i raspredeleniya po zapasam mestorozhdeniy nefti i gaza v krupnykh neftegazonosnykh basseynakh. Geologiya nefti i gaza, 1977, no. 12, p. 18-26.
3. Kontorovich A.E., Demin V.I. Prognoz kolichestva i raspredeleniya po zapasam mestorozhdeniy nefti i gaza. Geologiya i geofizika, 1979, no. 3, p. 26-46.
4. Piter R. Rouz. Analiz riskov i upravlenie neftegazopoiskovymi proektami. M.-Izhevsk: NITs “RKhD”, Izhevskiy institut komp’yuternykh issledovaniy, 2011, 304 p.
5. Shpil’man V.I. Kolichestvennyy prognoz neftegazonosnosti. Ekaterinburg: Izdatel’skiy Dom “IzdatNaukaServis”, 2010, 236 p.
6. Shpil’man V.I., Tszin’ Chzhi Tszyun’. Zakon raspredeleniya vyyavlennykh i nevyyavlennykh zalezhey nefti i gaza po velichine zapasov. Geologiya nefti i gaza, 1993, no. 11.

Methods for calculating deformation-induced porosity changes
Geosciences

Authors: Valentin V. STRELCHENKO graduated from Gubkin Moscow Institute of Petrochemical and Gas Industry in 1962. He is Doctor of Technical Sciences, Professor of the Department of Well Logging of Gubkin Russian State University of Oil and Gas (National Research Univer- sity). His scientific interests are well investigation while drilling and tomographic petrophysics. He is author of more than 200 scientific publications. E-mail: strelvv@gmail.com
Dmitriy A. MELNICHUK graduated from Bauman Moscow State Technical University in 2012. He is postgraduate student of the Department of Well Logging of Gubkin Russian State University of Oil and Gas (National Research University). His scientific interests are geomechanical simulation and computational mechanics. He is author of more than 10 scientific publications.
E-mail: dmmelnichuk@gmail.com

Abstract: The paper reviews the methods for calculating deformation-induced porosity changes. Basic equations allowing to take into account porosity increments in the process of operation of oil and gas industry objects are given. It is shown that neglect of nonlinear rheological effects leads to a significant distortion of the obtained results. The priority direction of the further development of models with the purpose of increasing the accuracy of calculations is indicated

Index UDK: 539.3:539.376:532.546

Keywords: porosity, stress-strain state, poroelasticity, geomechanics

Bibliography:
1. Avchjan G.M., A.I. Matveenko, Stefankevich Z.B. Petrofizika osadochnyh porod v glubinnyh uslovijah. M.: Nedra, 1979, 224 p.
2. Basniev K.S., Dmitriev N.M., Rozenberg G.D. Neftegazovaja gidromehanika: Ucheb. posobie dlja vuzov. M.: Izhevsk: Institut komp’juternyh issledovanij, 2005, 544 p.
3. Dobrynin V.M. Fizicheskie svojstva neftegazovyh kollektorov v glubokih skvazhinah. M.: Nedra, 1965, 163 p.
4. Zhukov V.S. Ocenka izmenenij fizicheskih svojstv kollektorov, vyzvannyh razrabotkoj mestorozhdenij nefti i gaza. Gornyj informacionno-analiticheskij bjulleten’ (nauchno-tehnicheskij zhurnal), 2010, no. 6, p. 341-349.
5. Zhukov V.S., Iselidze O.V., Dahnov A.V., Ryzhov A.E. Vzaimosvjaz’ fil’tracionno-emko-stnyh svojstv i petrofizicheskih parametrov jurskih otlozhenij Shtokmanovskogo mestorozhdenija. Vesti gazovoj nauki: nauch.-tehnicheskij sb., 2010, no. 2 (5), p. 108-117.
6. Kashnikov O.Ju. Issledovanie i uchet deformacionnyh processov pri razrabotke zalezhej nefti v terrigennyh kollektorah: Dis. kand. tehn. nauk: 25.00.17. Tjumen’, 2008, 153 p.
7. Kashnikov Ju.A., Ashihmin S.G. Mehanika gornyh porod pri razrabotke mestorozhdenij uglevodorodnogo syr’ja. M.: Nedra, 2007, 486 p.
8. Kuz’min Ju.O., Zhukov V.S. Sovremennaja geodinamika i variacii fizicheskih svojstv gornyh porody, 2-e izd., ster. M.: Izdatel’stvo “Gornaja kniga”, 2012, 264 p.
9. Mel’nichuk D.A. Modelirovanie deformacionnyh izmenenij v okrestnosti neftjanoj skvazhiny. NTV “Karotazhnik”. Tver’: Izd. AIS, 2015, vyp. 9 (255), p. 79-89.
10. Mihajlov N.N., Popov S.N. Vlijanie nelinejnyh jeffektov na parametry szhimaemosti porod-kollektorov. Geologija, geofizika i razrabotka neftjanyh i gazovyh mestorozhdenij, VNIIOJeNG, 2016, no. 3, p. 50–57.
11. Nikolaevskij V. N., Basniev K. S., Gorbunov A. T., Zotov G. A. Mehanika nasyshhennyh poristyh sred. M.: Nedra, 1970, 339 p.
12. Popov S.N., Mazanov S.V., Zharikov M.G. Razrabotka geomehanicheskoj modeli dlja prognoza izmenenija fil’tracionno-emkostnyh svojstv kollektorov treshhinno-porovogo tipa v processe snizhenija plastovogo davlenija (na primere achimovskih otlozhenij mestorozhdenij nefti i gaza kraj- nego severa). Geologija, geofizika i razrabotka neftjanyh i gazovyh mestorozhdenij, 2015, no. 6, p. 48-56.
13. Strel’chenko V.V. Geofizicheskie issledovanija skvazhin: Uchebnik dlja vuzov. M.: OOO “Nedra-Biznescentr”, 2008, 551 p.
14. Shhipanov A.A. Matematicheskoe modelirovanie dvuhfaznoj fil’tracii v deformiruemoj treshhinovato-poristoj srede: Dis. kand. fiz.-mat. nauk: 05.13.18. Perm’, 2002, 214 p.
15. Albrecht D., Reitenbach V. Investigations on fluid transport properties in the North-German Rotliegend tight gas sandstones and applications. Journal of Environmental Earth Sciences, 2015, issue 10/2015.
16. Cao Y., Deng J., Yu B., Tan Q., Ma C. Analysis of sandstone creep and wellbore instability prevention. Journal of Natural Gas Science and Engineering, 2014, vol. 19, p. 237-243.
17. Chen Z., Huan G., Ma Y. Computational methods for multiphase flows in porous media. Philadelphia: Society for industrial and applied mathematics, 2006.
18. Cheng A. H.-D. Poroelasticity. Springer, 2016.
19. Fjær E., Holt R.M., Raaenetal A.M., Raaen A.M., Risnes R. Petroleum related rock mecha- nics, 2 edition, Elsevier, 2008.
20. Hassanzadegan A., Blocher G., Zimmermann G., Milsch H. Thermoporoelastic properties of Flechtinger sandstone. International Journal of Rock Mechanics & Mining Sciences, 2012, 49, p. 94-104.
21. Jaeger J.C., Cook N.G.W., Zimmerman R. Fundamentals of rock mechanics. Blackwell Publishing, 2009.
22. Lewis R.W., Schrefler B.A. The finite element method in the static and dynamic deformation and consolidation of porous media, 2 edition, Chichester: Wiley, 1998.
23. Schutjens P., Heidug W. On the pore volume compressibility and its application as a petrophysical parameter. 9-th Biennial International Conference & Exposition on Petroleum Geophysics, 2012, p. 1-17.
24. Tsai L.S., Hsieh Y.M., Weng M.C., Huang T.H., Jeng, F.S. Time-dependent deformation behaviors of weak sandstones. International Journal of Rock Mechanics & Mining Sciences, 2008, vol. 45, p. 144–154.
25. Verruijt A. Theory and problems of poroelasticity. Delft University of Technology, 2013.
26. Wang H.F. Theory of linear poroelasticity with applications to geomechanics and hydrogeo- logy. Princeton: Princeton University Press, 2000.
27. Yale D.P., Nabor G.W. et al. (1993). Application of variable formation compressibility for improved reservoir analysis: SPE 26647, Society of Petroleum Engineers, p. 435.
28. Yang S., Jiang Y. Triaxial mechanical creep behavior of sandstone. Mining Science and Technology, 2010, 20, p. 339-349.
29. Zheng H., Feng X.-T., Hao X. A creep model for weakly consolidated porous sandstone including volumetric creep. International Journal of Rock Mechanics & Mining Sciences, 2010, vol. 78, p. 99-107.
30. Zimmerman R.W. Compressibility of sandstones. Developments in Petroleum Science, Elsevier: Amsterdam, 1991, vol. 29.
31. Zoback M.D. Reservoir Geomechanics. Cambridge, UK: Cambridge University Press, 2007.

Resource provision of LNG projects in the Russian Federation and measures to stimulate exploration activities in the Arctic zone
Geosciences

Authors: Nikolay V. MILETENKO, deputy Director of the Department of State Policy and Regulation in the Field of Geology and Subsoil Use of the Ministry of Natural Resources of the Russian Federation. Doctor of Geological and Mineralogical Sciences, Professor. E-mail: minprirody@mnr.gov.ru

Abstract: The article illustrates the importance of liquefied natural gas (LNG) projects for the economy of Russia. The resource base of ongoing and planned LNG projects in Russia’s Arctic zone and their development plans are considered. The current legislation with planned amendments elaborated to stimulate geological exploration activities to convert significant volumes of the prognosis gas resources to reserves has been analyzed. The proposals promoting geologi- cal exploration in the Arctic zone of the Russian Federation, the plans for acelerated development of the resource base for LNG production and use are discussed

Index UDK: 553.981

Keywords: liquefied natural gas (LNG), resources, Arctic zone, legislation, geological exploration, incentive measures

Bibliography:

Effect of bed thickness on size of specific fragment of reservoir and horizontal wellbore structure
Geosciences

Authors: Zagid S. ALIEV graduated from Azibekov Azerbaijani industrial Institute in 1957. He is Professor of the Department of Gas and Condensate Field Development and Ope- ration of Gubkin Russian State University of Oil and Gas (National Research University). He has been head and the executive director of projects of development of oil and gas fields of Russia, Iran, Iraq, Vietnam, Kazakhstan, Algeria, Germany, etc., and also author of normative documents of OAO Gazprom such as instructions, manuals and standards of enterprises. He is author of 365 publications, including 35 monographs and 30 thematic brochures.
E-mail: rgkm@gubkin.ru
Elena M. KOTLYAROVA graduated from Gubkin Russian State University of Oil and Gas in 1988. She is Candidate of Technical Sciences, associate professor of the Dept. of Gas and Condensate Field Development and Operation of Gubkin Russian State University of Oil and Gas (National Research University). She is expert in the field of development and operation of gas and gas-condensate fields and UGS. She is author of 50 publications. E-mail: kotlyarova_gubkin@mail.ru

Abstract: We studied the effect of bed thickness, as one of the main parameters that determine the size of a specific fragment per one horizontal well. The length of the horizontal borehole affects the coefficients of filtration resistance to a greater extent than the bed thickness, but an unjustified increase in the length of the horizontal section is not economically feasible. The inflow rate of gas decreases at each linear meter of the reservoir with increasing bottomhole pressure along the length of the horizontal wellbore. For real fields, examples are given on the rational choice of the size of a reservoir fragment penetrated by a horizontal well, with respect for the reservoir parameters and the degree of reservoir penetration, leading to an increase in well productivity

Index UDK: 622.276

Keywords: horizontal borehole design; specific drainage area; specific gas reserves, horizontal wells productivity, bed thickness; filtration resistance coefficients; degree of penetration

Bibliography:
1. Aliev Z.S., Sheremet V.V. Opredelenie proizvoditel’nosti gorizontal’nyh skvazhin, vskryvshih gazovye i gazoneftyanye plasty. M.: Nedra, 1995.
2. Aliev Z.S., Rebrikov A.A. Priblizhennyj metod poiska optimal’nyh razmerov fragmenta pryamougol’noj formy i ego vskrytiya dlya obespecheniya maksimal’nogo debita gorizontal’noj skvazhiny. Burenie i neft’, 2007, no. 2.
3. Aliev Z.S., Kotlyarova E.M. Opredelenie proizvoditel’nosti gorizontal’noj skvazhiny, vskryvshej plast s peremennoj tolshchinoj. Trudy VI Mezhdunarodnogo tekhnologicheskogo simpo-ziuma. Institut neftegazovogo biznesa, 2007.
4. Aliev Z.S. i dr. Teoreticheskie i tekhnologicheskie osnovy primeneniya gorizontal’nyh skvazhin dlya osvoeniya gazovyh i gazokondensatnyh mestorozhdenij. M.: Nedra, 2014.
5. Aliev Z.S. i dr. Osobennosti razrabotki nizkoprodyktivnyh gazokondensatnyh mestorozhdenij s bol’shim soderzhaniem kondensata s ispol’zovaniem gorizontal’nyh skvazhin. M.: Nedra, 2016.
6. Aliev Z.S. Vliyanie razlichnyh faktorov na debit gorizontal’nyh skvazhin. NTZH “Tekhnologiya TEHK”, iyun’, 2007.
7. Aliev Z.S. Poisk naychno-obosnovannoi konstrukii gorizontal’noi skvazhiny dlya osvoeniya gazovyh i gazokondensatnyh mestorozhdenij. NTZH “Tekhnologiya TEHK”, aprel’, 2007.

Numerical experiment to evaluate microheterogeneity of aquifer reservoir affect while creating UGS
Geosciences

Authors: Maria P. KHAYDINA graduated from Gubkin Russian State University of Oil and Gas in 1988, Candidate of Technical Sciences, assistant professor of the Gas Development Department of Gubkin Russian State University of Oil and Gas (National Research University). Specialist in the field of filtration processes simulation. She is author of about 30 scientific publications.
E-mail: mmp2003@inbox.ru
Alexander A. NEKRASOV graduated from Gubkin Russian State University of Oil and Gas in 1997, Candidate of Technical Sciences, Dr. Ing, senior lecturer of the Gas Development Department of Gubkin Russian State University of Oil and Gas (National Research University). Specialist in the field of oil and gas fields simulation. He is author of more than 25 scientific publications.
E-mail: nekrass@yahoo.com
Aliona V. KOLESNISHENKO graduated from Gubkin Russian State University of Oil and Gas (National Research University) in 2014.
E-mail: slaboshevskaya@gmail.com

Abstract: The phase permeability hysteresis and layer absolute permeability heterogeneity of aquifer reservoir affects are studied when gas injection and production cycles simulate an underground gas storage operation. Basic data of the numerical model correspond to the parameters of real UGS objects existing in Russia. The results of calculations for different versions of basic data showed that the observed heterogeneities lead to the deformation of the geometrical form gas saturated field and phase permeability hysteresis affects the gas saturation distribution over the gas field volume

Index UDK: 622.276.031:532.11 (571.56)

Keywords: underground gas storage, relative phase permeability, absolute permeability, gas saturation, heterogeneity, hydrodynamic simulation

Bibliography:
1. Chizmadshev Yu.A., Markin V.C., Tarasevitch M.R., Chirkov Yu.G. Macricinetika protsessov v poristikh sredakh. M.: Science, 1971, 362 p.
2. Mikhailovsky A.A. About the relative phase hysteresis at different directions of gas-water and water-gas displacement in hydrophilic porous media. Science and Technic in gas industry, 2004, no. 3–4, p. 6–9.
3. Левыкин Е.В. Tekhnologicheskoe proektirovanie khranenia gaza v vodonosnykh plastakh. M.: Nedra, 1973, 208 p.

Technique of engineering evaluation of heat flow through shell surface of cryogenic liquefied natural gas tank
Geosciences

Authors: Svetlana G. IVANTSOVA graduated from Gubkin Russian State University of Oil and Gas in 1982, she is Doctor of Technical Sciences, Professor of the Department of Construction and Repair of Gas and Oil Pipelines and Storage Facilities of Gubkin Russian State University of Oil and Gas (National Research University). She is specialist in the field with construction of gas and oil pipelines and storage facilities. She is author of more than 100 scientific publications. E-mail: sivants11@gmail.com
Artem I. RAKHMANIN graduated with honors from Gubkin Russian State University of Oil and Gas in 2010. He is Candidate of Technical Sciences, chief expert of Project Support Department, OOO “PO “Transgas”. He is specialist in the field of safety and operational reliability of cryogenic storage tanks for liquefied natural gas. He is author of 15 scientific publications.
E-mail: artyom.rahmanin@gmail.com

Abstract: Optimization of investment costs for planned projects of the construction of complexes for liquefaction, storage and shipment of natural gas requires methods for calculating the heat regime of cryogenic tanks for liquefied natural gas. These allow to make optimal design decisions on the choice of heat insulation system that directly determines the vaporization rate of the product, and thus the volume of capital investments at the construction stage and the cost of operation of the evaporating gas extraction system and its re-liquefaction. A method of engineering calculation of the heat flow through the multilayer wall of the full containment cryogenic tanks, which consists of an external reinforced concrete wall, carbon steel liner on the internal surface of the reinforced concrete wall, a layer of flexible compensation mats of fiberglass, a layer of loose-fill heat insulation of expanded perlite sand and an internal tank of cold-resistant steel. It is proved, that in heat processes calculations of full containment cryogenic tanks with acceptable for engineering problems accuracy it is possible to approximate the cylindrical surface of the multilayer wall of the tank with a plain surface without taking into account the thermal resistance of the carbon steel liner and the internal shell. It is also possible not to take into account the turbulent convection of the LNG boundary layer along the walls of the inner shell

Index UDK: 622.691.23

Keywords: cryogenic storage tanks, LNG storage, heat insulation, heat calculation

Bibliography:
1. Borisov B.B., Vladimirov A.E., Zvereva T.V., Cherepennikov A.N. Metodika rasheta statsionarnogo temperaturnogo rejima bolsheob’emnih nizkotemperaturnih rezervuarov dl’a hranenia SPG. [The methods of calculating stationary temperature regime of large-volume low-temperature storage tanks for LNG]. Trudy MINHiGP imeni I.M. Gubkina [Proceedings of Moscow Institute оf the Petrochemical and Gas Industry named after I.A. Gubkin], 1980, no. 153, p. 123-131 (In Rusian).
2. Odisharija G.Je., Safonov B.C., Tarabrin V.A. Thermal processes in low-temperature isothermal storages of the liquefied gases. Gazovaja promyshlennost [Gas Industry], 1982, no. 11, p. 43–46. (In Russian).
3. Shklover A.M. Teploperedasha pri periodisheskih teplovih vozdeistviah [Heat transfer under periodic thermal loads]. Moskva-Leningrad, 1961, 160 p.
4. Povalaev M.I. Pokritia i krovli promishlennih zdaniy [Coverings and roofs of industrial buildings]. Moskva, 1969. 177 p.
5. Safonov V.S. Physical features and ways to prevent LNG stratification in the isothermal tanks. Moscow: VNIIJegazprom, 1989. Iss. 7, 50 p. (In Russian).
6. Miheev M.A., Miheeva I.M. Osnovi teploperedashi. [Fundamentals of heat transfer]. Moskva, 1973, 344 p.

Errors of determination of volume of oil stored in vertical steel tanks
Geosciences

Authors: Elena S. SHATSKIСH graduated from Gubkin Russian State University of Oil and Gas in 2005. She is post graduate student of the Department of Pipeline and Storage Facilities Construction and Rehabilitation at Gubkin Russian State University of Oil and Gas (National Research University), chief technologist PAO “Transneft”. E-mail: shatskihes@ak.transneft.ru
Mikhail A. LEZHNEV Candidate of Sciences, Associate Professor of the Department of Pipeline and Storage Facilities Construction and Rehabilitation Gubkin Russian State University of Oil and Gas (National Research University). E-mail: lezhnev.m@gubkin.ru
Mikhail G. MURZIN student of the Department of Pipeline and Storage Facilities Construction and Rehabilitation Gubkin Russian State University of Oil and Gas (National Research University). E-mail: murzinmisha@mail.ru
Victor M. PISAREVSKIY graduated from Moscow Institute of Chemical Machine-Building in 1959. He is Doctor of Technical Sciences, Professor of the Department of Gas and Oil Pipelines Engineering and Operation of Gubkin Russian State University of Oil and Gas (National Research University). He is author of 95 scientific publications. E-mail: pegnp@gubkin.ru

Abstract: Problems of determining the actual volume of the oil stored in vertical steel cylindrical tanks are considered. The shortcomings of the existing methods have been analyzed and identified. The necessity for developing an individual normative document to determine the volume of oil has been identified and justified

Index UDK: 624.9

Keywords: steel cylindrical tank, quantity, oil, oil quantity determination

Bibliography:
1. MI 2951. Gosudarstvennaya sistema obespecheniya edinstva izmerenij. Massa nefti. Metodika vypolneniya izmerenij v vertikal’nyh rezervuarah v sisteme magistral’nogo nefteprovodnogo transporta [EHlektronnyj resurs], 2005, 32 p. URL: http://files.stroyinf.ru/Data2/1/4293818/4293818655. (Data obrashcheniya 12.12.2017).
2. GOST 8.570. Gosudarstvennaya sistema obespecheniya edinstva izmerenij (GSI). Rezervuary stal’nye vertikal’nye cilindricheskie. Metodika poverki: [EHlektronnyj resurs], 2000, 96 p. URL: http://docs.cntd.ru/document/1200008446. (Data obrashcheniya 27.11.2017).
3. GOST 7502. Ruletki izmeritel’nye metallicheskie. Tekhnicheskie usloviya [EHlektronnyj resurs], 1998, 11 p. URL: http://docs.cntd.ru/document/1200004328. (Data obrashcheniya 24.11.2017).
4. RMG 86 GSI. Massa nefti. Metodika vypolneniya izmerenij v vertikal’nyh rezervuarah v sisteme magistral’nogo nefteprovodnogo transporta. Osnovnye polozheniya: [EHlektronnyj resurs], 2009, 22 p. URL: http://docs.cntd.ru/document/1200073890. (Data obrashcheniya 20.11.2017).

Formation of principles of optimum development and functioning of gas transmission systems
Technical sciences

Authors: Bogdan V. BUDZULYAK graduated from Ivano-Frankovsk University of Oil and Gas in 1970 and from Russian Presidential Academy of National Economy in 1995. Doctor of Technical Sciences, President of the Self-Regulatory Organization “Association of costructors of gas and oil complexes”, Professor of the Department of Construction and Repair of Gas and Oil Pipelines and Storage Facilities of Gubkin Russian State University of Oil and Gas (National Research University), member (academician) of the Academy of Mining Sciences. He is author of more than 200 scientific publications. E-mail: ebaruk@asgink.ru
Dmitry N. LEVITSKIY graduated from Gubkin Moscow Institute of Petrochemical and Gas Industry in “Mechanical Engineering, Metal-Cutting Machines” (1975). He is Doctor of Engineering, professor, Head of the Department of Theoretical Mechanics at Gubkin Russian State University of Oil and Gas (National Research University). He is author of 5 inventions, over 110 scientific works on problems of theoretical and applied mechanics. E-mail: levitskiy.d@gubkin.ru
Alexey S. LOPATIN graduated from Gubkin Moscow Institute of Petrochemical and Gas Industry (1979). He is Doctor of Engineering, professor, Head of the Department of Thermodynamics and Heat Engines at Gubkin Russian State University of Oil and Gas (National Research University). He is author of 5 patents and more than 350 scientific, educational and methodical works.
E-mail: Lopatin.a@gubkin.ru
Alexander S. KUZNECHIKOV graduated from te Gubkin Russian State University of Oil and Gas in 2001, he is Senior Lecturer at Gubkin Russian State University of Oil and Gas (National Research University). He is author of 23 publications in the field of shock and wave processes in pipeline systems, education, standardization and systems of quality management. E-mail: kas@gubkin.ru

Abstract: The most important problems of the gas transmission system of Russia are ensuring the required volumes of transportation of gas and uninterrupted operation of supply of natural gas to consumers, increase in reliability of operation and minimization of power costs of transport of gas. These are solved in the process of design, construction, operation, reconstruction and modernization of the system and its main objects. The solution of the main tasks faced by the national gas transmission system is based on the study and analysis of thermogasdynamic processes occurring in the main objects and the power producing equipment used. It requires the knowledge of the structure, the principles of construction, the operation and control of the gas transmission system, the actual and planned operating modes of the gas transmission system and its main objects, the devices and schemes of the operation of the main objects, the design and characteristics of the used power producing equipment, the mathematical description of the working processes in the main objects and power producing equipment of the gas mains, methods of determination of thermodynamic and thermophysical properties of the working bodies of the power producing equipment and the systems of the main transport of gas

Index UDK: 622.691.4

Keywords: gas transmission system; gas transport; power expenses; system; natural gas; principles of development

Bibliography:
1. Vertepov A.G., Lopatin A.S., Pokutnyj A.V. Primenenie indikatorov ehnergoehffektivnosti dlya gazotransportnoj sistemy Rossii. Gazovaya promyshlennost’, 2018, no. 1 (763), p. 85.
2. Ispol’zovanie vozobnovlyaemyh istochnikov ehnergii dlya povysheniya ehnergoehffektivnos- ti ESG Rossii. V.V. Bessel’, A.S. Lopatin, A.A. Belyaev, V.G. Kucherov. ZHurnal Neftegaz.ru, 2013, no. 10, p. 12-20.
3. EHnergosberegayushchie tekhnologii pri magistral’nom transporte prirodnogo gaza. B.P. Por- shakov, A.S. Lopatin, A.F. Kalinin, S.M. Kupcov, K.H. SHotidi. M.: Izd. centr RGU nefti i gaza imeni
I.M. Gubkina, 2014, 417 p.
4. Celevaya kompleksnaya programma po sozdaniyu otraslevoj sistemy diagnosticheskogo ob- sluzhivaniya gazotransportnogo oborudovaniya kompressornyh stancij RAO Gazprom (do 2000g.). M.: IRC Gazprom, 1997.
5. Osobennosti resursosberegayushchej sistemy ehkspluatacii oborudovaniya kompressornyh stancij. A.S. Lopatin, A.F. Kalinin, D.N. Levitskij, D.A. Belyaev. Dokl. Mezhd. nauch.-tekhn. konf. “Inzhenernoe iskusstvo v razvitiicivilizacii” (Moskva, oktyabr’, 2003). M.: MGTU imeni N.EH. Bau- mana, 2004, p. 140-141.
6. Formirovanie edinoj otraslevoj sistemy diagnosticheskogo obsluzhivaniya (OSDO) oborudo- vaniya RAO “Gazprom”. V.V. Remizov, A.D. Sedyh, S.P. Zarickij, A.S. Lopatin, M.A. Bronovec. Nauchno-tekhn. sbornik IRC Gazprom, ser. “Diagnostika oborudovaniya i truboprovodov”, 1996, no. 4-6, p. 7-22.
7. Diagnosticheskoe obsluzhivanie magistral’nyh gazoprovodov. A.M. Angalev, B.N. Antipov, S.P. Zarickij, A.S. Lopatin. M.: MAKS Press, 2009, 112 p.
8. ZHitomirskij B.L., Lopatin A.S. Kadrovoe obespechenie sistemy upravleniya tekhnicheskim sostoyaniem i celostnost’yu magistral’nyh gazoprovodov. Territoriya Neftegaz, 2017, no. 3, p. 18-21.
9. Sistema nepreryvnogo tekhnicheskogo obsluzhivaniya i remonta gazotransportnogo oborudo- vaniya kompressornyh stancij SINTOR. A.S. Lopatin, D.N. Levitskij, S.P. Zarickij, K.V. Frejman,
10. B.V. Frejman i dr. M.: RGU nefti i gaza imeni I.M. Gubkina, 2005, 80 p.