Articles Archive

№ 1/290, 2018

Title
Authors
Category
Preparation of X-ray tomography data for fluidodynamics modeling in low-permeable rocks
Geosciences

Authors: Andrey A. ABROSIMOV graduated from Gubkin Russian State University of Oil and Gas in 2013. He is Candidate of Technical Sciences, engineer of the Department of Oil Field Development and Operation of Gubkin Russian State University of Oil and Gas (National Re-search University). His research interests include X-Ray tomography, petrophysics oil and gas reservoirs. He is author of more than 20 scientific publications and 3 copyright certificates. E-mail: abrosimov.aa@inbox.ru
Yevgenyi V. SHELYAGO (b. 1985) graduated from Gubkin Russian State University of Oil and Gas in 2008, engineer of the Department of Oil Field Development and Operation of Gubkin Russian State University of Oil and Gas (National Research University). Specialist in reservoir physics and enhanced oil recovery. He is author of more than 30 scientific publications.
E-mail: thelgp@yandex.ru
Irena V. YAZYNINA graduated from Lomonosov Moscow State University in 1975. He is Candidate of Technical Sciences, assistant professor of the Department of Oil Field Deve-lopment and Operation of Gubkin Russian State University of Oil and Gas (National Research University). Specialist in reservoir physics and enhanced oil recovery. She is author of more than 50 scientific publications.
E-mail: yazynina@mail.ru

Abstract: Using X-ray tomography data to calculate rock properties is a promising direction in petrophysics. However, when calculating filtration characteristics, researchers face various problems and limitations, one of which is insufficient resolution of X-ray tomographs, which does not allow registering pores and channels that are smaller than the resolving capacity of the device. This leads to the fact that the model of pore space loses its connection, and therefore it becomes impossible to carry out mathematical modeling at the pore scale by evaluating the filtration characteristics of rocks. The algorithm for restoring the connectivity of the pore space model is described. This allows modeling fluids and calculating the reservoir properties of rocks in conditions of restricted resolution of X-ray tomography. The working capacity of the proposed method is checked. Thus, the proposed method of preparing X-ray tomography data allows obtaining the result quickly and without additional studies, which ultimately expands the field of application of X-ray tomography

Index UDK: 552.1:53

Keywords: X-ray tomography, pore space, permeability, low-permeability reservoir, petrophysical relationships

Bibliography:
1. Abrosimov A.A. Х-ray tomography for study of oil and gas reservoir systems. Trudy RGU nefti i gaza imeni I.M. Gubkina [Proceedings of Gubkin Russian State University of Oil and Gas], 2015, no. 4/281, p. 5-15 (in Russian).
2. Beljakov M.A., Jazynina I.V., Abrosimov A.A. The impact of secondary dolomitization on properties of oil and gas reservoirs. Neftjanoe hozjajstvo [Oil Industry>], 2015, no. 6, p. 24-27 (in Russian).
3. Zhuravlev A.V., Vevel’ Ja.A. Possibilities of use of computer microtomography in micropale-ontological and lithological studies. Neftegazovaja geologija. Teorija i praktika [Oil and gas geology. Theory and practice], 2012, t. 7, no. 2, p. 1-13 (in Russian).
4. Romm E.S. Structure models of rocks pore space. L.: Nedra, 1985, 240 p.
5. Hozjainov M.S. Vajnberg Je.I. Computational microtomography is a new information technology for non-destructive investigation of the internal microstructure of geological rocks. Geoinformatika [Geoinformatics], 1992, no. 1, p. 42-50 (in Russian).
6. Chugunov S.S., Kazak A.V., Cheremisin A.N. Integration of X-ray micro-computed tomography and focused-ion-beam scanning electron microscopy data for pore-scale characterization of Bazhenov formation, Western Siberia. Neftjanoe hozjajstvo [Oil Industry], 2015, no. 10, p. 44-49 (in Russian).
7. Jazynina I.V., Sheljago E.V., Abrosimov A.A., Veremko N.A., Grachev N.E., Senin D.S. No-vel approach to core sample MCT research for practical petrophysics problems solution. Neftjanoe hozjajstvo [Oil Industry], 2017, no. 1, p. 19-23 (in Russian).
8. Jazynina I.V., Sheljago E.V., Abrosimov A.A., Veremko N.A., Grachev E.A., Bikulov D.A. Testing a new approach to petrophysical trend determination from X-Ray tomography. Neftjanoe hozjajstvo [Oil Industry], 2017, no. 2, p. 36-40 (in Russian).
9. Dong H., Blunt M. Pore-network extraction from micro-computerized-tomography images. Physical Review E80, 2009, no. 036307.
10. Garcia X., Akanji L.T., Blunt M.J., Matthai S.K., Latham J.P. Numerical study of the effects of particle shape and polydispersity on permeability. Physical Review E80, 2009, no. 021304.
11. Qingrong Xiong, Todor G. Baychev, Andrey P. Jivkov Review of pore network modelling of porous media: Experimental characterisations, network constructions and applications to reactive transport. Journal of Contaminant Hydrology, 2016, no. 192, p. 101-117.

Authors: Vagif Yu. KERIMOV was born in 1949. He graduated from Azizbekov Azebaijan Institute of Oil and Petrochemistry. He is Doctor of Geological and Mineralogical Sciences, professor, head of the Department of Theoretical Fundamentals of Prospecting and Exploration of Oil and Gas of Gubkin Russian State University of Oil and Gas (National Research University). He has published over 200 works. E-mail: vagif.kerimov@mail.ru
Victor I. ERMOLKIN is doctor of Geological and Mineralogical Sciences, professor of the Department Theoretical Fundamentals of Prospecting and Exploration of Oil and Gas of Gubkin Russian State University of Oil and Gas (National Research University). He is author of more than 180 scientific publications. E-mail: jcomtess@yandex.ru
Alexander V. OSIPOV graduated from Gubkin Russian State University of Oil and Gas in 2010. He is Candidate of Geological and Mineralogical Sciences, assistant professor of the Department Theoretical Fundamentals of Prospecting and Exploration of Oil and Gas of Gubkin Russian State University of Oil and Gas (National Research University). He is author of more than 50 scientific publications, including one monograph and a textbook for high schools. E-mail: osipov.a@gubkin.ru
Rustam N. MUSTAEV graduated from Orenburg State University in 2010. He is Candidate of Geological and Mineralogical Sciences, assistant professor of the Department Theoretical Fundamentals of Prospecting and Exploration of Oil and Gas of Gubkin Russian State University of Oil and Gas (National Research University). He is specialist in the Black Sea — Caspian megabasin. He is author of 52 scientific publications, two monographs and two textbooks. E-mail: r.mustaev@mail.ru

Abstract: The principles of oil and gas geological zoning are considered in the article. In the proposed scheme of zoning the delineated oil and gas bearing territories and deposits are closely interrelated structurally and genetically and together represent a unified integrated oil and gas geological megasystem. The characteristics of objects of oil and gas geological zoning are given. Based on the study of sedimentary basins, the genesis and stages of their development, which are associated with the evolution of hydrocarbon systems, as well as basin analysis, regional designs, and digital structural models, a scheme for oil and gas geological zoning of the Okhotsk region was developed

Index UDK: 550.8.01

Keywords: deposits, oil and gas geological zoning, oil and gas bearing basins, oil and gas provinces, petroleum systems, hydrocarbons

Bibliography:
1. Bakirov A.A., Bakirov E.A., Gabrielyants G.A., Kerimov V.Yu., Mstislavskaya L.P. Teoreticheskie osnovy poiskov i razvedki nefti i gaza. Uchebnik dlya vuzov. Kn. 1. Teoreticheskie osnovy prognozirovaniya neftegazonosnosti nedr. M.: OOO „Izdatel’skiy dom Nedra”, 2011, 412 p.
2. Geologicheskie tela (terminologicheskiy spravochnik). Pod red. Yu.A. Kosygina, V.A. Kulyn-dysheva, V.A. Solov’eva. M.: Nedra, 1986, 330 p.
3. Kerimov V.Yu., Bondarev A.V., Sizikov E.A., Sinyavskaya O.S., Makarova A.Yu. Usloviya formirovaniya i evolyutsii uglevodorodnykh sistem na Prisakhalinskom shel’fe Okhotskogo moray. Neftyanoe khozyaystvo. M., 2015, no. 8, p. 22-27.
4. Kerimov V.Yu., Lavrenova E.A., Sinyavskaya O.S., Sizikov E.A. Otsenka uglevodorodnogo potentsiala generatsionno-akkumulyatsionnykh uglevodorodnykh sistem Okhotskogo moray. Trudy Rgu nefti i gaza imeni I.M. Gubkina. M., 2015, no. 3, p. 18-30.
5. Kerimov V.Yu., Senin B.V., Bogoyavlenskiy V.I., Shilov G.Ya. Geologiya, poiski i razvedka mestorozhdeniy uglevodorodov na akvatoriyakh Mirovogo okeana. M.: OOO „Izdatel’skiy dom Nedra”, 2016, 411 p.
6. Kerimov V.Yu., Khoshtariya V.N., Bondarev A.V., Sizikov E.A. Ochagi generatsii uglevodorodov v Prisakhalinskom shel’fe Okhotskogo moray. Trudy Rgu nefti i gaza imeni I.M. Gubkina. M., 2016, no. 2, p. 5-15.
7. Kosygin Yu.A., Kulyndyshev V.A., Solov’ev V.A. Ierarkhiya geologicheskikh tel (terminologicheskiy spravochnik). M.: Nedra, 1977, 680 p.
8. Osipov A.V., Zaytsev V.A., Ryabukhina S.G., Bondarev A.V. Geomekhanicheskoe modelirovanie kollektorskikh svoystv Kirinskogo litsenzionnogo uchastka (Prisakhalinskiy shel’f). Sbornik doklalov 18-i nauchno-prakticheskoy konferentsii po voprosam geologorazvedki i razrabotki mestorozhdeniy nefti i gaza „Geomodel’-2016”. Gelendzhik, 2016.
9. Osipov A.V., Zaytsev V.A., Ryabukhina S.G., Sizikov E.A. Otsenka vtorichnykh fil’tratsionnykh parametrov kollektorov v rezul’tate geomekhanicheskogo modelirovaniya (Prisakhalinskiy shel’f). Sbornik doklalov 18-i nauchno-prakticheskoy konferentsii po voprosam geologorazvedki i razrabotki mestorozhdeniy nefti i gaza „Geomodel’-2016”. Gelendzhik, 2016.
10. Slovar’ po geologii nefti i gaza. L.: Nedra, 1988, 679 p.
11. Kharakhinov A.V. Novye perspektivnye napravleniya neftegazopoiskovykh rabot na shel’fe Severnogo Sakhalina. Geologiya nefti i gaza. M., 1999, no. 9-10, p. 18-25.

Big Donbass: internal platform structure for assessment of regional petroleum potential
Geosciences

Authors: Vadim V. MASLOV graduated from Gubkin Russian State University of Oil and Gas in 1995. He is Candidate of Geological and Mineralogical Sciences, associate professor of the Dept. of Geology of Gubkin Russian State University of Oil and Gas (National Research University). The scope of his scientific interest includes petroleum potential of Upper Paleozoic complex deposits in the Ustyurt region, as well as oil and gas potential shelves of marginal seas. He is author of 15 publications. E-mail: maslov.v@gubkin.ru
Oleg S. OBRYADCHIKOV graduated from Gubkin Russian State University of Oil and Gas in 1960. He is Candidate of Geological and Mineralogical Sciences, associate professor of the Dept. of Geology of Gubkin Russian State University of Oil and Gas (National Research University). His scientific interests are related with issues of national and international regional geology, geological modeling in oil and gas industry, salt dome tectonics. He is author of more than 80 scientific publications, co-author of two monographs.
E-mail: osobr19@yandex.ru
Lyubov F. GORUNOVA graduated from Gubkin Moscow Institute of petrochemical and gas industry in 1960. He is Candidate of Geological and Mineralogical Sciences, associate professor of the Dept. of Geology of Gubkin Russian State University of Oil and Gas (National Research University). Her scientific interests are related with issues of the geological structure and prospects of petrogas complexes of the at Caspian cavity sediments, areas of connection with outlying structures — Scythian and Turan plates. She is author of more than 20 scientific publications and 1 textbook. E-mail: luba-gor@mail.ru

Abstract: The article discusses the formation of the Big Donbass, which was due to the repeated displacement of Azov projection, leading to the expansion and contraction of the South-Eastern end of the Dnieper-Donets aulacogen. The convergen-ce of Azov and Voronezh projections led to the folding activity. During the periods of expansion typical platform sediments accumulated, including Lower Carboniferous sediments of facies which indicate the accumulation of clay-carbonate strata with a high content of OM. In the predicted Lower Carboniferous reef structures small deposits of oil can be detected. Understanding of the platform nature of the Big Donbass allows to hope to find new deposits of hydrocarbons

Index UDK: 553.98

Keywords: rift, Donbass, folding, deposits, petroleum prospects

Bibliography:
1. Leonov Y.G., Volozh Y.A., Antipov M.P., Bykadorov V.A., Hereskova T.N. The consolidated crust of the Caspian region. Works of GIN RAN, vol. 593, 2010, 64 р.
2. Shatsky N. With. The Origin Of The Donets Basin. Selected works, vol. 2, M.: GIN, 1964, р. 251-270.
3. Khain V.E. Regional geotectonics. Palpita Europe and Western Asia. M.: Nedra, 1977, р. 359.
4. Problem and prospects of integrated development of mineral resources of the Eastern Donbass Team of authors. Rostov-on-don: Рublishing house of YNC RAN, 2005, p. 352.
5. Kuznetsov V.G., Abrazhevich E.V., Slyusarenko I.V. lower Carboniferous reef formation North of the Donbas and the prospects of their oil and gas potential. Geology of oil and gas, no. 7, 1978, p. 42-45.
6. Obryadchikov O.S., Taskinbayev K.M. Geodynamic nature of the sedimentary cover and the petrogas perspectives of the Aral-Caspian region. In „Geology of the Caspian and Aral Seas regions”. Almaty: Kazakh Geological Society „KazGeo”, 2004, р. 91-97.
7. Maslov V.V., Obryadchikov O.S., Gorunova L.F. Geodynamic evolution of the south-eastern part of the East European platform, in connection with estimation of prospects for oil and gas. Col-lection of scientific works of Russian state University of oil and gas I.M. Gubkin, 2017, no. 2, р. 56-65.
8. Maslov V.V., Miloserdova L.V. Tectonic nonuniformity and oil-and-gas content of the Turan Plate based on the satellite images interpretation. Collection of scientific works of Russian state University of oil and gas I.M. Gubkin, 2016, no. 3, р. 68-83.

New equipment for downhole sucker rod pumping unit. Development and reliability analysis in small diameter side tracks
Geosciences

Authors: Shagabytlin A. ALIEV (b.1992) graduated from the Russian State University of oil and gas (National Research University) named after I.M. Gubkin in 2015. Post-graduate of „engineering mechanics” department of the Gubkin Russian State University of Oil and Gas (National Research University). Author of 2 publications in the field of oil and gas equipment. E-mail: mr.aliev111@mail.ru
Aleksei V. DEGOVCOV graduated from Gubkin Moscow Institute of petrochemical and gas industry in 1982. Candidate of Engineering Sciences, Associate Professor of the Department of Machines and Equipment of Oil and Gas Industry at Gubkin Russian State University of Oil and Gas (National Research University). A specialist in the field of pumping equipment production of oil and gas. Author of 65 publications in the field of oil and gas equipment. E-mail: degovtsov.aleksey@yandex.ru

Abstract: The cable rod is established in the place of the maximum rates of set of curva-ture for elimination of abrasion of a column of NKP and bars, for reduction of friction forces in couple of „bar pipe”. The article questions of a possibility of use of ropes of a different design as a rope bar are taken up. Results of researches of strength properties of plastically pressed out ropes of the Beloretsk plant the conditional module of elasticity of these ropes is defined and justifies the scope of such ropes as the sucker- robs. The design of the pump developed by authors with the vacuum chamber provi-ding the movement of rope bars at the course down is shown. Results of calculations of reliability (average operating time and probability of no-failure) of borehole pumping installations a cable rod (BPI with СR), are presen-ted on wells of LLC LUKOIL-PERM. Impact assessment of such factors as adjournment of ASPO, a deviation angle from a vertical and length of a rope bar on an average operating time is given.

Index UDK: 622.276.53

Keywords: cable rod, well, lateral trunk, reliability, probability of failure-free operation

Bibliography:
1. Opyt jekspluatacii skvazhin s bokovymi stvolami malogo diametra, ShSNU s kanatnoj shtan-goj v OOO „LUKOJL-PERM”. V.N. Ivanovskij, A.V. Degovcov, A.A. Sabirov, S.S. Pekin, E.V. Kachin, S.G. Patrushev, S.V. Popov. „Territorija NEFTEGAZ”. M.: Kamelot-Pablishing, 2015, no. 3, p. 78-87.
2. Ivanovskij V.N., Sabirov A.A., Degovcov A.V., Pekin S.S. Kanatnaja nasosnaja shtanga Patent na izobretenie No. 2527275 zaregistrirovano v Gosudarstvennom reestre izobretenij RF 08.07.2014 g.
3. Slepchenko S.D. Ocenka nadezhnosti UJeCN i ih otdel’nyh uzlov po rezul’tatam promyslovoj jekspluatacii. Diss. na soiskanie uchenoj stepeni kand. tehn. nauk. M.: RGU nefti i gaza imeni I.M. Gubkina, 2011, p. 21-26.
4. Analiz verojatnosti bezotkaznoj raboty skvazhinnyh nasosnyh ustanovok s kanatnoj shtangoj na mestorozhdenijah OOO „LUKOJL-PERM”. V.N. Ivanovskij, A.V. Degovcov, A.A. Sabirov, Sh.A. Aliev, O.V. Tret’jakov, I.I. Mazein, A.V. Usenkov, S.V. Merkushev, D.N. Krasnoborov. Territorija „NEFTEGAZ”, 2017, no. 7-8, p. 74-80.
5. Ivanovskij V.N., Sabirov A.A., Degovcov A.V., Pekin S.S., Aliev Sh.A. Patent na poleznuju model’ No. 173961 „Skvazhinnyj shtangovyj nasos”.
6. Metodika opredelenija nadezhnosti pogruzhnogo oborudovanija i opyt ee primenenija. O.M. Perel’man, S.N. Peshherenko, A.I. Rabinovich, S.D. Slepchenko. Burenie i neft’, 2010, no. 2, p. 32-34.

Gasdynamic research of processes in pipeline systems
Geosciences

Authors: Aleksangr S. KUZNECHIKOV ((b. 1978) graduated from Gubkin Russian State Uni-versity of Oil and Gas in 2001. He is Senior Lecturer at Gubkin Russian State University of Oil and Gas (National Research University). Нe is author of 23 publications in the field of shock and wave processes in pipeline systems, education, standardization and systems of quality management. E-mail: kas@gubkin.ru

Abstract: Issues of gasdynamic study of shock and wave processes in pipelines of gas relief and disposition systems are considered. Schedules and results of calcula-tion of the intensity of a shock wave for relief of natural gas from the site of the technological pipeline and the high-pressure apparatus are presented. The re-sults of the work are relevant both for the solution of the problem of environmen-tal friendlinessof gas transmission systems in terms of prevention or minimization of emissions of gas into the atmosphere, and for the design and rational opera-tion of pipeline systems

Index UDK: 622.691; 533.6

Keywords: system of gas relief and disposition, gas dynamics, shock and wave processes, pipeline systems, disign schemes, gasdynamic studies

Bibliography:
1. Loitsyansky L.G. Mechanics of fluid and gas. M.: Nauka, 1991, 847 p. (In Russian).
2. Rakhmatullin H.A., Sagomonyan A.Ya., Zverev I.N. and others. Gas dynamics. M.: Vysshaya Shkola, 1965, 722 p. (In Russian).
3. Godunov S.K., Zabrodin A.V., Ivanov M.I., Krayko A.N., Prokopov G.P. Numerical solution of multidimensional problems of gas dynamics. M.: Nauka, 1976, 400 p. (In Russian).
4. Kuznechikov A.S., Maksimenko A.F. Analysis of basic options for design schemes for natural gas discharge and utilization systems (for gas-main pipelines) Informational and analytical magazine Oil, Gas and Business, 2008, no. 10, p. 55-60 (In Russian).
5. Kuznechikov A.S., Maksimenko A.F. Determination of the intensity of the shock wave as a function of the parameters of the initial state of the gas mixture (with forced discharge of a high-pressure fluid from the process pipeline) Informational and analytical journal Oil, Gas and Business, 2009, no. 1, p. 65-67 (In Russian).
6. Kuznechikov A.S., Maksimenko A.F. Basic calculation relationships for determining the intensity of the shock wave (in pipeline branches for a one-dimensional design scheme of the shock-wave process) Informational and analytical journal Oil, Gas and Business, 2009, no. 3, p. 57-58 (In Russian).
7. Kuznechikov A.S., Maksimenko A.F. Analysis of calculation formulas for the limiting stage of the forced natural gas discharge process. Journal Gazovaya promyshlennost, 2011, no. 8, p. 48-50 (In Russian).
8. Kuznechikov A.S., Maksimenko A.F. Analysis of the influence of the degree of opening of the launching device’s channel on the intensity of the shock wave when a high-pressure gas is discharged from a high-pressure apparatus of a large volume. Informational and analytical journal Oil, Gas and Business, 2012, no. 1-2, p. 106-109 (In Russian).
9. Kuznechikov A.S., Maksimenko A.F. The use of single-channel schemes for the calculation of a shock wave that has passed from a discharge pipeline to a collection manifold. Journal Gazovaya promyshlennost, 2013, no. 4, p. 44-46 (In Russian).
10. Kuznechikov A.S., Maksimenko A.F. Selection of basic variants of design schemes for gas discharge and utilization systems for solving the main tasks of gas dynamic analysis of shock wave processes in the channels of the gas discharge and utilization systems. Bulletin of the Association of Drilling Contractors, 2017, no. 2, p. 45-48 (In Russian).

Qualitative assessment of magnitude of imbalance of natural gas
Geosciences

Authors: Farit G. TUKHBATULLIN was born in 1950. Нe graduated from the Ufa Oil Institute in 1972. He is Doctor of Technical Sciences, Professor of the Department of Petroleum Products and Natural Gas Supply at Gubkin Russian State University of Oil and Gas (National Research University). Member of the Russian Academy of Engineering and Technology. He is author of 21 inventions and 170 scientific papers. E-mail: ellkam@mail.ru
Dmitriy S. SEMEICHENKOV was born in 1993. Нe graduated from Gubkin Russian State University of Oil and Gas the in 2015. He is currently postgraduate student of the Department of Oil Products and Gas Supply at Gubkin Russian State University of Oil and Gas (National Research University), he has authored 3 publications. E-mail: d.semeichenkoff@yandex.ru

Abstract: The statistical quality control methods for analyzing the amount of natural gas imbalance are proposed. To analyze the cause-effect relationship between the origine of the imbalance, the Kaoru Ishikawa diagram is constructed. Shewhart control charts are used to determine the period during which the process is in a statistically controlled state

Index UDK: 519.237.5:62.503.56

Keywords: imbalance of gas, commercial metering of gas, Kaoru Ishikawa diagram, Pareto Law, Shewhart control charts, statistical quality control

Bibliography:
1. Ishikawa K. Japanese quality management. Ed. AV Glicheva. M.: Economics, 1988, 214 р. (in Russian).
2. State Standart 50779.42-99. Shukhart control cards. Moscow, Standartinform Publ., 1999, 31 p. (in Russian).
3. STO Gazprom 5.37-2011. Uniform technical requirements for equipment flow measurement units and the amount of natural gas used in JSC „Gazprom” (in Russian).
4. STO Gazprom 5.32-2009. Organization of natural gas measurement (in Russian).
5. STO Gazprom 2-3.5-454-2010. Rules of operation of gas mains (in Russian).
6. RD 153-39.4-079-01. Methods of determining the flow rate of gas for technological needs of gas supply companies and losses in gas distribution systems (in Russian).
7. Hvorov G.A., Kozlov S.I., Akopova G.S., A.A. Evstifeev Reduction of losses of natural gas for transportation through main pipelines of JSC „Gazprom”. Gas industry, 2013, no. 12, p. 66-69 (in Russian).
8. Salikov A.R. Imbalance in gas distribution networks. Russian gas, 2015, no. 4, p. 36-41 (in Russian).
9. Newsletter of the Federal Tariff Service (FTS) of 28.06.2005 ref. Number of CH-3923/9 „On gas losses taken into account” (in Russian).

Influence of structural features of rotor-disk mixers on dispersed composition of emulsions
Technical sciences

Authors: Sergey V. LAPONOV graduated from USPTU in 2014. He is post-graduate student and instructor of the Chair of Equipment of Petrochemical Plants at USPTU in Sterlitamak. Аuthor of 18 publications. E-mail: Laponows92@mail.ru
Nikolai S. SHULAEV is Doctor of Technical Sciences, professor, Head of the Depart-ment of Informatics of Mathematics and Physics, USPTU in Sterlitamak. Аuthor of 212 publi-cations. E-mail: nshulayev@rambler.ru
Sergey P. IVANOV is Doctor of Technical Sciences, Head of the Chair of Equipment of Petrochemical Plants of USPTU in Sterlitamak. Аuthor of 98 publications. E-mail: isp-777@yandex.ru
Ildus G. IBRAGIMOV is Doctor of Technical Sciences, Vice-Rector for Academic Affairs of USPTU in Ufa. Аuthor of 104 publications.
E-mail: Ibragimov@rusoil.net

Abstract: The results of experimental research of processes of emulsification in liquid-liquid systems in rotor-disk mixers with various designs of working bodies allowing to regulate the disperse particles size distribution are presented. It is shown that increased area of perforations on the working parts of the rotary disc mixer and installation of additional elements (teeth) reduce the total size of the dispersed particles. At the same time, the consumed power is increased because for the same experimental parameters (rotation speed, flow rate, mixing ratio), the average size of dispersed particles decreases and, consequently, the area of the interfacial surface increases

Index UDK: 66.02

Keywords: rotary, emulsion, RDS, RPA, disintegrator, mixer

Bibliography:
1. Laponov S.V., Shulaev N.S., Ibragimov I.G., Ivanov S.P. Features of emulsification in rotor-disk mixers. Neftegazovoye delo, 2016, no. 4, p. 126-129.
2. Shulaev N.S., Nikolaev E.A., Ivanov S.P. Small volume rotary-disc mixers. Moscow: Chemistry, 2009, 186 p.
3. Pat. RF № 161841, IPC B02С 7/08. Rotary grinding mixer. Laponov S.V., Shulaev N.S., Ibragimov I.G., Ivanov S.P., Bondar K.Е. Declared 20.11.2015. Opubl. 05/10/2016.
4. Laponov S.V., Ivanov O.S. Prospects of using rotary disc mixers in the processes of chemical technology. Bulletin of the young scientist UGNTU, 2015, no. 1 (01), 16 p.
5. Shulaev N.S., Nikolaev E.A., Boev E.V. Small-volume rotor disintegrators — mixers for the chemical industry. International youth scientific conference „Severgeoeko-tekh-2006”: at 3 o’clock; Part 1. Ukhta: UGNTU, 2006, p. 280-282.
6. Braginsky L.N., Begachev V.I., Barabash V.М. Stirring in liquid media. Physical bases and engineering methods of calculation. L.: Chemistry, 1984, 336 p.
7. Shulaev N.S., Nikolaev E.A., Boev E.V., Ivanov S.P. Development of a small-volume rotor-disk disintegrator-mixer for the production of heterogeneous mixtures. Chemical Industry today, 2008, no. 3, p. 42-44.
8. Shulaev N.S., Nikolaev E.A., Boev E.V. Technique of testing small-volume rotor disintegra-tor-mixer for the purpose of obtaining power characteristics. Natural and technical sciences, 2007, no. 3, p. 183-184.
9. Nikolaev E.A., Shulaev N.S., Ivanov S.P., Boev E.V. Rotary disintegrator-mixer for gas-liquid reactions on the example of carbonization of a soda solution. Chemical technology, 2008, no. 4, p. 173-176.
10. Shulaev N.S., Nikolaev E.A., Boev E.V., Shiriyazdanov R.R., Afanasenko V.G. Purification of sewage from the production of calcium hypochlorite in a rotary disintegrator-mixer. Ecology and industry of Russia, 2008, no. 2, p. 6-7.

Tools for choosing operations and fittings while designing operations for machine-building parts manufacturing
Technical sciences

Authors: Oleg A. NOVIKOV graduated from Gubkin Moscow Institute of petrochemical and gas industry in 1975. He is Doctor of Technical Sciences, Professor of the Department of Standardization, Certification, and Quality Management of Oil and Gas Equipment of Gubkin Russian State University of Oil and Gas (National Research University). He is specialist in the field of technology engineering and computer-aided design and author of over 100 scientific publications. E-mail: NovikTexnolog@Yandex.ru
Dmitry N. LEVITSKY graduated from Gubkin Moscow Institute of petrochemical and gas industry in 1975. He is Doctor of Technical Sciences, Head of the Department of Theoretical Mechanics of Gubkin Russian State University of Oil and Gas (National Research University). He is specialist in the area of theoretical mechanics. He is author of more than 100 scientific publications.
E-mail: levitskiy.d@gubkin.ru

Abstract: The basic approaches to describe project tasks of technological tooling of operations in the manufacturing process are presented on the base of tables of correspondence with the matrix of binary relations. The methodology of description of project tasks by the user is considered by means of the special tools. The expediency of the use of bases of project tasks to design operations of technological process is shown

Index UDK: 621

Keywords: information storage and retrieval system, system of complex automation of technology, table of correspondence with matrix of binary relations, tools, of base project

Bibliography:
1. Handbook of the technologist-machine builder. In 2 tons. Ed. A.G. Kosilova and R.K. Meshcheryakova. M.: Mechanical Engineering, 1985, 656 p. (In Russian).
2. Panov A.A., Anikin V.V., Boim N.B. and others. Processing of metals by cutting: Handbook of the technologist. Ed. A.A. Panova. Moscow: Mechanical Engineering, 1988, 736 p. (In Russian).
3. Methods of machining the cutting of round holes: Handbook. B.N. Biryukov, V.M. Boldin, V.Ye. Treyger, S.G. Fexon. Under common. B.N. Biryukova. M.: Mechanical Engineering, 1989, 200 p. (In Russian).
4. Novikov O.A., Komarov Yu.Yu., Baibakov S.V. Automation of design works in technological preparation of machine-building production. Moscow: Izd-vo MAI, 2007, 260 p. (In Russian).

Model of managing project processes for design offshore oil and gas facilitie
Technical sciences

Authors: Vladimir P. BEZKOROVAYNYY the postgraduate course from Gubkin Moscow Institute of petrochemical and gas industry in 1978. He is Doctor of Technical Sciences, Professor of the Department of Computer Aided Design of Oil and Gas Industry Facilities of Gubkin Russian State University of Oil and Gas (National Research University). He is specialist in the field of design automation and project management. He is author of more than 130 scientific publications. E-mail: vpbp@mail.ru
Vasiliy D. BAYAZITOV graduated from Volgograd State University of Architecture and Construction in 2016 He is 2nd year student of the Master Program of the Department of Computer Aided Design of Oil and Gas Industry Facilities of Gubkin Russian State University of Oil and Gas (National Research University). He specializes in the field of information modeling and projects of offshore oil and gas facilities. He is author of 15 scientific publications. E-mail: vd.bayazitov@gmail.com

Abstract: The paper considers the use of information modeling technology (IM) for project management. Schematic diagrams of the processes for creating the technological scheme of the offshore facilities (OF) and the information model of the structure are constructed. In addition to the above, the applied questions of the construction of the information model of OF are considered. Preliminary project mo-deling allows to manage the project and more accurately assess the material costs of the constructed object. IM allows the customer to monitor the work of contractors with the help of project management and immediate downloading of work volumes

Index UDK: 622.279.04

Keywords: offshore facilities, project management, information modeling, design processes, BIM

Bibliography:
1. Bayazitov V.D. Import substitution for software at exploration of marine oil-gas fi elds [Importozameshcheniye programmnogo obespecheniya pri osvoyenii morskikh neftegazovykh mestorozhdeniy]. In: Proc. of XI International scientifi c congress of SPE Student Division: collected papers. (Tumen Industrial University). Tumen, 2017, p. 9-10.
2. Bayazitov V.D., Bezkorovaynyy V.P. Managing construction of marine oil-gas facilities within united informational space [Upravlenie protsessami proektirovaniya morskikh neftegazovykh sooruzheniy v edinom informatsionnom prostrantsve]. Vesti gazovoy nauki, 2017, no. 4, p. 169-172.
3. Bezkorovaynyy V.P., Drozdov S.V. Engineering of a typical united informational space for realization of oil-gas projects [Inzhiniring tipovogo yedinogo informatsionnogo prostranstva realizatsii neftegazovykh proyektov]. Avtomatizatsiya, telemekhanizatsiya i svyaz v neftyanoy promyshlennosti, 2012, no. 8, p. 15-21.
4. Bezkorovaynyy V.P., Bayazitov V.D. Quality control of the offshore facilities project with technology of information modeling [Upravlenie kachestvom proekta morskikh neftegazovykh sooruzheniy po tekhnologii informatsionnogo modelirovaniya]. Upravlenie kachestvom v neftegazovom komplekse, 2017, no. 3, p. 15-18.

Possibility of determinating membrane exchange capacity by dynamic method
Technical sciences

Authors: Tamara S. PHILIPPOVA graduated from the M.V. Lomonosov Moscow State University in 1982. She is Lecturer at the Department of Higher Mathematics at Gubkin Russian State University of Oil and Gas (National Research University). She is author of more than 20 publications in the field of mechanics and mathematics. E-mail: filippova.tam@yandex.ru
Vasily V. KALININ (b. 1952) graduated from the M.V. Lomonosov Moscow State University in 1974. He is Doctor of Physical-Mathematical Sciences, Head of the Department of Higher Mathematics at Gubkin Russian State University of Oil and Gas (National Research University). He is author of more than 70 publications in the fields of physicochemical hydrodynamics, colloid chemistry and mathematics. E-mail: vm@gubkin.ru
Anatoly N. FILIPPOV was born in 1960, graduated from the M.V. Lomonosov Moscow State University in 1982. He is Doctor of Physical and Mathematical Sciences, Professor at the Department of Higher Mathematics Gubkin Russian State University of Oil and Gas (National Research University). He is author of over 300 scientific papers in the field of physical-chemical mechanics, colloid chemistry and mathematics. E-mail: filippov.a@gubkin.ru

Abstract: A new dynamic method for the experimental determination of the exchange capacity of an ion-exchange membrane is proposed. The method is based on solving the non-stationary system of Nernst-Planck equations by the method of integral relations (moments)

Index UDK: 517.958:536.71;532:541.135.1;539.219.3;544.6

Keywords: on exchange membrane, exchange capacity, method of integral moments, Nernst-Plank equation

Bibliography:
1. Zharkikh N.I. Theory of non-equilibrium electro-surface phenomena in concentrated weakly charged dispersions and membranes. Diss. kand. khim. nauk. Kiev, 1982, 129 p. (in Russian).
2. Martynov G.A., Starov V.M., Churayev N.V. Theory of membrane separation of solutions. Formulation of the problem and a solution to transfer equations. Kolloidnyi Zhurnal [Colloid Journal], 1980, vol. 42, no. 3, p. 489-499.
3. Theory of the reverse osmotic separation of electrolyte solutions. Influence of the charge of the surface of membrane pores/Dorokhov V.M., Martynov G.A., Starov V.M., Churayev N.V. Kolloidnyi Zhurnal [Colloid Journal], 1984, vol. 46, no. 6, p. 1088–1093.
4. Filippov А., Afonin D., Kononenko N., L’vov Yu., Vinokurov V. New approach to characterization of hybrid nanocomposites. Colloids and Surfaces A — Physicochemical and Engineering Aspects, 2017, vol. 521, p. 251-259.
5. Sidorova M.P., Ermakova L.E., Savina I.A., Fridrikhsberg D.A. Colloidal-chemical parameters of weakly charged membranes. Khimiya i Tekhnologiya Vody [ Water Chemistry and Technology ], 1991, vol. 13, no. 4, p. 291-301.
6. Sidorova M.P., Ermakova L.E., Savina I.A. Fridrikhsberg D.A. Electrochemistry of weakly charged membranes. Journal of Membrane Science, 1993, vol. 79, issue 2-3, p. 159-179.
7. GOST 17552-72. Membrany ionoobmennye. Metody opredeleniya polnoi i ravnovesnoi obmennoi emkosti (s Izmeneniem № 1). http://docs.cntd.ru/document/1200018368
8. Filippov A.N., Safronova E.Yu., Yaroslavtsev A.B. Theoretical and experimental investigation of diffusion permeability of hybrid MF—4SC membranes with silica nanoparticles. Journal of Membrane Science, 2014, vol. 471, p. 110-117.
9. Filippov A.N., Safronova E.Yu., Yaroslavtsev A.B. Theoretical and experimental investigation of diffusion permeability of hybrid MF—4SC membranes with silica nanoparticles. Journal of Membrane Science, 2014, vol. 471, p. 110-117.
10. Filippov A., Kononenko N., Afonin D., Vinokurov V. Synthesis and Prediction of Transport Properties of Hybrid Bi-layer Ion-Exchange Membranes. Surface Innovations, 2017, vol. 5, no. 3, p. 130-137.