Articles Archive

№ 4/289, 2017

The influence of clay cement composition on reliability of volumetric parameters of terrigenous reservoirs from well logs

Authors: Kazimir V. KOVALENKO is Doctor of Geological and Mineralogical Sciences, professor of the Department of Geophysical Well Logging of Gubkin Russian State University of Oil and Gas (National Research University). He is author of more than 50 scientific publications. He is Member of SPWLA and Nuclear geophysical Society. E-mail:
Natalya E. LAZUTKINA is Candidate of Technical Sciences, assistant professor of the Department of Geophysical Well Logging of Gubkin Russian State University of Oil and Gas (National Research University). She is author of more than 30 scientific publications, co-editor of the handbook „Geophysical Well Logging” and textbook of the same title for universities.
Anvar S. MUMINOV graduated from Tashkent Polytechnic Institute in 1972. Candidate of Physical and Mathematical Technical Sciences, assistant professor of the Department of Geological and Geophysical Exploration of the branch of Gubkin Russian State University of Oil and Gas (National Research University) in Tashkent. He is author of more than 30 scientific publications and a patent.

Abstract: Methodical basis of petrophysical support of well logging data interpretation is provided. This allows to take into account the clay mineral composition while evaluating reservoir properties based on the analysis of residual water saturation and porosity

Index UDK: 550.83

Keywords: рetrophysical мodeling, рhase рermeability, еffective porosity

1. Abidov А.А., Abetov А.Е., Kirshin А.V., Rzaeva V.А. Peculiarities of the structure and prospects of the oil and gas potential of the Kuanysh-Koskalinsky shaft in connection with the types of consolidated crust. DAN RUz, 1996, no. 8, p. 41-43 (in Russian).
2. Babаdzhanov T.L., Kim G.B., Rubo V.V. Prospects of oil and gas potential of the Aral Basin. Geolodiya regionov Kaspiyskogo I Aralskogo morey, 2004, p. 282-289 (in Russian).
3. Blinova E.Yu., Indrupskiy I.M., Kovalenko K.V. Influence of the heterogeneity of the cement’s material composition on the petrophysical and filtration characteristics of the reservoir. Neftyanoe khozyaistvo. [Oil Industry], 2013, no. 7, p. 76-80 (in Russian)
4. Dobrynin V.M., Vendelshteyn B.Yu., Rezvanov R.A., Afrikyan A.N. Pro-mislovaya gefizika [Well geophysics]. Teaching book for universities. Edited by V.M. Dobrynin, N.E. Lazutkina. Moscow, Isd. „Neft’ i gaz”, 2004, p. 400 (in Russian).
5. Kozhevnikov D.A., Kovalenko K.V. Izuchenie kollektorov nefti i gaza po dannim adaptivnoy interpretacii geofizicheskih issledovaniy skvazhin [The study of oil and gas reservoirs based on the results of adaptive interpretation of well logging data]. Moscow, RGU nefti i gaza, 2011, p. 219 (in Russian).
6. Kozhevnikov D.A., Lazutkina N.E., Kovalenko K.V. Determination of the effective porosity in the granular reservoir from well logging data with the justification of the reference parameters. NTV Karotazhnik, 2016, no. 259, p. 45-54 (in Russian).
7. Latishova M.G., Dyakonova T.F. Sposob statisticheskoy obrabotki i kontro- lya kachestva promislovo-geofizicheskih dannih po mestorozhdeniyam nefti i gaza [The method of statistical processing and quality control of field geophysical data on oil and gas fields]. Moscow, VNIIOENG, 1978, p. 200 (in Russian).

Structural and tectonic frame of the Cuu Long basin

Authors: Vu Nam HAI graduated from Gubkin Russian State University of Oil and Gas in 2015. He is assistant lecturer of the Department of Theoretical Fundamentals of Prospecting and Exploration of Oil and Gas of Russian State University of Oil and Gas (National Research University). His scientific interests are in the areas of 3D modeling of hydrocarbon systems and oil and gas potential of the continental shelf of Vietnam. He has published over 4 works. E-mail:
Vagif Yu. KERIMOV was born in 1949. He graduated from Azizbekov Azebaijan Institute of Oil and Petrochemistry. He is Doctor of Geological and Mineralogical Sciences, professor, Head of the Department of Theoretical Fundamentals of Prospecting and Exploration of Oil and Gas of Gubkin Russian State University of Oil and Gas (National Research University). He has published over 200 works. E-mail:

Abstract: The processes of geological development of the Cuu Long basin are studied basing on the results of creating the structural and tectonic frame to determine
the focus areas of exploration. The tectonic zoning, the structural composition and the system of faults in the Cuu Long basin were studied basing on the analysis of its elements. As a result, structural and tectonic models of the basin were created to describe the entire history of its development using basin modelling technology and PetroMod software

Index UDK: 550.8

Keywords: prospect, exploration, modelling, digital model, structural elements, tectonics, facies, faults, Cuu Long

1. Vu Nam Hai. Generation potential of oligocene-miocene sediments of cuu long basin. Tru- dy Rossijskogo gosudarstvennogo universiteta nefti i gaza (NIY) imeni I.M. Gubkina, 2017, no. 2 (287), 23 p.
2. Vu Nam Hai. The conditions of formation of hydrocarbon deposits in the cuu long basin (Vietnam). Neft’, gaz i biznes, 2017, no. 1, p. 7-10.
3. Gavrilov V.P., Leonova E.A. Estimating presence of hydrocarbons within northern shelf of Vietnam. Trudy Rossijskogo gosudarstvennogo universiteta nefti i gaza imeni I.M. Gubkina, 2016, no. 3 (284), p. 6-10.
4. Aresev E.G., Gavrilov V.P., Chan Le Dong, Nguyen Dao, Ngo Thuong San, Shnip O.A. i dr. Geologija i neftegazonosnost’ phundamenta Zonkskogo shel’fa. Izdatel’stvo „Neft’ i gas”, 1997, p. 56-58.
5. Vu Nam Hai, Mustaev R.N., Sericova U.S. Leonova E.A. Exploration of the generating potential of the sedimentary complex in the Cuu long basin based on the basin modelling (Vietnam). 18-aya nauchno-prakticheskaya konferentsiya po voprosam geologorazvedki i razrabotki mestorozhdeniy nefti i gaza „Geomodel’-2016”: Tezic dokl. mezhdunarodnoi konferencii (Gelendzhik, 12-15 sent. 2016), p. 20-25.

Lithological description of Dzurskian and Derevninskian deposits along Angara and Lower Tunguska rivers

Authors: Artem E. KOZIONOV was born in Moscow, 1993. Graduated from the Department of Mining Geology of Gubkin Russian State University of Oil and Gas in 2011. He is presently graduate student and engineer at the Department of Lithology of Gubkin University. He is specialist in the field of lithology of oil and gas fields and microanalysis of reservoir rocks. He has published 9 works, one of which is a monograph. E-mail:

Abstract: The analyzed area of the Riphean paleobasin is located in the western part of the Siberian Platform (East Siberian Basin). The deposits of Derevninskian and Dzurkian formations are represented by platform carbonates of different facies belts and to a minor extent by clastics. The depositional environment included several shallow marine facies of different biogenic zones and hydrodynamic regimes. Lithological characteristics logged in several outcrops, hand pieces and thin sections of the two formations, allow a founded paleo-reconstruction and mapping of the depositional facies within the Riphean basin

Index UDK: 551.7.022

Keywords: Riphean, Neo-proterozoic, Dzurskian formation, Derevninskian formation, depositional environment, carbonate sedimentation, Baikit anticline, Eneseyskian High, Angara fold-zone, East Siberian Basin, Siberian platform

1. Bazhenova T.K. Formational-cyclical analysis of deposits of the Vendian-Paleozoic Sibe- rian platform and its petroleum potential. In. Formation of sedimentary basins. M.: Nauka, 1968, р. 226-232.
2. Dmitrievskij A.N. Bazhenova T.K., Ilyukhin L.N. i dr. The evolution of sedimentary basins in the Vendian-Paleozoic era of the Siberian platform and the forecast of their oil and gas potential actual situation review. Inf. Ser. Geology and exploration of gas and gas condensate fields. M.: VNIIGaz-рrom, 1992, р. 98.
3. Kutukova N.M., Birun E.M., Malakhov R.A., Afanasiev I.S., Postnikova O.V., Rakhmatul- lina A.S. The conceptual model of Riphean carbonate reservoir in Yurubcheno-Tokhomskoye field. Oil Industry, 2012, no. 11, p. 4-7.
4. Gutina O.V. Integrated validation of the stratigraphic scheme of the Riphaei sediments in the south-western part of the Siberian platform. The Siberian Branch of Russian Academy of Sciences, 2007, p. 174.
5. Petrov P.Yu. Upper Riphean stromatolite reef complex. Lithology and Mineral Resources, 1998, no. 6, p. 604-628.

Relative phase permeabilities hysteresis in anisotropic reservoirs

Authors: Valery V. KADET graduated from MEPhI in 1976. He is professor, Doctor of Technical Science, Head of the Department of Petroleum and Subsurface Hydromechanics at Gubkin Russian State University of Oil and Gas (National Research University). He is specialist in subsurface hydromechanics, theory of multy-phase fluid flow in porous media, percolation theory. He has authored more than 200 scientific papers, 15 patents and certificates, 6 monographies. He has prepared 7 PhDs. E-mail:
Artur M. GALECHYAN graduated Gubkin Russian State University of Oil and Gas in 2014. Schlumberger wireline field engineer, graduand of petroleum and subsurface hydromechanics department in subsurface hydrodynamics, Gubkin Russian State University of Oil and Gas (National Research University). Specialist in underground hydromechanics, percolation theory and wireline well logging. Author of 13 scientific papers. E-mail:

Abstract: Percolation theory was used to build relative permeability curves along the main axes of permeability tensor taking into account the hysteresis effect. Radius distribution measurements along the main axes of permeability tensor were taken for experimental reference. Such approach demonstrates the tensor nature of relative permeability. Accounting for the dependence of relative permeability on both displacement sequence and flow direction increases the accuracy of reservoir hydrodynamic models

Index UDK: 532.546

Keywords: relative phase permeabilities, hysteresis, anisotropy, percolation

1. Wei J.Z., Lile O.B. Influence of wettability and saturation sequence on relative permeability hysteresis in unconsolidated porous media/SPE 25282, 1992.
2. Braun E.M., Holland R.F. Relative permeability hysteresis: laboratory measurements and a conceptual model/SPE 28615, 1995.
3. Hawkins J.T., Bouchard A.J. Reservoir-engineering implications of capillary-pressure and re-lative-permeability hysteresis/SPWLA Journal, 1992, July-August.
4. Kadet V.V., Galechyan A.M. Perkoljacionnaja model’ gisterezisa otnositel’nyh fazovyh pronicaemostej. Prikladnaja mehanika i tehnicheskaja fizika, 2013, t. 54, no. 3, p. 95-105.
5. Kadet V.V., Galechyan A.M. Percolation modeling of relative permeability hysteresis. Journal of Petroleum Science and Engineering, 2014, v. 119, p. 139–148.
6. Kadet V.V., Galechyan A.M. Percolation modeling of relative permeability hysteresis including surface and rheological effects. 14th European Conference on the Mathematics of Oil Recovery „ECMOR XIV”, 8–11 September 2014, Catania, Sicily, Italy
7. Galechyan A.M. Perkoljacionnyj analiz gisterezisa otnositel’nyh fazovyh pronicaemostej s uchetom nanorazmernyh javlenij na poverhnosti porovogo prostranstva. V Mezhdunarodnaja konfe-rencija „Nanojavlenija pri razrabotke mestorozhdenij uglevodorodnogo syr’ja: ot nanomineralogii i nanohimii k nanotehnologijam” (Nanoteh-Neftegaz 2016), 22-23 nojabrja 2016 g., Moskva, Rossija.
8. Kadet V.V., Dmitriev N.M., Kuzmichev A.N., Tsybulskiy S.P. Technique and results of complex laboratory researches of anisotropic filtration and capacity properties in cores. SPE 161999, 2012 SPE Russian Oil & Gas Exploration & Production Technical Conference and Exhibition, 16- 18 October 2012, Moscow, Russia.
9. Broadbent S.R., Hammersley J.M. Percolation processes. Proc. Cambr. Phil. Soc., 1957, v. 53, no. 3, p. 629-645.
10. Kadet V.V., Selyakov V.I. Perkoljacionnaja model’ dvuhfaznogo techenija v poristoj srede. Izv. AN SSSR. Mehanika zhidkosti i gaza, 1987, no. 1, p. 88-95.
11. Selyakov V.I., Kadet V.V. Perkoljacionnye modeli processov perenosa v mikroneodno-rodnyh sredah. M.: 1-j TORMASh, 2006.
12. Yusupova T.N., Romanova U.G., Petrova L.M., Romanov G.V., Ovchinnikov V.V., Muslimov R.Kh., Mukhametshin R.Z. Hydrophobization of reservoir rock in bed conditions. PS  97-125, 1997, Annual Technical Meeting, 8–11 June 1997, Calgary, Alberta.
13. Gudok N.S., Bogdanovich N.N., Martynov V.G. Opredelenie fizicheskih svojstv neftevodo-soderzhashhih porod: Ucheb. posobie dlja vuzov. M.: OOO „Nedra-Biznescentr”, 2007, p. 592.
14. Lenormand R., Zarcone C., Sarr A. Mechanisms of the displacement of one fluid by another in a network of capillary ducts. J. Fluid Mech., 1983, no. 135, p. 337-353.

Identifying parameters of existing wells while analyzing reservoir development data to adjust project target values

Authors: Zagid S. ALIEV (born 1935) graduated from Azibekov Azerbaijani industrial Institute in 1957. He is professor of the Department of Gas and Condensate Field Development and Operation at Gubkin Russian State University of Oil and Gas (National Research University). He is head and executive of projects of development of oil and gas fields of Russia, Iran, Iraq, Vietnam, Kazakhstan, Algeria, Germany, etc., and also the author of normative documents of OOO Gazprom such as instructions, manuals and standards of enterprises. He is author of 386 publications, including 37 monographs and 32 thematic brochures.
Denis A. MARAKOV (born 1978) graduated from Gubkin Russian State University of Oil and Gas in 2001. He is Candidate of Technical Sciences, associate professor of the Department of Gas and Condensate Field Development and Operation at Gubkin Russian State University of Oil and Gas (National Research University). He is expert in the field of development and operation of oil and gas fields and author of more than 40 publications, including 7 monographs and 5 thematic brochures in the field of the theory of development, research and operation of vertical and horizontal wells. E-mail:

Abstract: The existing projects of gas and gas condensate fields development usually fail to substantiate the amount of research towards field management, its major purpose being reduced to annual surveys of development wells under steady-state filtration conditions aimed at determining reservoir filtration characteristics. The paper contains almost all the characteristics to be identified during the well operation in order to schedule field management works and make design project adjustments

Index UDK: 622.279

Keywords: field management, identification of reservoir characteristics, amount of research, gas flow coefficients, steady-state filtration conditions

1. Pravila razrabotki gazovykh i gazokondensatnykh mestorozhdenii [The rules for the develop-ment of gas and gas condensate fields], Moscow: Nedra, 1971, 104 p.
2. Reglament sostavleniya proektnykh dokumentov po razrabotke gazovykh i gazokondensatnykh mestorozhdenii [Regulations for drawing up project documents for the development of gas and gas condensate fields]. Moscow: VNIIGAZ, 1999, 88 p.
3. Aliev Z.S., Khabibulin R.A., Pankin N.A. Analiz rezul’tatov issledovaniya skvazhin Yam-burgskogo GKM i Zapolyarnogo NGKM [Analysis of well test results of the Yamburgskoye gas condensate field and the Zapolyarnoye oil condensate field]. Kazan: KGTU, 1999, 140 p.
4. Gritsenko A.I., Aliev Z.S., Ermilov O.M., Remizov V.V., Zotov G.A. Rukovodstvo po issledovaniyu skvazhin [Well Research Guide]. Moscow: Nauka, 1995, 523 p.
5. Aliev Z.S., Somov B.E, Marakov D.A., Ismagilov R.N. Mezhplastovye i zonal’nye peretoki gazokondensatnoi smesi i ikh vliyanie na tekushchuyu dobychu kondensata [Inter-stratal and zonal flows of gas-condensate mixture and their influence on the current production of condensate]. Moscow: Nedra, 2013, 213 p.
6. Aliev Z.S., Marakov D.A., Ismagilov R.N. Osobennosti kontrolya za razrabotkoi mestorozhdenii pri ikh osvoenii gorizontal’nymi skvazhinami s veerno-kustovym razmeshcheniem [Features of control over field development with radial cluster drilling pattern]. Moscow: Nedra, 2013, 277 p.
7. Aliev Z.S., Ismagilov R.N. Gazogidrodinamicheskie osnovy issledovaniya skvazhin na gazokondensatnost’ [Basics of gas-hydrodynamic survey of gas condensate content]. Moscow: Nedra, 2012, 214 p.
8. Khudyakov O.F., Savvina Ya.D., Yushkin V.V. Instruktsiya po issledovaniyu gazokondensat-nykh mestorozhdenii na gazokondensatnost’ [Instructions for study of gas condensate content in gas condensate fields]. Moscow: Nedra, 1975, 70 p.
9. Aliev Z.S., Marakov D.A., Meshcheryakov S.V., Yan’shin V.V. Osobennosti razrabotki nizkoproduktivnykh gazokondensatnykh mestorozhdenii s bol’shim soderzhaniem kondensata s ispol’zovaniem gorizontal’nykh skvazhin [Features of the development of low-productivity gas condensate fields with a large content of condensate using horizontal wells]. Moscow: Nedra, 2016, 239 p.

The use of colloidal silica for water isolation while repairing low-permeability intervals of wells

Authors: Nikolaj N. EFIMOV graduated from Gubkin Russian State University of Oil and Gas in 1982. He is Candidate of Technical Sciences, Head of the Laboratory of Materials and Technologies for Repairs and Insulation in Oil and Gas Wells at „Spetsburmaterially” Research and Production Company. He is specialist in the field of repair and insulation works and author of 35 scientific publications. E-mail:
Vladimir I. NOZDRJA graduated from Moscow State University in 1971. He is Candidate of Geological and Mineralogical Sciences, General Director of „Spetsburmaterially” Research and Production Company. He is specialist in the field of geology and drilling. He is author of more than 200 scientific publications. E-mail:
Valentina Y. RODNOVA graduated from Gubkin Russian State University of Oil and Gas in 2015. She is engineer of the Laboratory of Materials and Technologies for Repairs and Insulation in Oil and Gas Wells at „Spetsburmaterially” Research and Production Company. E-mail:
Vitalij A. JAKOVENKO graduated from Kuban State Technical University in 2011. He is leading engineer of the Laboratory of Materials and Technologies for Repairs and Insulation in Oil and Gas Wells at „Spetsburmaterially” Research and Production Company.

Abstract: The physicochemical and technological properties of the gel-forming composition based on concentrated alkaline silica sol of Polygel ACM-KZ are studied. The results of the estimation of the kinetics of bulk gelling in the presence of cement stone, the strength of gels, the sealing, and frost resistance are presented. Oilfield tests of the composition showed high efficiency for eliminating intercasing pressure, behind-the-casing flow and leakage of the couplings

Index UDK: 544.7:544.4:622.245

Keywords: silicа sol, gelling kinetics, repair and insulation works

1. Shabanova N.A., Sarkisov P.D. Osnovy zol’-gel’ tekhnologii nanodispersnogo kremnezema [Fundamentals of sol-gel nanosized silica technology]. Moscow, Akademkniga Publ., 2004, 208 p.
2. Bergna H.E. Colloidal Silica. Fundamentals and Application/H.E. Bergna, W.O. Roberts. Boca Raton: Taylor and Francis, 2006, 895 p.
3. Lozin E.V., Khlebnikov V.N. Primenenie kolloidnykh reagentov v neftedobyche [The use of colloidal reagents in oil production]. Ufa, Bashnipineft’ Publ., 2003, 236 p.
4. Krupin S.V., Biktimirova L.F., Suveid M.A., Adebaio A.A. Gidroizoliruiushchie ekrany na osnove polisilikata natriia dlia povysheniia nefteotdachi plastov [Waterproofing screens on the basis of sodium polysilicate for enhanced oil recovery]. Vestnik Kazanskogo tekhnologicheskogo universiteta, 2015, t. 18, no. 11, p. 57-59.
5. Osipov P.V., Krupin S.V., Khisamov R.S. Ispol’zovanie vysokomodul’nykh rastvorimykh stekol dlia uvelicheniia okhvata neftianogo plasta vozdeistviem [The use of high-modulus soluble glass to increase the oil reservoir coverage]. Izvestia vysshikh uchebnykh zavedenii. Neft’ i gaz, 2008, no. 1, p. 34-41.
6. Savel’ev A.A. Prichiny vodopritokov v skvazhinu i metody ih izoljacii [Causes of water inflows into the well and methods of their isolation]. Akademicheskij zhurnal Zapadnoj Sibiri, 2016, vol. 12, no. 2, p. 23-24.
7. Jurlnak J.J., Summers L.E. Oilfield applications of colloidal silica gel. SPE-18505-PA, Society of Petroleum Engineers 1991, vol. 6, no. 4, p. 406-412. doi: 10.2118/18505-PA, 1991.
8. Lakatos I.J., Lakatos-Szabo J., Szentes G., Vago A., Karaffa Zs., Bodi T. New Alternatives in Conformance Control: Nanosilica and Liquid Polymer Aided Silicate Technology. SPE 174225-MS. 2015.
9. Robertson J.O., Oefelein F.O. Plugging Thief Zones in Water Injection Wells. SPE-1524-PA, 1967.
10. Kobayashi S., Soya M., Takeuchi N., Nobuto J., Nakaya A., T. Okuno T., Shimada S., Kaneto T., Maejima T. Rock Grouting and Durability Experiments of Colloidal Silica at Kurashiki Underground LPG Storage Base. ISRM-EUROCK-2014-168. 2014, ISRM Regional Symposium EUROCK 2014, 27-29 May, Vigo, Spain.
11. Bennett K.E., Fitzjohn J.L., Harmon R.A. Colloidal silica-based yeuid diversion. US Patent No. 4732213, 1988.
12. Agerbaek M.K., Gregersen S.H.H., Eriksen K., Noer J., Mulrooney M. Successful Closure of Zonal Sand Production. SPE-145397-MS, 2011.
13. Patil P., Kalgaonkar R. Environmentally Acceptable Compositions Comprising Nano- materials for Plugging and Sealing Subterranean Formations. SPE-154917-MS, 2012. doi: 10.2118/ 121686-MS.
14. Bøye B., Rygg A., Jodal C. Klungland I. Development and Evaluation of a New Envi-ronmentally Acceptable Conformance Sealant. SPE-142417-MS, 2011. 142417-MS.
15. Vasquez J.E., Tuck D. Environmentally Acceptable Porosity-Fill Sealant Systems for Water and Gas Control Applications. SPE-174098-MS, 2015.
16. Nozdrja V.I., Efimov N.N., Rodnova V.Ju., Hlebnikov V.N. Zakonomernosti geleobrazo-vanija koncentrirovannogo zolja kremnievoj kisloty v prisutstvii natrievyh solej [Regularities of gelling of a concentrated silicic acid sol in the presence of sodium salts]. Bashkirskij himicheskij zhurnal. 2016, vol. 23, no. 4, p. 31-41.
17. Hlebnikov V.N. Zakonomernosti geleobrazovanija v kislotnyh zoljah aljumosilikatov i silikatov [Regularities of gelling in acid sols of aluminosilicates and silicates] Trudy Rossijskogo gosudarstvennogo universiteta nefti i gaza imeni I.M. Gubkina, 2009, no. 2, p. 25-31.
18. Hlebnikov V.N. Kolloidno-himicheskie processy v tehnologijah povyshenija nefteotdachi. Dokt, Diss. [Colloid-chemical processes in enhanced oil recovery technologies Doct. Diss.]. Kazan’. 2005, 277 p.
19. Petroleum and natural gas industries — Field testing of drilling fluids. Part 1: Water-based fluids. International standard ISO 10414-1. Second Edition 2008-03-15.
20. API 13B-1. Standard practice for field testing water-based drilling fluids. Second Edition, September 1997.
21. Krupin S.V. Geli i studni v neftepromyslovom dele: metodicheskie ukazaniia [Gels and jellies in the oilfield industry: guidelines]. Kazan’, KGTU Publ., 2008, 56 p.
22. Hatzignatiou D.G., Askarinezhad R., Giske N.H., Stavland A. Laboratory testing of environmentally friendly sodium silicate systems for water management through conformance control. SPE 173853, 2016.
23. Osipov P.V. Kolloidno-himicheskie osnovy tehnologii intensifikacii nefteizvlechenija iz plastov posredstvom polisilikatov natrija: Dis.kand. tehn. nauk [Colloid and chemical foundations of oil recovery intensification from reservoirs using sodium polysilicates. Dr. eng. sci. diss]. Kazan’, KGTU Publ., 2008, 142 p.

Evaluation of technological efficiency of dual completion production zones

Authors: Petr V. PYATIBRATOV was born in 1979. He graduated from Gubkin Russian State University of Oil and Gas in 2002. He is Candidate of Technical Sciences, assistant professor of the Department of Oil Field Development of Gubkin Russian State University of Oil and Gas (National Research University). He is specialist in the development and hydrodynamic modeling of oil and gas fields and author of more than 40 scientific publications. E-mail:
Larisa N. NAZAROVA graduated from Gubkin Moscow Institute of Petrochemical and Gas Industry in 1979. She is Doctor of Technical Sciences, professor of the Department of Oil Field Development of Gubkin Russian State University of Oil and Gas (National Research University). She is specialist in the development of oil and gas fields and enhanced oil recovery and author of more than 50 scientific publications. E-mail:
Nikita Y. ZOTOV was born in 1995. He graduated from Gubkin Russian State University of Oil and Gas in 2017 with Bachelor degree in „Petroleum Engineering”. He is currently master student of the Department of Oil Field Development of Gubkin Russian State University of Oil and Gas (National Research University). E-mail:
Brenda N. BAKURADZE graduated from Gubkin Russian State University of Oil and Gas (National Research University) in 2016. Bachelor degree in „Petroleum Engineering”, master student of the oil field development Department of Gubkin Russian State University of Oil and Gas (National Research University). E-mail:

Abstract: The share of hard-to-recover (HTR) reserves in the total structure of reserves is increasing year by year, thus there is a growing interest in identifying effective technologies for the development of deposits containing these reserves. The paper overviews the problems of production zones of dual development taking into account the geological and physical conditions of the actual field with deteriorated structure of residual reserves. The study showed that in production zones with lateral heterogeneity the dual development technology allows to increase both current production and final values of the oil recovery factor during the late stage of development without significant capital investments into the borehole drilling

Index UDK: 622.276

Keywords: hard to recover reserves, lateral heterogeneity, production zones separate development

1. Shandrygin A.N., Lutfullin A.A. Main Tendencies of the Sweep Efficiency Improvement Evolution in Russia. SPE. 117410, р. doi: 10.2118/117410-RU.
2. Demidov A.V., Pyatibratov P.V. Justifying Method of Enhancing Oil Recovery of Multi-zone Reservoirs Including Hydrodynamic Connected Reservoirs. Neft, gaz i biznes [Oil, gas and business], 2015, no. 6, p. 18-23 (in Russian).
3. Ivanovskii V.N. Production zone separate operation and well intellectualization: yesterday, today, tomorrow. Inzhenernaya praktika [Engineering practice], 2010, no. 1, p. 4-15.
4. Nazarova L.N. Methodology of combining layers into single production zone of complex parameter. Proceedings of Gubkin Russian State University of Oil and Gas, 2015, no. 1.
5. Lutfullin A.A. Basic methods of increasing of recoverable oil in Russia. Burenie i neft’ [Dril- ling and oil.], 2009, no. 1.

Principles of well choice selection for liquid production increase while increasing the water liquid ratio

Authors: Alexander N. KULIKOV graduated from Ufa State Petroleum Technological University in 1980. He is Ph.D., Head of Production Chemistry Laboratory, Scientific Educational Center of Gubkin Russian State University of Oil and Gas (National Research University). Hi is author of over 50 scientific publications. E-mail:

Abstract: An important feature of the current state of the oil industry in Russia is the massive use of methods of intensifying oil production (IDN). Therefore, the actual task is to identify the conditions under which the use of IDN technologies does not lead to an increase in water cut in well production. In order to answer this question, a factor analysis of the efficiency of hydraulic fracturing and optimization of pumps in wells of the main filds of Rosneft-Purneftegaz: the BP14 site of the Tarasovskoye field and the PK19-20 of the Barsukovskoye field. These objects are confined to different types of oil deposits, which differ significantly from each other in the geological and physical properties of reservoirs. As a result, important regularities of the influence of technological parameters on the nature of the dynamics of watering wells after the fracturing or optimization of the GNP. They can be used to select wells for such events

Index UDK: 622.276.72

Keywords: intensification of oil production, forced production of fluid, water cut of well production, oil displacement coefficient by water, coefficient of rock piezoconductivity

1. Shhelkachev V.N. Osnovy i prilozhenija teorii neustanovivshejsja fil’tracii: v  2-h chastjah. Ch. 1. M.: Neft’ i gaz, 1995, 586 p.
2. Guzeev V.V., Pozdnjakov A.A., Zajcev G.S. Rezul’taty primenenie gidrorazryva plasta na mestorozhdenijah Hanty-Mansijskogo avtonomnogo okruga. Neftjanoe hozjajstvo, 2002, no. 6, p. 116-119.
3. Kanevskaja R.D. Zarubezhnyj i otechestvennyj opyt primenenija gid-rorazryva plasta. M.: VNIIOJENG, 1998, 40 p.
4. Kuramshin R.M. Ocenka vlijanija primenenija gidrorazryva plasta na ob#em vovlekaemyh v razrabotku zapasov nefti. Neftepromyslovoe delo, 1999, no. 4, p. 24-25.
5. Kalganov V.I., Surguchev M.L., Sazonov B.F. Obvodnenie neftjanyh skvazhin i plastov. M.: Nedra, 1965, 263 p.
6. Zheltov Ju.P. Razrabotka neftjanyh mestorozhdenij: ucheb. dlja vuzov. 2-e izd., pererab. i dop. M.: OAO "Izdatel’stvo „Nedra”, 1998, 365 p.

Metrological factor of natural gas imbalance in “GDS-consumer” system

Authors: Farit G TUKHBATULLIN was born in 1950. In 1972 he graduated from the Ufa Oil Institute. He is Doctor of Technical Sciences, professor of the Department of Petroleum Products and Natural Gas Supply of Gubkin Russian State University of Oil and Gas (National Research University), Member of the Russian Academy of Engineering and Technology. He is author of 21 inventions and 170 scientific papers. E-mail:
Dmitriy S. SEMEICHENKOV was born in 1993. In 2015 he graduated from Gubkin Russian State University of Oil and Gas (National Research University). He is graduate student of the Department of Petroleum Products and Natural Gas Supply Gubkin Russian State University of Oil and Gas (National Research University). Не is author of 7 publications. E-mail:
Tagir F. TUKHBATULLIN was born in 1976. In 1988 he graduated from the Ufa Oil Institute. He is Candidate of Technical Sciences, Deputy Head of the Department of 310/2/1 310 PAO „Gazprom”. His research interests include improved management of technological modes of transport of gas. Не is author of 15 publications. E-mail:

Abstract: The influence of the metrological factor on the magnitude of the imbalance of natural gas in the process of delivery to end users is analyzed using methods of mathematical statistics. It is proved that it is the metrological factor that makes a decisive contribution to the total amount of gas imbalance that must be constantly monitored and maintained at an acceptable level

Index UDK: 519.222:519.237.4

Keywords: imbalance gas, metrology factor, commercial account of gas, relative error, absolute error, variance, expectation

1. Gmurman V.E. Probability theory and mathematical statistics: Textbook for high schools. M.: Higher School, 2003, 479 p. (in Russian).
2. STO Gazprom  5.37-2011. Uniform technical requirements for equipment flow measurement units and the amount of natural gas used in JSC „Gazprom”, 51 p. (in Russian).
3. STO Gazprom  5.32-2009. Organization of natural gas measurement, 90 p. (in Russian).
4. STO Gazprom 2-3.5-454-2010. Rules of operation of gas mains, 164 p. (in Russian).
5. RD 153-39.4-079-01. Methods of determining the flow rate of gas for technological needs of gas supply companies and losses in gas distribution systems, 14 p. (in Russian).
6. Hvorov G.A., Kozlov S.I., Akopova G.S., Evstifeev A.A. Reduction of losses of natural gas for transportation through main pipelines of JSC „Gazprom”. Gas industry, 2013, no. 12, p. 66-69 (in Russian).
7. Pavlovsky M.A. Application of mathematical statistics to analyze the reasons for the imbalance in the transport of natural gas pipeline transmission system. Electronic scientific journal „Oil and gas business”, 2012, no. 1, p. 69-74 (in Russian).
8. Andriishin M.P., Igumentsev E.A., Prokopenko E.A. Linear trends in the diagnosis of the gas balance. Aerospace technics and technology, 2008, no. 10 (57), p. 213-217 (in Russian).
9. Ignatiev A.A. Evaluation of the cause imbalance volumes of gas in the system, „producer-consumer”. Gas industry, 2010, no. 6, p. 20-22 (in Russian).
10. Andriishin M.P., Igumentsev E.A. Dynamics of indicators of statistical reporting gas imbalance. Metrologiya, 2014, p. 427-430 (in Russian).
11. Belov D.B., Ignatiev A.A., Solov’ev S.I. The problem of measurement error in the commercial resource accounting (for example, natural gas deliveries). Methods of conformity assessment, 2012, no. 9, p. 20-24 (in Russian).
12. Salikov A.R. Imbalance in gas distribution networks. Russian gas, 2015, no. 4, p. 36-41 (in Russian).
13. Newsletter of the Federal Tariff Service (FTS) of 28.06.2005 ref. Number of CH-3923/9 „On gas losses taken into account”, 2 p. (in Russian).

The oil products batching by using drag reducing agents to decrease an amount of interface

Authors: Nikita N. GOLUNOV was born in1981. He graduated from Gubkin Russian State University (Faculty of Design, Construction and Exploitation of Pipeline Transport Systems) in 2003. PhD in Technical Sciences, Associate professor of the Department of Gas and Oil Pipeline Engineering and Operation of Gubkin Russian State University (National Research University). He is author more than 20 publications. E-mail:

Abstract: This article presents the process of multifarious oil products sequential transportation, while every product displace the previous one and is displaced by the next one. The interface, which is build up in oil products contact area, is governed by pipeline length and intensity of turbulent mixing. It is found that this intensity could be decrease sharply by provision of the small amount of drag redu cing agent (DRA), which will diminish either stream friction and batch volume. In this article the calculation of DRA’s volume for considerable reduction of interface is presented

Index UDK: 622.691.4

Keywords: pipeline transportation of petroleum products, batching technology, direct contact, cutting of an interface volume, drag reducing agents, reduction of the hydraulic resistance coefficient, separation plug

1. Toms B.A. Some observation on the flow of linear polymer solution through straight tubes at large Reynolds numbers. Proceedings of the 1st International. Congress on Rheology. North-Holland. Amsterdam, 1949, vol. 2, p. 135–141.
2. Hoyt J. The effect of additives on fluid friction. Theoretical foundations of engineering calculations, 1972, no. 2, p. 1–31.
3. Virk P.S. Drag Reduction Fundamentals. AIChE Journal, 1975, no. 21 (4), p. 625–655.
4. Japper-Jaafar M.R. et al. Laminar, transitional and turbulent annular flow of drag-reducing polymer solutions. Journal Non-Newtonian Fluid Mechanics, 2010, no. 161, p. 86–93.
5. Pe’terfalv F. Drag reducing agent application on MOL high pressure liquid hydrocarbons pipelines. Science and technologies oil and oil products pipeline transportation, 2015, no. 4, p. 29–41.
6. Zholobov V.V., Moretsky V.Y., Varybok D.I. About determining functional dependence of anti turbulent additive hydraulic efficiency from parameters of transported medium. Science and technologies oil and oil products pipeline transportation, 2011, no. 4, p. 52–57.
7. Ishmukhametov I.T., Isaev S.L., Lurie M.V. Pipeline transport of petroleum products. M.: Publishing house „Oil and Gas”, 1999, 299 p.
8. Golunov N.N. The use of anti-turbulent additives in the zone of contact lots of different-grade petroleum products to reduce the mixture formation during sequential pumping. Diss. for the degree of candidate of technical sciences. M.: Gubkin Russian State University of Oil and Gas, 2006, 135 p.
9. Lurie M.V. Theoretical foundations of pipeline transport of oil, oil products and gas. M.: Publishing house Nedra, 2017, 478 p.