Articles Archive

№ 1/282, 2016

Title
Authors
Category
The geological structure of production zones on the basis of detailed correlation of wells
Geosciences

Authors: Galina P. KUZNETSOVA graduated from Moscow Institute of petrochemical and gas indus-try in 1982. Associate Professor in the Department of production Geology of oil and gas Gubkin Russian State University (National Research University) of Oil and Gas. A specialist in the field of correlation of well logs, geological modeling and reserves estimation. Author of over 50 scientific publications, 12 textbooks, 3 patents for inventions. E-mail: gp_kuznetsova@mail.ru
Yana P.
LOTFULLINA graduated from Gubkin Russian State University of Oil and Gas in 2015, the Department of production Geology of oil and gas. She is specializes in the field of geological modelling and reserves estimation. Engineer 2 categories, the EDC GROUP company. E-mail: lotfullina.yana@yandex.ru

Abstract: Analysis of drilling results and geological data from drilling production wells has shown that new information changed the initial presentation of the geological structure of the operational portion of the field under study. In accordance with the project documentation for the development of the deposits of the Tyumen Suite we identified two production zones: layers J2-4 and layers J5-6. Zones with changed geological certainty proved to be of more complex structure. The productive beds are in some cases completely washed away, which prevents the movement of fluid along the strike in the process of development. The most tectonically active and relatively stable zones within which mining is done differently have been selected within the study area. The fluid moves along the bedding within a relatively stable zone. In the tectonically active zone, stub zones are formed where the movement of the fluid is restricted or none at all. In this connection it is necessary to perform a comprehensive analysis of the geological structure of production zones with production and injection wells, controlling reservoir pressure in the development process. The results obtained have showed that the documentation for development require adjustments, and it is necessary to develop measures to regulate the development of these zones. The research was conducted within the framework of the geological model of the operational portion of the deposit.

Index UDK: УДК 553.98

Keywords: correlation of well sections, reservoir, development zone, formation, stratigraphic erosion, discordant occurrence, formation thickness, conditions of sedimentation, tectonics, tectonic movement, path of fluid filtration

Bibliography:
1. Guidelines for the correlation of well sections under the editorship of Professor I.S. Gutman. M.: ID Nedra, 2013, 112 p.

Evaluating generation potential and geological resources of hydrocarbons of low permeability shale strata of the Maikop suite
Geosciences

Authors: Vagif U. KERIMOV was born in 1949, graduated from Azerbaijan Institute of Oil and Chemistry (Baku). Doctor of geological and mineralogical sciences, professor, head of the Dept. of Theory of Oil and Gas Exploration and Prospecting of Gubkin Russian State University (National Research University) of Oil and Gas. He has published over 150 works. E-mail: vagif.kerimov@mail.ru
Nurdin Sh. YANDARBIYEV was born in 1955, graduated from the Geological Faculty of Moscow State University with a degree in „Geology and exploration of oil and gas fields” Candidate of Geological and Mineralogical Sciences, Associate Professor, Department of Geology and Geochemistry of Combustible Minerals Geological Faculty of MSU M.V. Lomonosov.
E-mail: yandarbiev@mail.ru
Rustam N. MUSTAEV was born in 1987, graduated from the Orenburg State University majoring in „Geology of oil and gas” Ph.D., Research Fellow Department of theoretical foundations of prospecting and exploration of oil and gas Gubkin Russian State University (National Research University) of Oil and Gas. Author of 32 scientific publications and two monographs. Has been studying the Caspian-Black Sea region. E-mail: r.mustaev@mail.ru
Stanislav S. DMITRYEVSKY was born in 1992, graduated from Department of Geology and Geophysics of the Gubkin Russian State University of Oil and Gas, Engineer I cat. Department of theoretical foundations of prospecting and exploration of oil and gas Gubkin Russian State University (National Research University) of Oil and Gas. E-mail: trudyrgung@gubkin.ru

Abstract: The article is devoted to assessing the generation potential and geological resources of hydrocarbons of low permeability shale strata of the Maikop suite of the Pre-Caucasian region which is most promising for the discovery of “shale” hydrocarbons in Russia. The hydrocarbon generation potential of the of Khadum and Batalpashinsk deposits was appraised for the first time in the region

Index UDK: УДК 550.8 (479.24)

Keywords: Maikop suite, Pre-Caucasian region, geochemical studies, shale hydrocarbons, generation potential

Bibliography:
1.Bazhenova O.K., Fadeeva N.P., Petrichenko Ju.A. Polozhenie glavnoj zony nefteobrazo- vanija v Indolo-Kubanskom progibe. Materialy pjatoj mezhdunarodnoj konferencii „Novye idei v geologii i geohimii nefti i gaza”. M.: Isd. MGU, 2001, p. 36-38 (in Russian).
2.Ermolkin V.I., Kerimov V.Ju. Geologija i geohimija nefti i gaza: Uchebnik. Izdatel’skij dom Nedra, 2012, p. 460 (in Russian).
3.Kerimov V.Ju., Shilov G.Ja, Poljakov E.E., Ahijarov A.V. i dr. Sedimentologo-facial’noe modelirovanie pri poiskah, razvedke i dobyche skoplenij uglevodorodov. M.: VNIIgeosistem, 2010, p. 288 (in Russian).
4.Morariu D., Aver’janova O.Ju. Nekotorye aspekty neftenosnosti slancev: ponjatijnaja baza, vozmozhnosti ocenki i poisk tehnologij izvlechenija nefti. Neftegazovaja geologija. Teorija i praktika, 2013, t. 8, no. 1, p. 39-44 (in Russian).
5.Prishhepa O.M., Aver’janova O. Ju., Il’inskij A.A., Morariu D. Neft’ i gaz nizkopronicaemyh slancevyh tolshh — rezerv syr’evoj bazy uglevodorodov Rossii. SPb.: FGUP VNIGRI, 2014 (Trudy VNIGRI), p. 323 (in Russian).
6.Jandarbiev N.Sh., Dashtiev Z.K. O vozmozhnostjah poiskov „slancevyh” zalezhej nefti i gaza v Predkavkaz’e. Regional’naja geologija i neftegazonosnost’ Kavkaza. Materialy nauchno-prakticheskoj konferencii, posvjashhennoj pamjati zasl. geologa RF D.A. Mirzoeva. Mahachkala, 2012, p. 234-236 (in Russian).
7.Peters K.E. Guidelines for evaluating petroleum source rock using programmed pyrolysis. AAPG Bulletin, 1986, v. 70, no. 3, p. 318.8.
8. Guliyev I.S., Kerimov V.U., Osipov A.V. Hydrocarbon potential of great depths. Neft’, gaz i biznes, 2011, no. 5, p. 9-16.
9. Rachinsky M.Z., Kerimov V.U. Fluid dynamics of oil and gas reservoirs. Scrivener Publishing Wiley, 2015, 618 p.

Assessment of impact of geological structure uncertainties on forecast production data of Kirinskoye field
Geosciences

Authors: Alexander D. DZYUBLO was born in 1947. He graduated from Gubkin Moscow Institute of Petrochemical and Gas Industry in 1972, specializing as mining engineer-geophysicist. He is Professor of the Department of Offshore Oil and Gas Field Development, Doctor of Geological-Mineralogical Sciences. He is author of more than 130 scientific publications and 1 monograph. E-mail: dzyublo.a@gubkin.ru
Petr V. PYATIBRATOV was born in 1979. He graduated from Gubkin Russian State University of Oil and Gas in 2002, he is Candidate of Technical Sciences, Assistant Professor of the Department of Oil Field Development of Gubkin Russian State University (National Research University) of Oil and Gas. He is specialist in the design and hydrodynamic modeling of oil and gas fields. He is author of more than 30 scientific publications. E-mail: pyatibratov.p@gmail.com
Anna E. STOROZHEVA graduated from Gubkin Russian State University of Oil and Gas with MS degree in „Offshore engineering” in 2012. She is a PhD student at the Department of Offshore Oil and Gas Field Development. E-mail: stor_anna@mail.ru >

Abstract: Under conditions of fields in the Kirinsky block the possibility of obtaining such data as movement of gas-water contact and depletion of different parts of depo-sits are severely limited. Forecasting the development process with the use of a permanent hydrodynamic model, adaptable to field data, would be one of the main methods of control. Generation of hydrodynamic models of the Kirinsky gas condensate field allowed to estimate the impact of the uncertainties of the geo-logical structure such as faults on the process of the depletion of reserves and the dynamic link between the layers

Index UDK: УДК 622.279.04

Keywords: hydrodynamic models, production data, offshore of Sakhalin island, the Kirinsky license block

Bibliography:
1. Dzjublo A.D., Shnip O.A., Halimov K.Je. Geologicheskoe stroenie i neftegazonosnost’ Kirinskogo bloka shel’fa o. Sahalin. Neft’, gaz i biznes, 2013, no. 3, p. 26-32.
2. Rezul’tirujushhij podschet zapasov gaza i gazovogo kondensata Kirinskogo mestorozhdenija. Otchet. M.: OOO «Gazprom VNIIGAZ», 2012.
3. Li Dzh., Vattenbarger R.A. Inzhiniring gazovyh rezervuarov. M.-Izhevsk: Institut komp’ju-ternyh issledovanij, 2014, 944 p.
4. Kanevskaja R.D. Matematicheskoe modelirovanie gidrodinamicheskih processov razrabotki mestorozhdenij uglevodorodov. M.-Izhevsk: Institut komp’juternyh issledovanij, 2002, 140 p.
5. RD 153-39.0-047-00 «Tehnicheskij reglament na postroenie geologo-tehnologicheskih mode-lej neftjanyh i gazoneftjanyh mestorozhdenij». M.: Mintopjenergo, 2000.

Assessment of oil-displacing ability of gas under thermogas oil recovery
Geosciences

Authors: Vadim N. KHLEBNIKOV graduated from Bashkir State University in 1979. He is Doctor of Technical Sciences, Professor of the Department of Physical and Colloid Chemistry of Gubkin Russian State University (National Research University) of Oil and Gas. He is specialist in the field of enhanced oil recovery and development of hard-to-recover oil reserves. He is author of more than 200 scientific publications. E-mail: Khlebnikov_2011@mail.ru
Aleksandr S. MISHIN graduated from National Research Nuclear University «MEPhI» in 2005. He is Engineer of the Department of Physical and Colloid Chemistry of Gubkin Russian State University (National Research University) of Oil and Gas. He is specialist in the field of enhanced oil recovery and development of hard-to-recover oil reserves. He is author of more than 20 scientific publications. E-mail: aleks_mishin@mail.ru
MENG Liang graduated from Beijing Institute of Petrochemical Technology in 2009, he is Ph.D student of the Department of Physical and Colloid Chemistry of Gubkin Russian State University (National Research University) of Oil and Gas. Research interests: oil and gas production. E-mail: liangmeng@mail.ru
Natalya A. SVAROVSKAYA graduated from Тomsk State University in 1971. She is Doctor of Technical Sciences, Professor of the Department of Physical and Colloid Chemistry of Gubkin Russian State University (National Research University) of Oil and Gas. She is specialist in the field of petroleum geology and tertiary oil recovery. She is author of more than 160 scientific publications.
E-mail: na_sv2002@mail.ru

Abstract: A study was conducted to determine oil displacing ability of gas agent produced from in-situ transformation of air during thermal stimulation of light oil reservoirs. It is shown that the oil displacing characteristics of the gas agent of thermos-gas EOR method are close to those of fatty associated petroleum gas in high temperature reservoirs of light oil. It has also been found that the use of core formation models in flooding experiments (according to OST 39-195-86) does not allow to fully reveal the efficiency of miscible gas oil-displacing agents

Index UDK: УДК 622.276.6

Keywords: enhanced oil recovery, miscible displacement, thermos-gas oil recovery method, physical simulation of oil displacement

Bibliography:
1. Kuramshin R.M. Osobennosti geologicheskogo stroeniya i tehnologii razrabotki yurskih otlojenii Nijnevartovskogo svoda [Features of the geological structure and development technology of Jurassic sediments Nizhnevartovsk dome]. Moscow, RMNTK Nefteotdacha Publ., 2002, 107 p.
2. Bagautdinov A.K., Markov S.L., Belevich G.K. and et al. Geologiya i razrabotka krupneishih i unikalnih neftyanih i neftegazonosnih mestorojdenii Rossii [Geology and development of large unique oil and gas fields in Russia]. Moscow, VNIIOENG Publ., 1996, 352 p.
3. Bokserman A.A. and Yambaev M.F. The method of injection and in situ transformation of air in fields of light oil. Proc. 12 th European Symposium on improved Oil Recovery. Kazan, Russia, 2003 (in Russian).
4. Yambaev M.F. Osnovnie osobennosti termogazovogo metoda uvelicheniya nefteotdachi primenitelno k usloviyam slojnopostroennih kollektorov (na osnove chislennogo modelirovaniya). Dokt, Diss. [The main features of thermal gas EOR applied in the conditions of complex reservoirs (on the basis of numerical modeling). Doct, Diss.], Moscow, 2006, 153 p.
5. Khlebnikov V.N. and Vezhnin S.A. Perspektivi primeneniya termogazovogo metoda povisheniya nefteotdachi v usloviyah yurskih plastov mestorojdenii OAO «Tomskneft» [Prospects of application of thermo-gas method for enhanced oil recovery in the conditions of Jurassic reservoir in fields «Tomskneft»]. Trudy Obedinennogo centra issledovanii i razrabotok «Perspektivi tehnologii neftegazovoi industrii» [Proc. of the Joint research and development center «Prospects of technology in the oil and gas industry»], 2006, no. 2, p. 79-84.
6. Kumar V.K., Gutierrez C., Cantrell C. 30 Years of Successful High-Pressure Air Injection: Performance Evaluation of Buffalo Field, South Dakota. Journal of Petroleum Technology, 2011, vol. 63, no. 01, p.50-53.
7. Khlebnikov V.N., Zobov P.M., Antonov S.V., Ruzanova Yu.F. Research on thermos-gas method for oil extraction. Kinetic laws of oil autoxidation of Jurassic age reservoir. Bashkirskii Khimicheskii Zhurnal [Bashkir Chemical Journal], 2008, vol. 15, no. 4, p. 105-110 (in Russian).
8. Khlebnikov V.N., Zobov P.M., Antonov S.V., Ruzanova Yu.F., Bakulin D.A. Research on thermo-gas method for oil extraction. Influence of sodium bicarbonate on the kinetic laws of light oil autoxidation. Bashkirskii Khimicheskii Zhurnal [Bashkir Chemical Journal], 2009, vol. 16, no. 1, p. 65-71 (in Russian).
9. Khlebnikov V.N., Zobov P.M., Antonov S.V., Bakulin D.A., Gushina Yu.F. and Nisku- lov E.K. Comparison of the kinetic laws of autooxidation of oil and solid organic material in rocks of Bazhenov suite. Bashkirskii Khimicheskii Zhurnal [Bashkir Chemical Journal], 2011, vol. 18, no. 4, p. 87-92 (in Russian).
10. Khlebnikov V.N., Mishin A.S., Zobov P.M., Antonov S.V., Bakulin D.A., Bardin M.E. and Niskulov E.K. Simulation of chemical steps in thermo-gas enhanced viscous oil of reservoirs PK Cenomanian horizon. Bashkirskii Khimicheskii Zhurnal [Bashkir Chemical Journal], 2012, vol. 19, no. 3, p. 12-16 (in Russian).
11. Aizikovich O.M., Bulygin M.G., Korablev L.I. The thermal effect of oxidation reaction in the wet in-situ combustion. Neftepromyslovoe delo and transport nefte [Petroleum engineering and oil transport], 1985, no.11, p. 4-6 (in Russian).
12. Yannimaras D.V., Sufi A.H., Fassihi M.R. The Case for Air Injection into Deep Light Oil Reservoirs. Proc. 6th European IOR-Simposium. Stavanger, Norway, 1991.
13. Lake L.W. Enhanced oil recovery. Englewood Cliffs, New Jersey, Prentice Hall Publ., 1989, 449 p. (Russ. ed.: Osnovi metodov uvelicheniya nefteotdachi, 2004, 449 p. Available at: www.oil-info.ru/content/view/148/59 ).
14. Polishchuk A.M., Khlebnikov V.N. and Gubanov V.B. Using slim models for the physical simulation of oil displacement processes by miscible agents. Part 1. Methodology of experiment. Neftepromyslovoe delo  Petroleum engineering, 2014, no. 5, p. 19-24 (in Russian).
15. Khlebnikov V.N., Gubanov V.B. and Polishchuk A.M. Using slim models for the physical simulation of oil displacement processes by miscible agents. Part 2. Evaluation of the possibility of using standard flooding equipment for the implemention of slim methodology. Neftepromyslovoe delo. Petroleum engineering, 2014, no. 6, p. 32-38 (in Russian).
16. Industry Standard OST-39-195-86. Oil. The method of determining the coefficient of oil displacement by water in the laboratory. Moscow. The Ministry of Petroleum Publ., 1986, 20 p. (in Russian).
17. Yellig W.F., Metcalfe R.S. Determination and Prediction of CO2 Minimum Miscibility Pressures. Journal of Petroleum Technology, 1980, vol. 32, no. 1, pp. 160-168.

Method of registration of influence of true producing gas oil ratio on bottom hole pressure value during liquid-gas mixture flow in well bore of horizontal wells
Geosciences

Authors: Denis A. MARAKOV сandidate of Technical Sciences, associate professor of the Department of Development and Operation of Gas and Gas-Condensate Fields. He is expert in the field of development and operation of oil and gas fields and author more than 30 publications, including 7 monographs and 5 thematic brochures in the field of the theory of development, research and operation of vertical and horizontal wells. E-mail: marakovdenis78@gmail.com

Abstract: In the operating gas and gas-condensate wells the presence of liquid in the gas flow depending on its amount can significantly affect the bottom hole pressure value. The existing approximate methods of registration of the liquid presence in the gas flow to determine the bottom hole pressure were reduced to application of averaged void fraction coefficient over the entire length of the well. It is shown that application of the proposed method can improve the accuracy of determining the down hole pressure in the presence of liquid in the gas flow

Index UDK: УДК 622.279

Keywords: horizontal well, bottom hole pressure, of the true producing gas oil ratio, flow regime, consumption gas content

Bibliography:
1. Korotaev Y.P. and etc. Instructions hydrodymanic calculations gas-condensate wells. M., 1980, 59 p.
2. Aliyev Z.S. and etc. Technological operation of gas wells. М.: Nedra, 1978, p. 261.
3. Aliyev Z.S. and etc. determination of basic parameters horizontal gas wells. Publishing Center of Gubkin Russian State Oil and Gas university, 2012, 228 p.
4. Grizenko A.I. and etc. Well survey manual. M.: Science, 1995, 523 p.
5. Mamaev V.A. and etc. Flow of liquid-gas mixture in pipes. M.: Nedra, 1978, 270 p.
6. Aliyev Z.S. and etc. Theoretical and technological basis of horizontal wells application for the development of gas and gas-condensate fields. М.: Nedra, 2014, 450 p.

Rapid method of producing wells selectiоn for stimulation
Geosciences

Authors: Alexander N. KULIKOV graduated from Ufa State Petroleum Technological University in 1980. He is Cand. Sc., Head of the Research and Educational Center-Laborator „Production Chemistry” at Gubkin Russian State University (National Research University) of Oil and Gas. He is author of over 50 scientific publications. E-mail: ANK-_1@mail.ru
Lyubov A. MAGADOVA graduated from Gubkin Moscow Institute of Petrochemical and Gas Industry in 1975. She is Cand. Sc., Professor of the Department of Oil and Gas Proces-sing at Gubkin Russian State University (National Research University) of Oil and Gas. She is author of over 160 scientific publications. E-mail: magadova0108@himeko.ru
Mikhail A. SILIN graduated from Gubkin Moscow Institute of Petrochemical and Gas Industry in 1978. D Sc., Vice-Rector of Iinnovations and Commercialization of Gubkin Russian State University (National Research University) of Oil and Gas, Head of of the Department of Oil and Gas Processing at Gubkin Russian State University (National Research University) of Oil and Gas. He is author of over 160 scientific publications. E-mail: silin.m@gubkin.ru
Ibragim I. ABYZBAEV graduated from Bashkir State University in 1981. Нe is Cand. Sc., Professor of the Department of Oil and Gas Fields Development at Ufa State Petroleum Technical University. He is an author of over 50 scientific publications.
E-mail: shaura505@mail.ru

Abstract: The article provides an overview of existing methods of wells selection for stimulation with bottom-hole treatment technologies or formation hydraulic fracturing. Their shortcomings are presented. The principles of the new rapid methods of wells selection for stimulation are presented. The method is based on the use of the graphic correlation of the fluid rate current values and the fluid potential values of the current reservoir wells. The indicator for the fluid potential of the well is a product of the penetrated layer thickness, its average permeability and the difference between the reservoir and the bottomhole pressure, divided by the viscosity of the produced fluid. Wells with points at the graphic correlation located below the interpolating point line of direct dependence on the fluid flow rate of the fluid potential index are recognized as problem wells. Тhe problematic character of the selected wells is proved by analysis of the fluid flow rate dinamics at the second phase

Index UDK: УДК 622.276.72

Keywords: liquid rate, colmatation of layer, index of well potential for fluid, graphical correlation, interpolating straight line

Bibliography:
1. Mishenko I.T. Skvashinnaya dobycha nefti [Well petroleum recovery]. M.: Oil and gas, 2003, 216 р.
2. Interdisciplinary Scientific Information thematic collection. Newspaper and magazine information. Under. Ed. Academician Tishchenko A.S. M.: JSC „VNIIOENG”, 2004, рart 1.
3. Mukerdjy H. Proizvoditelnost skvajin [Well productivity]. M.: UKOS, 2001, 183 p.
4. Erlager R. Gidrodinamicheskie metody issledovaniya skvagin. [Hydrodynamic methods of research of wells], 2006, Izhevsk. ANO „Institute of Computer Science”, 512 p.

Аnalysis of elements of gas supply systems by method of moment generating functions
Geosciences

Authors: Vladimir N. RUSEV graduated from Moscow State University in the field of probability theory and mathematical statistics in 1997. He is senior lecturer of the Department of Higher Mathematics of Gubkin Russian State University (National Research University) of Oil and Gas. The focus of his academic interests is information theory, applied mathematical statistics and theory of reliability. He is author of more than 10 scientific publications including 3 teaching aids. E-mail: vnrusev@yandex.ru
Alexandr V. SKORIKOV graduated from Rostov State University in 1971. He is Candidate of Physical and Mathematical Sciences, associate professor of the Department of Higher Mathematics of Gubkin Russian State University (National Research University) of Oil and Gas. His scientific interests are fractional derivatives and integrals, operators of potential type and functional spaces, theory of reliability. He has published over 30 works including 5 teaching aids. E-mail: skorikov.a@gubkin.ru

Abstract: The relationship between indicators of reliability of non-renewable and recove-rable elements and systems is studied. Technologically active elements of the gas supply system are considered from the perspective of both repairable and non-repairable elements. It is assumed that the entire life cycle of the facilities is described by the power-law distribution of Weibull-Gnedenko. Using this distribution semi-dependences have been obtained. These can be used for engineering calculations on the basis of failures statistics. An example of the processing of real operational data on failures is considered

Index UDK: УДК 519.873+622.691.4.07

Keywords: reliability, failure rate, failure flow parameter, moment-generating function, Weibull-Gnedenko distribution

Bibliography:
1. Grigor’ev L.I., Kalinin V.V., Rusev V.N., Sedykh I.A. Matematicheskoe obespechenie podsistemy otsenki i monitoringa nadezhnosti ASDU v transporte gaza. Avtomatizatsiya v promyshlennosti, 2010, no. 12, p. 11-15. (In Russian).
2. Rusev V.N. Primenenie raspredeleniya Veybulla—Gnedenko dlya opisaniya etapov zhiznennogo tsikla gazoperekachivayushchikh agregatov pri upravlenii tekhnicheskim sostoyaniem gazotransportnykh system. Promyshlennyy servis, 2013, no. 1, p. 17-22 (In Russian).
3. Polovko A.M., Gurov S.V. Osnovy teorii nadezhnosti. 2-e izd., pererab. i dop. SPb., BKhV-Peterburg, 2006, 704 p. (In Russian).
4. Krasnov M.L. Integral’nye uravneniya: Vvedenie v teoriyu, Moscow, Editorial URSS, 2010, 304 p. (In Russian).
5. Rossiyskaya gazovaya entsiklopediya. Pod red. R.I. Vyakhireva. M.: Bol’shaya Rossiyskaya entsiklopediya, 2004 (slovarnaya stat’ya „Nadezhnost’ sistem gazosnabzheniya”, M.G. Sukharev) (In Russian).
6. Lavrent’ev M.A., Shabat B.V. Metody teorii funktsiy kompleksnogo peremennogo, Moscow, Nauka, 1987, 688 p. (In Russian).
7. Sukharev M.G. Modeli nadezhnosti markovskogo tipa s prilozheniyami k neftegazovomu delu. Uchebnoe posobie, Moscow, Izdatel’skiy tsentr RGU nefti i gaza imeni I.M. Gubkina, 2012, 131 p. (In Russian).
8. Kendall M.A., Stuart A. The Advanced Theory of Statistics. Volume 1. Distribution Theory. 2 th ed. London, Charles Griffin &Company Limited, 1961. (Russ.ed.: Kendall M., Stuart A. Teoriy raspredeleniy. Moscow, Nauka, 1966, 588 p.)
9. Rusev V.N. Aktual’nost’ teoreticheskogo issledovaniya raspredeleniya Veybulla—Gnedenko dlya rascheta otsenok tekhnologicheskoy nadezhnosti neftegazovogo oborudovaniya, Avtomatizatsiya, telemekhanizatsiya i svyaz’ v neftyanoy promyshlennosti, 2013, no. 11, p. 46-49. (In Russian).
10. Gradshteyn I.S., Ryzhik I.M. Table of Integrals, Series, and Products. 7 th ed. Oxford, Elsevier Inc, 2007. (Russ.ed.: Gradshteyn I.S., Ryzhik I.M. Tablitsy integralov, summ, ryadov i proizvedeniy. SPb, BKhV-Peterburg, 2011, 1232 p.)
11. Beichelt F., Franken P. Reliability and Maintenance. Mathematical Method. Berlin, Veb Verlag Technik, 1983. (Russ. ed. Beichelt F., Franken P. Nadejnost’ i tehnicheskoe obslujivanie. Matematicheskiy podhod. Moscow, Radio i svyaz’, 1988, 392 p.)

Geodynamic monitoring of gas pipelines with unmanned aero vehicles
Geosciences

Authors: Kerim B. HUSEYNOV graduated from Gubkin Moscow Institute of Petrochemical and Gas Industry in 1983. He is Candidate of Technical Sciences, Director General of LLC „Gazprom Transgaz Makhachkala”. Аuthor of more than 40 papers in the field of improving the reliability and efficiency of the gas mains. E-mail: gaz@dgp.gazprom.ru
Mikhail M. ZADERIGOLOVA graduated from the Dnepropetrovsk Mining Institute in the 1962. He is Candidate of Technical Sciences, Chief Specialist LLC „GEOTEK”, the author of over 130 scientific papers and patents in the field of geodynamic safety of large economic projects. E-mail: geotec.mz@mail.ru
Alexey S. LOPATIN graduated from Gubkin Moscow Institute of Petrochemical and Gas Industry in 1979. He is Doctor of Technical Sciences, professor, Head of Dept. of Termodynamics and Heat Engines of Gubkin Russian State University (National Research University) of Oil and Gas, author of over 300 papers in the field of diagnostics, energy saving in the transport of gas, energy efficiency. E-mail: Lopatin.a@gubkin.ru

Abstract: The need of monitoring is caused by the fact that some of the country gas pipelines cross areas with active dangerous geological processes. A significant step forward in ensuring geodynamic safety of gas pipelines can be made by including the radio-wave method into the monitoring system. The system created on he basis of unmanned aerial vehicles allows to make fast responsible management decisions aimed at eliminating the possibility of accidents at the earliest stages of natural and man-made processes

Index UDK: УДК 621.6

Keywords: geodynamic monitoring, dangerous geological processes, safety, gas pipeline, radio-wave method, unmanned aero vehicle

Bibliography:
1.Metody i sredstva diagnostiki linejnoj chasti magistralnyh gazoprovodov: uchebnoe posobie, 2-e izd. A.S. Lopatin, N.H. Hallyev, A.A. Filatov i dr. M.: Nedra, 2013, 188 р.
2.Osobennosti ocenki tehnicheskogo sostojanija uchastkov magistral’nyh gazoprovodov, ispytyvajushhih intensivnoe vozdejstvie neproektnyh nagruzok. K.B. Gusejnov, S.I. Egorov, A.P. Zav’jalov, A.S. Lopatin. Neft’, gaz i biznes, 2015, no. 3, p. 34–37.
3.Zaderigolova M.M., Lopatin A.S. Primenenie radiovolnovogo metoda kontrolja dlja obespechenija bezopasnosti gazotransportnyh sistem. M.: Izd. centr RGU nefti i gaza imeni I.M. Gubkina, 2014, 72 p.
4.Radiovolnovaja sistema monitoringa opasnyh geologicheskih processov na gazoprovode s. Dzaurikau – g. Chinval. O.E. Aksjutin, S.V. Alimov, M.Ju. Mitrohin, A.N. Kolotovskij, A.V. Zavgorodnev, A.Ju. Astanin, M.M. Zaderigolova. Gazovaja promyshlennost’, 2015, no. 3, p. 28–32.
5.Zaderigolova M.M., Lopatin A.S., Seredenok V.A. Monitoring opasnyh geologicheskih processov dlja obespechenija bezopasnosti gazotransportnyh sistem. Neft’, gaz i biznes, 2015, no. 3, p. 41–43.
6.Zaderigolova M.M. Obespechenie geodinamicheskoj bezopasnosti gazotransportnyh sistem radiovolnovymi metodami. M.: Nauchnyj mir, 2009, 398 p.
7.Zaderigolova M.M. Radiovolnovyj metod v inzhenernoj geologii i geojekologii. M.: Izd-vo MGU, 1998, 320 p.
8.Svod Pravil po inzhenernym izyskanijam dlja stroitel’stva SP-11-105-97, ch. VI. «Pravila proizvodstva geofizicheskih issledovanij». M.: Gosstroj RF, 2004, 51 p.

Improving selection of hollow sucker rods through use of mathematical model of rods behavior
Technical sciences

Authors: Vladimir N. IVANOVSKI graduated from Gubkin Russian State University of Oil and Gas in 1976. Нe is Doctor of Technical Sciences, Head of the Department of Machines and Equipment of Oil and Gas Industry at Gubkin Russian State University (National Research University) of Oil and Gas. He is full member of the Academy of Natural Sciences, Honorary Worker of the fuel and energy complex. He is author of more than 200 scientific papers. E-mail: ivanovskiyvn@yandex.ru
Yuri S. DUBINOV graduated from Gubkin Russian State University of Oil and Gas in 2013. He is graduate student the Department of Machines and Equipment of Oil and Gas Industry of Gubkin Russian State University (National Research University) of Oil and Gas. He is Head of the Laboratory of the Department of Metallurgy and Non-metallic Material, author of 14 scientific publications.
E-mail: dubinovys@gmail.com
Sergey S. PEKIN graduated from Gubkin Russian State University of Oil and Gas in 1976. Нe is Associate Professor of the Department of Machines and Equipment of Oil and Gas Industry of Gubkin Russian State University (National Research University) of Oil and Gas. He is author of more than 50 scientific publications. E-mail: pekinss@gmail.com
Andrey V. BULAT graduated from Gubkin Russian State University of Oil and Gas in 2010. He is Candidate of Technical Sciences, Senior Lecturer of the Department of Machines and Equipment of Oil and Gas Industry of Gubkin Russian State University (National Research University) of Oil and Gas. He is author of 18 scientific publications. E-mail: avbulat87@gmail.com

Abstract: The new method of calculating stresses is based on the Oding dependence with the introduction of the k index characterizing the design features of sucker rods and the material these are manufactured from. The new method allowed good agreement with the results of the situation in the well. A mathematical model was developed to account for the peculiarities of operation of sucker rods in directional wells. The new calculation method in conjunction with the mathematical model increased the accuracy by 5% when compared to the method without taking into account the mathematical model

Index UDK: УДК 622.276.53

Keywords: sucker rods, hollow sucker rods, method of calculating stress, mathematical model of sucker rods operation, Oding dependence

Bibliography:
1. Oding I.A. Dopuskaemye naprjazhenija v mashinostroenii [Allowable stress in mechanical engineering]. M.: Mashgiz, 1962, 260 p. (In Russian).
2. Markovec M.P. Uchebnoe posobie po kursu prochnost’ metallov oborudovanija atomnyh jelektricheskih stancij [Textbook of exchange metals strength of nuclear power plants equipment]. M.: MJI, 1979, 94 p. (In Russian).
3. Serensen S.V., Kogaev V.P. Nesushhaja sposobnost’ i raschety detalej mashin na prochnost’ [Bearing capacity calculations and machine parts for durability]. M.: Mashgiz, 1968, 488 p. (In Russian).
4. Renev D.Y. Povyshenie effektivnosti ekspluatatsii SShNU v naklonno-napravlennykh skvazhinakh za schet utochneniya metodik rascheta i podbora shtangovykh kolonn. Ph.Diss. [Increased operational efficiency downhole sucker rod pumping unit in deviated wells by clarifying the methods of calculation and selection of rod columns. Ph.Diss.]. Мoscow, 2010.
5. Stepin P.A. Soprotivlenie materialov [Strength of materials]. М.: Integral-press, 1997, 320 p. (In Russian).
6. Gots A.N., Raschety na prochnost’ detaley DVS pri napryazheniyakh, peremennykh vo vremeni [Stress calculation engine parts at voltages variables over time]. Vladimir, 2005, 124 p. (In Russian).
7. State Standart 31825-2012. Rods for pumps, wellhead and coupling rods to them. Мoscow, Standartinform Publ., 2013, 51 p. (In Russian).
8. Ivanovskij V.N., Dubinov Ju.S., Clarification of values of the permissible stresses and methods of calculating rod columns in oil under complicated conditions. [Proceedings of the Gubkin Russian State University of Oil and Gas], 2014, no. 1, p. 65-75 (In Russian).

Research of overall performance of valves of borehole pump installations
Technical sciences

Authors: Temir R. DOLOV graduated from Gubkin Russian State University of Oil and Gas in 2013. Нe is postgraduate student of the Department of Machines and Equipment of Oil and Gas Industry at Gubkin Russian State University (National Research University) of Oil and Gas. Specialist in the field of sucker rod pumping installations. He is author of 7 scientific publications.
E-mail: dolovtemir@yandex.ru
Aleksei V. DEGOVCOV graduated from Gubkin Moscow Institute of petrochemical and gas industry in 1982. Candidate of Engineering Sciences, Associate Professor of the Department of Machines and Equipment of Oil and Gas Industry at Gubkin Russian State University (National Research University) of Oil and Gas. A specialist in the field of pumping equipment production of oil and gas. The author of over 18 scientific publications. E-mail: degovtsov.aleksey@yandex.ru
Igor N. GERASIMOV graduated from Gubkin Russian State University of Oil and Gas in 2011. Leading engineer of the Department of Machines and Equipment of Oil and Gas Industry of Gubkin Russian State University (National Research University) of Oil and Gas. Specialist in the field of modeling processes in the development and operation of oil drilling equipment.
E-mail: gernik@yandex.ru
Konstantin I. KLIMENKO graduated from Gubkin Russian State University of Oil and Gas in 2008. Leading engineer of the Department of Machines and Equipment of Oil and Gas Industry of Gubkin Russian State University (National Research University) of Oil and Gas. Specialist in the field of modeling processes in the development and operation of oil drilling equipment. E-mail: workgr@mail.ru

Abstract: Mathematical models of the valves applied in borehole pumps are developed. Characteristics of the valves during work in different liquids are constructed. These characteristics allow to select valve knots for specific conditions of operation and to assess the durability of a valve knot

Index UDK: УДК 622.276.53

Keywords: borehole pump, valvate knot, mathematical model of the valve, hydraulic resistance

Bibliography:
1. Dolov T.R. Research of overall performance of valves of borehole pump installations. Book of abstracts 65th International Youth Conference “Oil and Gas 2011”. Moscow, 2011, р. 35 (In Russian).
2. Dolov T.R. Research of overall performance of valves of borehole pump installations. Book of abstracts 66th International Youth Conference “Oil and Gas 2012”. Moscow, 2012, p. 29 (In Russian).
3. Dolov T.R. Research of overall performance of valves of borehole pump installations. Book of abstracts 67th International Youth Conference “Oil and Gas 2013”. Moscow, 2013, p. 44 (In Russian).
4. Dolov T.R. A study of the valve assemblies of sucker rod pumps by mathematical modeling on computers. Book of abstracts 68th International Youth Conference “Oil and Gas 2014”. Moscow, 2014, p. 15 (In Russian).
5. Dolov T.R. Analysis of various designs of valve assemblies of downhole sucker-rod pumps. Book of abstracts 69th International Youth Conference “Oil and Gas 2015”. Moscow, 2015, p. 54 (In Russian).
6. Ivanovski V.N., Dolov T.R. Investigation of the efficiency of valve assemblies of downhole sucker-rod pumping systems. Equipment and technologies for oil and gas industry, 2014, no. 2, p. 29-33.
7. Ivanovski V.N., Elagina O.U., Gantimiriv B.M., Sabirov A.A., Dubinov U.S., Dolov T.R. An analysis of the various valve constructions of pairs of sucker-rod pump.
Territoriya Neftegaz, 2015, no. 9, p. 92-99.
8. Ivanovski V.N., Dubinov U.S., Dolov T.R. Accelerated testing of sucker rod fatigue for estimating endurance limits of materials and structures, teaching aid. Gubkin Russian State University of Oil and Gas, 2015, p. 29.
9. Ivanovski V.N., Babakin I.U., Dubinov U.S., Dolov T.R. Accelerated testing of valve assemblies of downhole sucker-rod pumping units on the amount of wear and tightness, textbook. Gubkin Russian State University of Oil and Gas, 2015, p. 27.
10. Molchanova A.G. Razrabotca metodov ucheta vliania svobodnogo gaza I vizkosti gidkosti na rabotu klapannih uzlov ckvaginnih shtangovih nasosov, Cand. Diss. [Development of methods taking into account the influence of free gas and fluid viscosity on the work of valve assemblies of downhole sucker-rod pumps. Cand
. Diss.]. Moscow 1989, 146 p.