Articles Archive

№ 3/280, 2015

Title
Authors
Category
Sedimentological control of the Middle Devonian deposits petroleum potential within the southern plunge of Buzuluk Depression
Geosciences

Authors: Valentina A. ZHEMCHUGOVA graduated from Lomonosov Moscow State University in 1978. She is Doctor of Geological and Mineralogical Sciences, professor of the Department of Geology of Hydrocarbon Systems of Gubkin Russian State University of Oil and Gas. She is specialist in the field of reservoir sedimentology for hydrocarbon systems modeling. She is author of 4 and co-author of 2 monogfaphs and more than 80 scientific publications in national and international journals. E-mail: zem@gds.ru
Oleg M. MYATCHIN graduated from Lomonosov Moscow State University in 2011. He works as geologist at Geophysical Data Systems Ltd. He is post-graduate student of the Department of Geology and Geochemistry of Fossil Fuels of Lomonosov Moscow State University. His research interests are sedimentology and modeling of structure and properties of reservoirs. E-mail: myatchin@gds.ru
Marina I. TRUNOVA graduated from Gubkin Russian State University of Oil and Gas in 1982. She is Candidate of Geological and Mineralogical Sciences, assistant professor of the Department of Geology of Hydrocarbon Systems of Gubkin Russian State University of Oil and Gas. She specializes in the search for oil and gas accumulations in deeply buried deposits. She is author of more than 20 scientific publications. E-mail: mtrunova@gmail.com

Abstract: Significant part of initial resources of the Buzuluk Depression is concentrated within Middle Devonian complex of its southern regions. Complex analysis of the results of macro- and microscopic core studies, seismic and well logging data made the development of the depositional reservoir models of Middle Devo- nian possible. These models became the basis for prediction of oil and gas reservoirs

Index UDK: УДК 552.143(47056:47043):551.734

Keywords: southern plunge of Buzuluk Depression, shallow marine depositional environments, Eifelian, Givetian, reservoirs, depositional reservoir model

Bibliography:
1. Bagrintseva K.I. Usloviia formirovaniia i svoistva karbonatnykh kollektorov nefti i gaza [For-ming conditions and properties of the carbonate oil and gas reservoirs]. Moscow, RGGU Publ., 1999, 285 p.
2. Zhemchugova V.A. Rezervuarnaia sedimentologiia karbonatnykh otlozhenii [Reservoir sedimentology of the carbonate deposits]. Moscow, EAGE Geomodel Ltd. Publ., 2014, 232 p.
3. Il’in V.D., Fortunatova N.K. Metody prognozirovaniia i poiskov neftegazonosnykh rifovykh kompleksov [Methods of forecasting and searching of oil-gas reef plays]. Moscow, Nedra Publ., 1988, 199 p.
4. Kuteev Iu.M., Savinkova L.D. State of the hydrocarbon resource base of Orenburg region. Mineral’nye resursy Rossii. Ekonomika i upravleniie — Mineral resources of Russia. Economy and management, 2011, no .2, pp. 2-6 (in Russian).
5. Makarova S.P. Geologicheskoie stroeniie nizhne-srednedevonskih otlozhenii iugo-vostoka Orenburgskoi oblasti [Geological structure of Lower and Middle Devonian deposits of the south-east of Orenburg region]. Geologiia i ekspluatatsiia neftyanykh i gasoneftyanykh mestorozhdenii Orenburg-skoi oblasti [Geology and development of oil and oil-gas fields of Orenburg region], 1999, pp. 65-68.
6. Muromtsev V.S. Elektrometricheskaia geologiia peschanykh tel — litologicheskikh lovushek nefti i gaza [Electrometric geology of sand bodies  lithological oil and gas traps]. Leningrad, Nedra Publ., 1984, 260 p.
7. Reineck H.-E., Singh I.B. Depositional sedimentary environments. Corr. reprint of the 1st ed. Berlin, Heidelberg, New York, 1975, 439 p. (Russ. ed.: Reinek G.-E., Singkh I.B. Obstanovki terri-gennogo osadkonakopleniia. Moscow, Nedra Publ., 1981. 439 p.).
8. Selley R.C. Ancient sedimentary environments. London, 1985. 317 p. (Russ. ed.: Selli R.Ch. Drevniie obstanovki osadkonakopleniia. Moscow, Nedra Publ., 1989. 294 p.).
9. Timofeev P.P. Geologiia i fatsii iurskoi uglenosnoi formatsii iuzhnoi Sibiri [Geology and facies of the Jurassic coal formation of the Southern Siberia]. Moscow, Nauka Publ., 1969, 457 p.
10. Wilson J.L. Carbonate facies in geologic history. Berlin, Heidelberg, New York, 1975, 471 p. (Russ. ed.: Uilson Dzh.L. Karbonatnyie fatsii v geologicheskoi istorii. Moscow, Nedra Publ., 1980, 463 p.).
11. Sandstone depositional environments/ Ed. by Peter A.Scholle and Darwin Spearing. Tulsa, Oklahoma: AAPG, 1982, 410 p.

Тhe astimation of the hydrocarbon potential of the generative-accumulative hydrocarbon system of the sea of Оkhotsk
Geosciences

Authors: Vagif U. KERIMOV was born in 1949, he graduated from Azizbekov Azebaijan Institute of Oil and Petrochemistry. He is Doctor of Geological and Mineralogical Sciences, professor, Head of the Dept. of Theoretical Fundamentals of Oil and Gas Exploration and Prospecting of Gubkin Russian State University of Oil and Gas, he has published over 150 works.E-mail: vagif.kerimov@mail.ru
Elena A. LAVRENOVA is Candidate of Geological and Mineralogical Sciences, research fellow of the Department of Theoretical Foundations of Exploration and Prospecting of Oil and Gas of Gubkin Russian State University of Oil and Gas. She has published over 30 works. E-mail: lavrenovaelena@mail.ru
Olga S. SINYAVSKAYA is a postgraduate student of the Department of Theoretical Foundations of Exploration and Prospecting of Oil and Gas of Gubkin Russian State University of Oil and Gas. She is author of 3 scientific publications. She specializes in the study of the Sea of Okhotsk region.E-mail: olga_sinjavskaja@mail.ru
EGOR A. SIZIKOV — is assistant of the Department of Theoretical Foundations of Exploration and Prospecting of Oil and Gas of Gubkin Russian State University of Oil and Gas. He is author of 3 scientific publications. He specilaizes in the study of the Sea of Okhotsk region.E-mail: egorkasiziy@ya.ru

Abstract: Based on the research of the Department of Theoretical Fundaments of Oil and Gas Exploration and Prospecting" of Gubkin Russian State University of Oil and Gas a 3D geological model of the regional sedimentary basin of the Sea of Okhotsk was created. The model allows to reconstruct the tectonic history of the region, identify the boundaries of sedimentary basins, to assess the extent and conditions of sedimentation and using the data of onshore and offshore drilling to predict the areas of sourse rock and reservoirs development

Index UDK: УДК 553.98.001+553.98(265)

Keywords: basin modeling, modeling of generative-accumulation hydrocarbon systems, the Sea of Okhotsk, Magadan shelf, Sakhalin shelf, West-Kamchatka shelf

Bibliography:
1. Gretskaya E.V., Litvinova A.V. Structure and development of oil and gas systems Magadan-skogo basin (North-Okhotsk). Geologia nefti I gaza. [Geology of oil and gas], 2012, no. 6, p. 132-140.
2. Kravchenko T.I., Blinov V.N., Nadezhkin D.V. et al. Geochemical ha raktnristika potentially neftegazomaterinskih deposits cut Sakhalin Bay (based on studies of SLE. Astrahanovskaya-sea-1). Geologia nefti I gaza. [Geology of oil and gas], 2012, no. 3, p. 36-43.
3. Krovushkina O.A. Structure and petroleum potential of sedimentary Magadan swimming pools. Oil and Gas Geology, 2001, no. 6, p. 34-40.
4. Margulis E.V. Oil geological zoning and evaluation of oil and gas resources of the Far Eastern seas. Petroleum Geology and practice, 2009, no. 4. //http:ngtp.ru/5/ 23_2009.
5. Savitsky A.V. Estimation of petroleum potential of Northern Sakhalin shelf on the basis of basin modeling. Phd thesis, 2005, p. 143.

Representation of permeability coefficients tensor for anisotropic fractured reservoirs
Geosciences

Authors: Nikolai M. DMITRIEV (b. 1948) is Doctor of Technical Sciences, professor of Gubkin Russian State University of Oil and Gas, Full Member of the Russian Academy of Natural Sciences. The sphere of his academic interests is anisotropic porous media mechanics. He has published over 240 works including 10 teaching aids. E-mail: nmdrgu@gmail.com
Artur M. NURIEV (b. 1990) is a postgraduate student of the Department of Petroleum and Reservoir Hydromechanics of Gubkin Russian State University of Oil and Gas. The focus of his academic interests is anisotropic porous media mechanics. E-mail: amnuriev@gmail.com

Abstract: The fractures opening and permeability tensors defining and describing the reservoir characteristics of anisotropic fractured medium are introduced. The fractures opening-pressure and permeability-pressure relations considering the anisotropy of rock are generalized. Formulas are derived and variants are analyzed for model media formed by fracture network with tensors principal axes aligned with the Cartesian coordinate system. Relations of given parameters at small pressure changes are shown

Index UDK: УДК 532.546

Keywords: filtration, fractured reservoirs, reservoir characteristics anisotropy, permeability, fractures opening, pressure

Bibliography:
1.Romm E.S. Strukturnye modeli porovogo prostranstva gornykh porod [Structural Models of Porous Space of Rocks]. Nedra Publ., Leningrad, 1985, 240 p.
2. Dmitriev N.M. Surface porosity and permeability of porous media with a periodic microstructure. Izvestiya Akademii Nauk- Mekhanika Zhidkosti i Gaza — Fluid Dynamics, 1995, no. 1, p. 79–85 (in Russian).
3. Basniev K.S., Dmitriev N.M., Kanevskaya R.D., Maksimov V.M. Podzemnaya gidromekhanika: Uchebnik dlya vuzov [Subsurface Hydromechanics]. Moskva-Izhevsk: Institute of computer surveys, 2006, 488 p.
4. Dmitriev M.N., Dmitriev N.M., Maksimov V.M., Mamedov M.T. Tensor characteristics of anisotropic porous media reservoir properties. Mekhanika zhidkosti i gaza — Fluid Dynamics, 2012, no. 4, p. 62–68 (in Russian).
5. Shuvalov L.A. Osnovy tenzornogo i simmetriynogo opisaniya fizicheskikh svoystv kristallov [Tensorial and Symmetry Formulation Description of Crystal Physical Properties]. Sovremennaya kristallografiya [Modern Crystallography]. Nauka Publ., Moscow, 1981, vol. 4, p. 7-46.
6. Dmitriev N.M., Muradov A.A. To determination of coefficient of hydraulic resistance for fluid flows in modeling porous media. Trudy RGU nefti i gaza imeni I.M. Gubkina [Proceedings of Gubkin Russian State University of Oil and Gas], 2010, no. 1, p. 45-57 (in Russian).
7. Dmitriev N.M., Dmitriev M.N., Muradov A.A. The equations of unsteady flows based two-term law of filtration in isotropic porous medium. Trudy RGU nefti i gaza imеni I.M. Gubkina [Proceedings of Gubkin Russian State University of Oil and Gas], 2011, no. 3, pp. 102-111 (in Russian).

Horizontal borehole section length definition in development process in gas cross flow conditions
Geosciences

Authors: Denis A. MARAKOV is сandidate of Technical Sciences, associate professor of the Department of Development and Operation of Gas and Gas-Condensate Fields. He is expert in the field of development and operation of oil and gas fields and author of more than 30 publications, including monographs and 5 thematic brochures in the field of the theory of development, research and operation of vertical and horizontal wells. E-mail: marakovdenis@rambler.ru

Abstract: Interstratal gas-condensate crossflows can occur during the exploitation of gas-condensate fields with heterogeneous thickness, even with slight hydrodynamic binder between interlayers with different capacitive and filtration properties. Cross flows result in premature emission of condensate extraction. It has been demonstrated that it is possible to evaluate the current length of the horizontal sections of the well with fair accuracy by applying the linear dependence between the speed of filtration and the pressure gradient

Index UDK: УДК 622.279

Keywords: horizontal well, current length, interstratal crossflows, pressure gradient, filtration rate

Bibliography:
1. Aliyev Z.S. & other. Gas condensate mixture cross and zonal flow and their influence to the current condensate production. М.: Nedra, 2013, p. 215.
2. Aliyev Z.S. & other. Horizontal gas well desired length definition in development process// Gas industry, 2005, no. 12, p. 45-47.
3. Aliyev Z.S. & other. Theoretical and technological basis for the use of horizontal wells for the development of gas and gas condensate fields. M.: Nedra, 2014, 450 p.

The rationale for the boundary values of the final oil recovery factor for clastic reservoirs, developed with the use of water flooding
Geosciences

Authors: Igor T. MISHCHENKO graduated from Ufa Petroleum Institute in 1961 and completed a course of postgraduate studies at Gubkin Moscow Institute of Petrochemical and Gas Industry in 1965. Нe is Doctor of Technical Sсiences, Head of the Department of Development and Operation of Oil Fields at Gubkin Russian State University of Oil and Gas. He is specialist in the development and operation of oil fields and author of over 350 scientific works more than 250 of which were published.E-mail: info_oil@list.ru
Larisa N. NAZAROVA graduated from Gubkin Moscow Institute of Petrochemical and Gas Industry in 1979. She is Candidate of Technical Sciences, Associate Professor of the Department of Development and Operation of Oil Fields of Gubkin Russian State University of Oil and Gas. She is specialist in the field of development and design of oil fields. She is author of more than 50 scientific publications. E-mail: Nazarova-ln@irmu.ru

Abstract: The value of hydraulic conductivity of the layer as an integrated parameter of geological and physical characteristics largely determines the conditions of oil flow. Based on the analysis of the actual maximum values of oil recovery factor obtained for layers belonging to different groups dpending on the value of hyddraulic conductivity, the possible achievable ORF is evaluated. This can serve as a criterion for decision-making in projects for oil fields development

Index UDK: УДК 622.276

Keywords: oil recovery factor, hydraulic conductivity, flow capacity

Bibliography:
1. Baziv V.F., Vasil’ev I.P., Ustimov S.K., Egurcov N.N. Osnovnye napravlenija po sovershenstvovaniju proektnyh tehnologicheskih dokumentov. Sb. trudov Vserossijskogo soveshhanija po razrabotke neftjanyh mestorozhdenij. Al’met’evsk, 2002 g.
2. Grigor’ev M. Regional’naja specifika trudnoizvlekaemyh zapasov nefti Rossii. Nacional’nyj otraslevoj zhurnal „Neftegazovaja vertikal’”, 2011, no. 5.
3. Zhdanov S.A., Maljutina G.S. Vlijanie razbalansirovki sistemy razrabotki na polnotu vyrabotki zapasov. Trudy 5-go Mezhdunarodnogo tehnologicheskogo simpoziuma. INB, 2006, 150 p.
4. Ivanova M.M., Cholovskij I.P., Bragin Ju.I. Neftegazopromyslovaja geologija. M.: Nedra, 2000.
5. Muslimov R.H. Sovremennye metody upravlenija razrabotkoj neftjanyh mestorozhdenij s primeneniem zavodnenija: Uchebnoe posobie. Kazan’: Izd-vo Kazanskogo un-ta, 2003, 596 p.

Methods of increasing adaptive features for the complex deep-water system
Geosciences

Authors: Sergei G. CHERNYI graduated from Kherson National Technical University in 2005. He is Candidate of Technical Sciences, assistant professor of the Department of Electrical Equipment and Automation of Production Vessels of Kerch State Maritime Technical University. He is specialist in the design of marine intelligent production systems and author of more than 30 scientific publications. E-mail: sergiiblack@gmail.com

Abstract: The prospect of development of the industry of oil and gas production to date is a priority on the territory of Russia and Crimea in particular. This raises a number of complex tasks accompanied by negative in terms of automation factors. The aim of the publication is to review and analyze the methods of optimization of fuzzy control on the basis of neuromorphic regulators of direct and inverse dynamics of control based on autoregressive structure for the simulation processes. The methods, mechanisms, tools and models of enhancing the adaptive qualities of complex deepwater structures are considered. It is advisable to take at least the expected deviation from the optimal strategic path of the adaptive system behavior as the optimality criterion of the distribution strategy for the planning periods taking into account the probability of operation of the complex deep-water production system. Proportional-integral-differentiating control via adjustment of the coefficients with fuzzy controller will optimize the dynamic regimes over the load range

Index UDK: УДК 629.01:004.8

Keywords: adaptive qualities, deep system management, process automation, local strategic objectives, neural networks, optimization

Bibliography:
1. Chernyi S.G., Dorovskoy V.A. Methodological foundation of effective deep-water mining in the Crimea. Nauchno-tehnicheskie vedomosti SPbGPU, 2014, no. 3 (202), р. 114-118.
2. Dorovskoj V.A., Chernyi S.G. Nechetkie metody i modeli upravlenija intellektual’nymi sistemami podvodnoj dobychi poleznyh iskopaemyh v uslovijah riska. Vestnik gosudarstvennogo universiteta morskogo i rechnogo flotaim. admirala S.O. Makarova, 2014, no. 5 (27), р. 184-191.
3. Davydov V.G. Issledovanie operacij: Monografija. — M.: Vysshajashkola, 1990, 383 p.
4. Kushner G.Dzh. Stohasticheskaja ustojchivost’ i upravlenie: Monografija. M.: Mir, 1969, 200 p.
5. Osipov G.S. O formirovanii modeli dlja ploho strukturirovannoj predmetnoj oblasti. Teh. Kibernetika, 1987, no. 5, p. 198-200.
6. Chernyj S.G. Analiz pravil kombinirovanij agruppovyhjekspertnyhocenokprinechetkih dan- nyh. Sistemy upravlenija i informacionnye tehnologi, 2014, no. 3.1 (57), p. 182–187.
7.
Paramonov F.I. Modelirovanie processov proizvodstva. M.: Mashinostroenie, 1984, 232 p.

Normalization methanol consumption in underground gas storage facilities
Geosciences

Authors: Andrey S. SERGEYEV was born in 1989; he graduated from Gubkin Russian State University of Oil and Gas in 2012. He is currently doing a postgraduate student of the Department of Development and Exploitation of Gas and Gas Condensate Fields at Gubkin Russian State University of Oil and Gas.E-mail: sergeand@bk.ru

Abstract: The given work includes the normalization principle of methanol specific flow worked out with the participation of the author and currently applied in „Gazprom PHG” LLC underground gas storage facilities. The methanol discharge rate on the operating procedure, which was earlier a unified value for the whole production period, is the equation of dependence of methanol specific flow on formation pressure variation. The work draws comparison of two hydrate control approaches applied in underground gas storage facilities. The approaches with primary hydrate prevention and primary deposition destruction have been distinguished. The work tells about developing application software for methanol feed control the outcoming data of which will be the basis for the following methanol flow normalization. The requirements for the given development have been provided

Index UDK: УДК 622.691.24:658.511.2

Keywords: underground gas storage, hydrate control, methanol, methanol flow normalization

Bibliography:
1. Buhgalter Je.B., Zujkova G.A., Soldatkina N.A., Juhanova R.N., Gejhman M.G. Opredelenie norm rashoda metanola po stancijam podzemnogo hranenija gaza PO Mostransgaz. Transport i hranenie gaza [Gas transmission and storage], 1981, no. 7, p. 8-10 (in Russian).
2. Buzinov S.N., Bondarev V.L. Tehnologicheskaja shema III ocheredi rasshirenija Nevskogo PHG do aktivnogo ob’ema 1500 mln m3 gaza. Otchet. Moscow, VNIIGAZ, 1993, p. 252-256 (in Russian).
3. Gazprom Company Standard 3.1-3-010-2008. Calculation of chemical consumption rate for gas producing enterprises of „Gazprom” JSC. Moscow, LLC „IRC Gazprom”, 2009, 51 p. (in Russian).
4. Instruction for calculating the optimal flow of hydrate inhibitors. Moscow, VNIIGAZ, 1971, 87 p.
5. Instruction for preventing and controlling of hydrates in the wells and facilities at the gas-fields of the Far North. Moscow, VNIIGAZ, 1971, 87 p.
6. Kvon V.G. Termodinamicheskoe modelirovanie fazovyh ravnovesij uglevodorodnyh sistem s vodoj i gazovymi gidratami dlja povyshenija jeffektivnosti tehnologij v dobyche gaza. Cand, Diss. Moscow, 2008, 166 p.
7. Degtjarev B.V., Buhgalter Je.B. Bor’ba s gidratami pri jekspluatacii gazovyh skvazhin v severnyh rajonah. Moscow, Nedra, 1976, 200 p.

The influence of branching and the presence of inserts on the pumping mode of the pipeline
Geosciences

Authors: Vadim A. POLYAKOV graduated from Lomonosov Moscow State University in 1981 specializing in Mechanics. He is Professor of the Department of Design and Operation of Gas and Oil Pipelines of Gubkin Russian State University of Oil and Gas. He is specialist in designing and operation of systems of pipeline transport of oil and gas. He has authored 90 publications. E-mail: vapolyakov@rambler.ru
Roman A. SHESTAKOV graduated from Gubkin Russian State University of Oil and Gas in 2013 with honours. He is postgraduate student of the Department of Design and Operation of Gas and Oil Pipelines of Gubkin Russian State University of Oil and Gas. He is specialist in designing and operation of systems of pipeline transport of oil and gas. He has authored 6 publications. He is prize winner of international scientific conferences. E-mail: dur187@mail.ru

Abstract: The article deals with the problem of parametric diagnostics of trunk pipelines, i.e. impact of branches coordinates and insert parameters on the parameters of the pumping mode. The reasons of the changes of the technological parameters of complicated trunk pipelines are studied. The calculations were performed using the author’s software „Trans Gubka”. The effect of the branches coordinates and inserts parameters on the pumping mode was evaluated and the ambiguity of the dependences is shown. This is displayed when evaluating the results of the work of the leak detecting systems

Index UDK: УДК 622.691.4

Keywords: trunk pipeline, technological mode, pipe-bend, branch, software package, „Trans Gubka”, parametric diagnostics

Bibliography:
1. Polyakov V.A. Basics of technical diagnostics: lectures: Textbook. M.: INFRA-M, 2012, 118 p.
2. Polyakov V.A., Shestakov R.A. The changing nature of technological regime of high oil pipeline transport along the length of the pipeline. Proceedings of the Gubkin Russian State University of Oil and Gas, 2013, no. 4 (273), p. 79-83.
3. Polyakov V.A., Shestakov R.A. Effect of branching on mode pumping oil through the pipeline. Proceedings of the Gubkin Russian State University of Oil and Gas, 2014, no. 2 (275), p. 33-43.
4. RD-23.040.00-KTN-110-07. Trunk oil pipelines. Design standards. M: ОАО „AK „Transneft”, 2007.
5. RD "Unified technological calculations of objects of the main oil wires and pipelines"с. M: ОАО „AK „Transneft”, 2009.
6. Shestakov R.A. To the question about the methods of leak and illegal branches detection of oil pipelines. Proceedings of the Gubkin Russian State University of Oil and Gas, 2015, no. 1 (278), p. 85-94.

Effect of heat and ultrasonic treatment on effectiveness of polymethacrylate additives in industrial oils
Technical sciences

Authors: Vladimir G. SPIRKIN (b. 1937) graduated from the Military Rocket forces Academy named after Great Peter in 1959. D.Sc., Professor of „Chemistry and technology of lubricants and Chemmotology” department of the Gubkin Russia State Oil and Gas University. Author of more than 450 publications. E-mail: v.g.spirkin@mail.ru
Sergey V. IL’IN (b. 1989) graduated from the Gubkin Russia State Oil and Gas University in 2013. Master of chemistry and technology of lubricants and chemmotology department of the Gubkin Russia State Oil and Gas University. Deputy Director General in Ltd. „Standart-Neft”. E-mail: trydyrgung@gubkin.ru
Аleksey V. LEONTYEV (b. 1988) graduated from the Gubkin Russia State Oil and Gas University in 2013. Postgraduate of chemistry and technology of lubricants and chemmotology department of the Gubkin Russia State Oil and Gas University. Research Fellowin Ltd. „United Research and Development Center” (Ltd. „RN-CIR”). E-mail: trydyrgung@gubkin.ru
Igor G. TATUR (b. 1956) graduated from the Gubkin Moscow Institute of Oil Chemistry and Gas Industry in 1979. PhD, Assistant professor of „Chemistry and technology of lubricants and Chemmotology” department of the Gubkin Russia State Oil and Gas University. The author of 75 scientific publications, 25 patents and author certificates, 1 monography and 2 textbooks. E-mail: igtatur@yandex.ru.

Abstract: Industrial oils are the foundation for commercial oils used in industrial machinery, which operating in areas with ambient temperatures -40 °C and lower. Depressants, in particular polymethacrylates, are applied to improve the low temperature properties in lubricating oil. Purpose of this work is to study the possibility of modifying the structure of additives by means of preliminary heat and ultra-sound treatment of polymethacrylates for improvement of their depressant and viscosity properties. Ultrasound treatment was performed at frequency 22 kHz within 10 min, heat-treatment — at a temperature of 80±2 °C within 60 min. Evaluation of the results pretreatment of oil samples with additives after their oxidation was conducted by the method of SRT „Gazprom” 2-2.4-134-2007. Physico-chemical properties of the oils were determined by standard methods. It is shown that additives reduce the pour point of the base oil at 5-7 °C and a kinematic viscosity was increased on average by 10-15 % under optimum processing conditions. Reduction of the additives consumption with pretreatment for increasing the viscosity of the oil and reducing the pour point to the established norms has high practical significance

Index UDK: УДК 665.7.038.2

Keywords: industrial oil, polymethacrylate additive, thermal stability, heat treatment, ultrasonic treatment.

Bibliography:
1. Rudnic L. Lubricant additives: Chemistry and applications. Second edition, 2013, 928 p.
2. Anisimov I.G., Badyishtova K.M., Bnatov B.N. Topliva, smazochnyie materialyi, tehnicheskie zhidkosti. Assortiment i primenenie: Spravochnik рod red. V.M. Shkolnikova. Izd. 2-e pererab. i dop. M.: Izdatelskiy tsentr „Tehinform”, 1999, p. 596.
3. Safonov A.S., Ushakov A.I., Grishin V.V. Himmotologiya goryuche-smazochnyih materialov. NPIKTs, 2007, p. 488.
4. Spirkin V.G., Fuks I.G., Tatur I.R. i dr. Himmotologiya. Svojstva i primenenie topliv, smazochnyx materialov. Pod red. Spirkina V.G., Laxshi V.L. Uchebnoe posobie dlya studentov vuzov. V 2 ch. Ch. ΙΙ. M: RGU nefti i gaza imeni I.M. Gubkina, 2014, 271 р.

Development of effective national oils for air screw compressors
Technical sciences

Authors: Alena V. ANISINA graduated from Gubkin Russian State University of Oil and Gas in 2003. Degreeseeking student of the Department of Chemistry and Technology of lubricants and Chemmotology of Gubkin Russian State University of Oil and Gas. E-mail: alena.kochenova@gmail.com
Boris P. TONKONOGOV graduated from Gubkin Russian State University of Oil and Gas in 1973. Doctor of Chemistry, Professor, Dean of the Faculty of Chemical Engineering and Environment, Head of the Department of Chemistry and Technology of lubricants and Chemmotology of Gubkin Russian State University of Oil and Gas. Specialist in the field of alternative motor fuels based on natural gas, lubricants and additives, including additives for alternative motor fuels. He is author of over 100 scientific and educational works. E-mail: bpt@gubkin.ru
Leonid N. BAGDASAROV graduated from the Tashkent automobile & road technical University in 1986. Candidate of Technical Sciences, assistant professor of the Department of Chemistry and Technology of lubricants and Chemmotology of Gubkin Russian State University of Oil and Gas. Specialist in the field of lubricants application and obtaining. He is author of 104 scientific publications. E-mail: lebage1963@mail.ru
Irina R. OBLASHHIKOVA graduated from Gubkin Russian State University of Oil and Gas in 1995. Candidate of Technical Sciences, assistant professor of the Department of Chemistry and Technology of lubricants and Chemmotology of Gubkin Russian State University of Oil and Gas. Specialist in the field of chemistry and technology of lubricants based on vegetable raw materials. She is author of 30 scientific publications and tutorials. E-mail: i.oblashchikova@gubkin.ru

Abstract: This work investigates development of national oil for airscrew compressors with dialkylbenzene as a component that improves the viscosity-temperature properties. It was studied the effect of oils with dialkylbenzene on the basic compressor parameters. It was found that these oils could be an alternative to foreign counterparts

Index UDK: УДК 665.765, 621.89.092

Keywords: airscrew compressors, dialkylbenzenes, oil-flooded compressor, power density

Bibliography:
1. Bondarenko G.A., Zharkov P.E. Vintovye kompressory v sistemah obespechenija szhatym vozduhom [Screw compressors in the compressed air supply systems]. Sumy, 2003, 130 p.