Articles Archive

№ 3/276, 2014

Title
Authors
Category
Environmental aspects of deep geothermal waters application at energy and biological complexes (on an example of explored geothermal fields of Dagestan)
Petroleum geology, geophysics

Authors: Tatiana V . SVETLICHNAYA graduated from Dagestan State University. She is Candidate of Geological and Mineralogical Sciences, Associate Professor of the Department of Geology, of Gubkin Russian State University of Oil and Gas. She is author of scientific publications in the field of environmental and industrial safety. E-mail: tata_svet_gaz@mail.ru
Gasan B . BADAVOV graduated from Lenin Daghestan State University and postgraduate course of Pamfilov Academy of Public Services. He is member of the Committee of RUSISU (RosSNIO) on the problems of RES, senior researcher of the Institute of Geothermal Resources of the Dagestan Research Center of the Russain Academy of Sciences. He is author of more than 50 scientific publications in the sphere of RES. E-mail: lotos155@yandex.ru.
Adolph A. CHERNYAVSKIY graduated from Novocherkassk Polytechnic Institute. He is winner of the Award of the RF Government in 2011 in the sphere of science and technology, Candidate of Sciences, chief specialist on economy and renewable energy of the Institute «Rostovteploelektroprojekt». He is author of more than 40 projects in the area of small power engineering and 70 scientific publications and inventions patented in USSR, Russia, USA, Great Britain. E-mail:mailto:MR.1936@BK.RU

Abstract: As a result of exploration work carried out on the territory of the plain and foothill Daghestan significant reserves of geothermal sources with temperature from 40 to 107 C have been identified suitable for use in various sectors of economy: from power generation, heating and hot water supply of buildings and constructions to breeding and cultivation of vegetables and microalgae

Index UDK: УДК 621.482.574.3

Keywords: geothermal water, project of energy and biological complex, business plan, ecoefficiency

Bibliography:
1. State balance of mineral reserves of the Russian Federation. Thermal water. M.: FGUNPP «Rosgeolfond», 2009, 68 p. (In Rus.).
2. Svetlichnaya T.V., Badavov G.B. Energy-saving and energy-efficient geothermal resources of the Republic of Daghestan. Upravlenije kachestvom v neftegasovom komplekse [Quality management in the oil and gas sector], 2010, t. 4, p. 9–15. (In Rus.).
3. Aliyev R.M., Israpilov M.I., Badavov G.B. Energy and biological complexes (EBK) of thermal and nuclear power plants and their assessment based on geothermal fields. Vestnik of Dagestan Scientific Center, Russian Academy of Sciences, 1999, no. 5, p. 32. (In Rus.).
4. Using geothermal water in the multipurpose complex energobiologicheskom. R.M. Aliyev (JSC «Geotermneftegaz»), G.B. Badawi (Institute of Geothermal Problems, Dagestan Scientific Center, Russian Academy of Sciences), A.A. Chernyavskii (RoTEP). Materiali VIII Mizhnarodnoi konferentsii «VIDNOVLYUVANA STOLITTYA XXI Energy and Utilities». Ukraina, AR Krym, smt.Mikolaivka 17–21 Veresnya 2007 rock. Ed of «Viva-print» m Kiiv, 2007, p. 226–232, 1 yl (Eng.)
5. Aliev Rasul M., Israpilov Magomed I., Badavov Gasan B. Geothermal Resources of Republic Daghestan, Proceedings World Geothermal Congress, 2010, Bali, Indonesia, 25–29 April 2010, paper no. 2849.
6. Aliyev R.M., Badavov G.B., Chernyavskiy A.A. The possibility of renewable energy sources using in agriculture. Problemy razvitija APK v regione [Problems of development of AIC in the region]. Daghestan State Agricultural Academy. Makhachkala, 2010, no. 4, p. 81–88. (In Rus.).
7. Prospects for large-scale use of geothermal energy in the Republic of Dagestan. R.M. Aliyev, V.A. Vasiljev, M.I. Israpilov, G.B. Badavov. Izvestija RAN. Energetika, 2010, no. 5, p. 125–131. (In Rus.).
8. Zaychenko V.M., Chernyavskii A.A. Problems creating large wind power stations in the south of Russia. Energy, 2014, no. 3, p. 18–21.
9.
Antipov S.A., Bogoroditskaya N.V., Zinoviev O.A., Ermolenko G.V., Ryzhenkov M.A., Shevchuk A.A. Draft wind power station of 60 MW in Yeisk district of Krasnodar region. Energy, 2014, no. 3, p. 10–17.

The influence of porosity and permeability of carbonate reservoirs on oil recovery factor
Drilling and development of hydrocarbon fields

Authors: Larisa N. NAZAROVA graduated from Gubkin Moscow Institute of Petrochemical and Gas Industry in 1979. She is Candidate of Technical Sciences, Associate Professor of the Department of Development and Exploitation of Oil fields of Gubkin Russian State University of Oil and Gas. She is specialist in the field of development and design of oil fields. She is author of more than 50 scientific publications. E-mail: Nazarova-ln@irmu.ru

Abstract: One of the main technological parameters of efficiency of development of oil fields has been oil recovery factor (ORF). Its value is influenced by a number of natural factors. 197 layers were analyzed to assess the impact of reservoir porosity and permeability of a carbonate porous type reservoir on the magnitude of the calculated and actual final ORF. It is shown that the calculated and actual values of the ORF do not always correspond to a certain set of reservoir properties. The degree of divergence of the calculated and actual values of the ORF depends on the reservoir porosity and permeability of the productive strata

Index UDK: УДК 622.276

Keywords: oil recovery factor (ORF), conductivity, water permeability, reservoir porosity and permeability

Bibliography:
1. Amelin I.D. Vliyanie prirodnykh i tekhnologicheskikh faktorov na pokazateli razrabotki zalezhey nefti v karbonatnykh kollektorakh (po dannym opyta ikh ekspluatatsii). Materialy soveshchaniya. M.: VNIIOENG, 1990, p. 117 (in Russian).
2.Baziv V.F. Nefteotdacha v printsipe ne mozhet padat’. M.: Nedropol’zovanie — KhKhI vek, 2007, no. 1 (in Russian).
3.Baziv V.F., Vasil’ev I.P., Ustimov S.K., Egurtsov N.N. Osnovnye napravleniya po sovershenstvovaniyu proektnykh tekhnologicheskikh dokumentov. Sb. trudov Vserossiyskogo soveshchaniya po razrabotke neftyanykh mestorozhdeniy. Al’met’evsk, 2002 (in Russian).
4.Baishev B.T. O zadachakh, printsipakh i metodakh regulirovaniya protsessa razrabotki neftyanykh mestorozhdeniy pri rezhime vytesneniya nefti vodoy. M.: Nauka, 1976, p. 243 (in Russian).
5.Baturin Yu.E. Slovo o KINe (koeffitsient izvlecheniya nefti). Burenie i neft’, 2011, no. 2 (in Russian).
6.Gavura A.V. Statisticheskaya model’ dlya otsenki nefteotdachi karbonatnykh plastov pri zavodnenii. Effektivnost’ razlichnykh sistem zavodneniya neftyanykh plastov na mestorozhdeniyakh Kuybyshevskoy i Orenburgskoy oblastey. Tr. Giprovostoknefti. Kuybyshev, 1981, p. 64–73 (in Russian).
7.Gavura V.E. Kontrol’ i regulirovanie protsessa razrabotki neftyanykh i gazoneftyanykh mestorozhdeniy. M.: OAO «VNIIOENG», 2001, p. 340 (in Russian).
8.Geologiya i razrabotka krupneyshikh i unikal’nykh neftyanykh i neftegazovykh mestorozhdeniy Rossii: v 2-kh tomakh pod red. V.E. Gavury. M.: OAO «VNIIOENG», 1996 (in Russian).
9.Graf T., Zangl Dzh, Khartlib M., Al’-Kanani. Otbor i klassifikatsiya kollektorov na osnove veroyatnostnogo gidrodinamicheskogo modelirovaniya — prakticheskiy primer vybora kandidatov na zavodnenie. SPE-136373 (in English).
10. Zhdanov S.A., Malyutina G.S. Vliyanie razbalansirovki sistemy razrabotki na polnotu vyrabotki zapasov. Trudy 5-go Mezhdunarodnogo tekhnologicheskogo simpoziuma. INB, 2006, p. 150 (in Russian).
11. Ivanova M.M. Kratkiy obzor nachal’nogo osvoeniya neftyanykh nedr strany. M.: NP NAEN, 2008, p. 108 (in Russian).
12. Ivanova M.M., Cholovskiy I.P., Bragin Yu.I. Neftegazopromyslovaya geologiya. M.: Nedra, 2000 (in Russian).
13. Surguchev M.L., Kolganov V.I., Gavura A.V. i dr. Izvlechenie nefti iz karbonatnykh kollektorov. M.: Nedra, 1987, p. 230 (in Russian).
14. Lisovskiy N.N., Baziv V.F. O putyakh dal’neyshego sovershenstvovaniya proektirovaniya razrabotki. Tr. Mezhdunarodnogo simpoziuma. M., 2005 (in Russian).
15. Mishchenko I.T., Lutfullin A.A. Geologo-fizicheskie kriterii uspeshnosti primeneniya tekhnologiy, pozvolyayushchikh uvelichit’ koeffitsient okhvata plastov. Neftyanoe khozyaystvo, 2009, no. 4 (in Russian).
16. Nemkov A.S., Kovalev V.S., Sazonov B.F., Berlin G.D. Vliyanie geologo-fizicheskikh parametrov na effektivnost’ razrabotki neftyanykh zalezhey v karbonatnykh kollektorakh. Sb. nauchnykh trudov. M., 2000, vyp. 122 (in Russian).
17. Osobennosti nefteotdachi karbonatnykh kollektorov po dannym geologo-razvedochnykh rabot/ Malinovskiy I.N., Panteleev A.S., Gileva N.M. i dr. Neftyanoe khozyaystvo, 1982, no. 8.
18. Subbotina E.V. Analiz zavisimosti nefteotdachi zalezhey s karbonatnymi kollektorami porovogo tipa Uralo-Povolzh’ya ot razlichnykh faktorov. Sb.nauch. tr. VNII. Vyp. 100. M., 1987, p. 104— 110 (in Russian).
19. Rudenko M.N., Pis’mennikov D.N. Tekhniko-ekonomicheskoe obosnovanie koeffitsienta izvlecheniya nefti (TEO KIN) kak osnova otsenki investitsionnoy privlekatel’nosti neftyanoy otrasli. Rossiyskoe predprinimatel’stvo, 2012, no. 7 (in Russian).

Mathematical modeling of hydrocarbons temperature fluctuations during storage in tanks of 1000–5000 cubic meters capacity
Design, construction and operation of pipeline transport

Authors: Roman Ye. LEVITIN is PhD, Associate Professor of Tyumen State Oil and Gas Uni- versity. E-mail: 89028130230@mail.ru

Abstract: Temperature fluctuations of hydrocarbons during storage in the vertical steel tanks of 15 thousand cubic meters capacity are determined. The results of the study of the temperature changes of the stored product, depending on the ambi- ent temperature are presented. The anguish and the correlation coefficients between these values are shown. As a result, the equations of temperature changes of oil and petroleum products in the tank are derived. Ключевые слова: выбросы, температурные колебания, хранение нефти

Index UDK: УДК 621.642.8

Keywords: emissions, temperature changes, storage of oil

Bibliography:
1. Ljubin E.A., Korshak A.A. Kriterial’nye uravnenija massootdachi pri operacijah s neftjami v vertikal’nyh cilindricheskih rezervuarah. Jelektronnyj nauchnyj zhurnal Neftegazovoe delo, 2010, no. 2, p. 13.
2. Ustrojstvo dlja povyshenija jekspluatacionnyh svojstv vertikal’nyh stal’nyh rezervuarov. V.O. Nekrasov, R.E. Levitin, I.V. Tyrylgin, Ju.D. Zemenkov. Patent RF no. 2012125478/05, 2013.
3. Kalinina V.N., Pankin V.F. Matematicheskaja statistika. M.: Vysshaja shkola, 1998, p. 336.

Effects of terrain topography and branches on pipeline transportation mode in the process of oil offtake
Design, construction and operation of pipeline transport

Authors: Vadim A. POLYAKOV graduated from M.V. Lomonosov Moscow State University University majoring in „Mechanics” in 1981. He is Professor of the Department of Design and Operation of Gas and Oil Pipelines of Gubkin Russian State University of Oil and Gas. He is specialist in the design and operation of pipeline transport of oil and gas. He is author 90 publications. E-mail:vapolyakov@rambler.ru
Roman A. SHESTAKOV graduated from Gubkin Russian State University of Oil and Gas in 2013. He is graduate student of Design and Operation of Gas and Oil Pipelines of Gubkin Russian State University of Oil and Gas. He is specialist in the design and operation of pipeline transport of oil and gas. He regularly takes part in international scientific and technical conferences. He is author of 4 publications. E-mail: dur187@mail.ru

Abstract: The paper considers the problem of oil offtake from the main oil pipeline, i.e. the changes of the process conditions in the final section of the pipeline. The effects of the route profile, as well as of different types of branches on the process conditions during offtake of oil from the trunk oil pipeline are considered. The calculations are performed using the software package for the design of the section of the trunk pipeline with a branch with respect for the presence of tie-ins of different diameters and lengths

Index UDK: УДК 622.691.4

Keywords: trunk pipeline, process conditions, offtake, branch, software package

Bibliography:
1. Polyakov V.A. Basics of technical diagnostics: lectures: Textbook. Moscow: INFRA-M, 2012, р. 118.
2. Polyakov V.A., Shestakov R.A. The changing nature of technological regime of high oil pipeline transport along the length of the pipeline. Proceedings of the Gubkin Russian State University of Oil and Gas, № 4 (273), 2013, р. 79–83.
3.
RD-23.040.00-KTN-110-07. Trunk oil pipelines. Design standards. M. ОАО „AK „Transneft”, 2007.
4. RD Unified technological calculations of objects of the main oil wires and pipelines. M. ОАО „AK „Transneft”, 2009.
5. Polyakov V.A., Shestakov R.A. Effect of branching on mode pumping oil through the pipeline. Proceedings of the Gubkin Russian State University of Oil and Gas, № 1, 2014.

Calculation algorithms for simulation of unsteady flows in gas pipeline
Design, construction and operation of pipeline transport

Authors: Ruslan V. POPOV was born in 1990. He graduated from Gubkin Russian State University of Oil and Gas in 2013 as Master of Engineering and Technology. He is graduate student of the Department of Applied Mathematics and Computer Modeling of Gubkin Russian State University of Oil and Gas. He is author of 9 publications in the field of computer modeling of technological processes of oil and gas industry. E-mail: r.v.popov@hotmail.com

Abstract: The methods of simulating unsteady flow of gas in pipelines based on the method of finite differences is discussed. It is shown that the use of linearized differential circuits may lead to accumulation of linearization error. A method to reduce the influence of the linearization error, as well as a generic algorithm of simulating unsteady non-isothermal gas flow in the pipeline are proposed

Index UDK: УДК 622.691.4

Keywords: finite-difference method, pipelines, unsteady flows

Bibliography:
1. Godunov S.K. Elementy mekhaniki sploshnoy sredy [Elements of Continuum Mechanics]. Moscow, 1978, 304 p.
2. Lur’e M.V. Matematicheskoe modelirovanie protsessov truboprovodnogo transporta nefti, nefteproduktov i gaza [Mathematical modeling of pipeline transportation of oil and gas]. Moscow, 2012, 456 p.
3. Sardanashvili S.A. Raschetnye metody i algoritmy (truboprovodnyy transport gaza) [Computational methods and algorithms (gas pipeline transportation)]. Moscow, 2005, 577 p.
4. Moiseev N.N. Matematicheskie zadachi sistemnogo analiza [Mathematical problems of system analysis]. Moscow, 1981, 488 p.
5. Sukharev M.G., Karasevich A.M. Tekhnologicheskiy raschet i obespechenie nadezhnosti gazo- i nefteprovodov [Technology calculation and reliability of gas and oil pipelines]. Moscow, 2000, 272 p.
6. Sukharev M.G., Stavrovskiy E.R. Optimizatsiya sistem transporta gaza [Optimization of gas transportation systems]. Moscow, 1975, 277 p.
7. Samarskiy A.A. Teoriya raznostnykh skhem [The theory of finite difference schemes]. Moscow, 1977, 656 p.
8. Samarskiy A.A., Gulin A.V. Chislennye metody [Computational methods]. Moscow, 1989, 432 p.

Identifying parameters in gas supply systems models (method and computer experiment)
Design, construction and operation of pipeline transport

Authors: Michael G . SUKHAREV was born in 1937. He graduated from the M.V. Lomonosov Moscow State University in 1959. He is Doctor of Technical Sciences, Professor of the De-partment of Applied Mathematics and Computer Modeling of Gubkin Russian State University of Oil and Gas. He is author of more than 197 scientific works, including 14 monographs. E-mail: mgsuknarev@mail.ru
Xenia O. KOSOVA is student of the Department of Applied Mathematics and Computer Modeling of Gubkin Russian State University of Oil and Gas. E-mail: kseniya_kosova@mail.ru

Abstract: The problem of identifying a gas supply system is considered. It is assumed that measurement errors are normally distributed. Estimating coefficients of hydraulic resistance is reduced to a constrained optimization problem with constraints in the form of equations. An algorithm for solving the problem is proposed. The algorithm is tested by computational experiments on a specific example of the calculation of the pipeline system

Index UDK: УДК 532.542.1:66.011

Keywords: gas supply system, identification, coefficient of hydraulic resistance, optimization problem

Bibliography:
1. Bard Y. Nonlinear Parameter Estimation. NY, S. Francisco, London, 1974, 352 p.
2. Novitskiy N.N. Otsenivanie parametrov gidravlicheskikh tsepey [Hydraulic circuit paramete-rization]. Novosibirsk, 1998, 214 p. (in Russian).
3. Evdokimov A.G., Tevyashev A.D. Operativnoe upravlenie potokoraspredeleniem v inzhenernykh setyakh [Operational control of pipelines and networks flux-distribution]. Kharkov, 1980, 144 p. (in Russian).
4. Sukharev M.G., Karasevich A.M. Tekhnologicheskiy raschet i obespechenie nadezhnosti gazo- i nefteprovodov [Process design and reliability control of gas and oil pipeline]. Moscow, 2000, 272 p. (in Russian).
5. STO Gazprom 2—3.5—051—2006. Production engineering standard of gas-main pipeline (in Russian).

Activation of methane in trifluoroacetic acid
Oil and gas processing, chemistry of oil and gas

Authors: Marina V. VISHNETSKAYA graduated from M.V. Lomonosov Moscow State University University. She is Doctor of Chemistry, Professor of the Department of Industrial Ecology of Gubkin Russian State University of Oil and Gas. She is author of over 120 scientific papers in the field of homogeneous and heterogeneous catalysis, fundamental problems of chemical engineering, chemical dynamics, reactivity and chemical kinetics. E-mail: mvvishnetskaya@mail.ru
Oleg M. SVICHKAREV graduated from Gubkin Russian State University of Oil and Gas in 2013. He is Master of Engineering and Technology. E-mail: caba_iz_ct@mail.ru
Maria S. IVANOVA graduated from Gubkin Russain State University of Oil and Gas in 2010. She is Ph.D., Associate Professor of the Department of Mining and Petroleum Engineering of the Ammosov North-Eastern Federal University in Mirny. E-mail: ims.06@mail.ru
Mikhail Y. MELNIKOV graduated from M.V. Lomonosov Moscow State University in 1969. He is Doctor of Chemistry, Professor of the Department of Chemical Kinetics of M.V. Lomonosov Moscow State University University. He is author of over 220 scientific papers. E-mail: melnikov46@mail.ru

Abstract: Activation of methane for its chemical use is an urgent task. The transformation of methane occurs with the formation of a gummy product in anhydrous trifluoroacetic acid (TFA) at room temperature and atmospheric pressure. Spiking ions with masses of 684 and 700 are observed in MALDI-TOF spectra of the dry residue of the transformation products of methane

Index UDK: УДК 541.128

Keywords: molecular oxygen activation, methane, C–C bond, trifluoroacetic acid

Bibliography:
1. Nishigushi T., Nakata K., Fujiwara Y. A novel aminomethylation reaction of gaseous alkanes. Chemical Letters, 1992, p. 1141.
2. Periana R.A., Mironov O., Taube D., Bhalla G., Jones C.J. Science, 2003, no. 301, p. 814.
3. Shibamoto A., Sakaguchi S., Ishii Y. Tetrahedron Letters, 2002, no. 43, p. 8859.
4. Kitamura T., Ishida Y., Yamagi T., Fujiwara Y. Bulletin of Chemical Society, Japan, 2003, no. 76, p. 1677.
5. Asadullah M., Kitamura T., Fujiwara Y. Angewandte. Chemie International Edition, 2000, no. 39, p. 2475.
6. Asadullah M., Taniguchi Y., Kitamura T., Fujiwara Y. Applied Catalysys. A, 2000, no. 194-195, p. 443.
7. Asadullah M., Kitamura T., Fujiwara Y. Chemical Letters, 1999, p. 449.
8. Taniguchi Y., Hayashida T., Shibasaki H., Piao D., Kitamura T., Yamaji T., Fujiwara Y. Organic Letters, 1999, no. 1, p. 557.
9. Asadullah M., Kitamura T., Fujiwara Y. Applied Organometallic Chemistry, 1999, no. 13, p. 539.
10. Asadullah M., Taniguchi Y., Kitamura T., Fujiwara Y. Tetrahedron Letters, 1999, no. 40, p. 8867.
11. Nizova G.V., Su¨ss-Fink G., Stanislas S., Shul’pin G.B. Chemical Communication, 1998, p. 1885.
12. Asadullah M., Taniguchi Y., Kitamura T., Fujiwara Y. Applied Organometallic Chemistry, 1998, no. 12, p. 277.
13. Lin M., Sen A. Nature, 1994, no. 368, p. 613.
14. Nakata K., Yamaoka Y., Miyata T., Taniguchi Y., Takaki K., Fujiwara Y.J. Organometallic Chemistry, 1994, no. 473, p. 329.
15. Piao D.G., Inoue K., Shibasaki H., Taniguchi Y., Kitamura T., Fujiwara Y.J. Organometallic Chemistry, 1999, no. 574, p. 116.
16. Zerella M., Mukhopadhyay S., Bell A.T. Organic Letters, 2003, no. 5, p. 3193.
17. Zerella M., Mukhopadhyay S., Bell A.T. Chemical Communications, 2004, p. 1948.
18. Chempath S., Bell A.T. Journal of American Chemical Society, 2006, no. 128, p. 4650.
19. Reis P.M., Silva J.A.L., Palavra A.F., Frau´sto da Silva J.J.R., Kitamura T., Fujiwara Y., Pombeiro A.J.L. Angewandte Chemie International Edition, 2003, no. 42. p. 821.
20. Periana R.A., Mironov O., Taube D., Bhalla G., Jones C.J. Science, 2003, no. 301, p. 814.
21. Kirillova M.V., Kuznetsov M.L., Reis P.M., da Silva J.A.L., da Silva J.J.R.F., Pombeiro A.J.L. Jornal of American Chemical Society, 2007, vol. 129, no. 34, p. 10531.
22. Vishnetskaya M.V., Ivanova M.S., Budynina E.M., Melnikov M.Ya. Journal of physical chemistry, 2011, vol. 85, no. 12, pp. 2287–2290.

Correlation of viscosity and thermal conductivity of fluorobenzene over a temperature range from the triple point to 700 k with pressures up to 100 mpa
Oil and gas processing, chemistry of oil and gas

Authors: Boris A. GRIGORIEV was born in 1941. He graduated from the Acad. M.D. Millionshtchikov Grozny Oil Institute in 1963. He is corresponding member of the Russian Academy of Sciences, Professor, Head of the Department of Study of Petroleum Reservoir Systems at Gubkin Russian State University of Oil and Gas. He is author of over 300 scientific papers in the field of thermo-physical properties of materials, author of the textbook for high schools on Heat and Mass Transfer, and a series of monographs. E-mail: trudyrgung@gubkin.ru
Igor S. ALEXANDROV was born in 1979. He graduated from Kaliningrad State Technical University in 2004. He is Ph.D., Associate Professor of the Department of Heat and Gas Supply and Ventilation at Kaliningrad State Technical University. He is author of more than 30 scientific papers in the field of thermo-physical properties of substances. E-mail: trudyrgung@gubkin.ru
Anatoly A. GERASIMOV was born in 1950. He graduated from the Acad. M.D. Millionshtchikov Grozny Oil Institute in 1972. He is Professor, Head of the Department Heat and Gas Supply and Ventilation at Kaliningrad State Technical University. He is author of over 100 scientific papers in the field of thermo-physical properties of substances, including three monographs. E-mail: trudyrgung@gubkin.ru

Abstract: Based on the most reliable experimental data, the equations for calculation of viscosity and thermal conductivity of fluorobenzene have been developed. The proposed equations can be applied over a temperature range from the triple point to 700 k with pressures up to 100 MPa. The equations were developed in variables «temperature-density» using a nonlinear optimization procedure based on the random search method. The article presents the results of the comparison with the available experimental data. In addition, the article presents diagrams that calculated based on the new equations and showing the good extrapolation behavior of the proposed equations. The proposed equations correctly reproduce the surface of state and allow the calculation of thermophysical properties with accuracy that is close to the experimental error. The estimated uncertainties of viscosity calculated using the new equation do not exceed 2 %, and of thermal conductivity – 1 %.

Index UDK: УДК 536.22

Keywords: fluobenzene, temperature, density, thermal conductivity, viscosity

Bibliography:
1. Alexandrov I.S., Gerasimov A.A., Grigor’ev E.B. Baza eksperimental’nykh dannykh o termodinamicheskikh svoystvakh galogenozameshchennykh benzola [Experimental database of thermodynamic properties of halogenated benzenes]. Sbornik nauchnykh statey. Aktual’nye voprosy issledovaniya plastovykh sistem mestorozhdeniy uglevodorodov [Relevant issues of studies of field hydrocarbon formation: collection of scientific articles]. M.: „Gasprom VNIIGAS”, 2013, no. 1 (12). pp. 199–203.
2.
Ishhanov Yu.B. Dinamicheskaya vyazkost’ ftorbenzola, khlorbenzola, ikh rastvorov s benzolom. Cand., Diss. [Dynamic viscosity of fluorobenzene, chlorobenzene, their mixtures with benzene. Cand. Diss.]. Baku, 1984, 174 p. (in Russian).
3. Lemmon E.W., Jacobsen R.T. Viscosity and thermal conductivity equations for nitrogen, oxygen, argon, and air. Int. Jour. of Thermophysics, 2004, v. 25, no. 1, p. 21–69.
4.
Alexandrov I.S., Grigor’ev B.A., Gerasimov A.A. Sovremennyy podkhod v razrabotke fundamental’nykh uravneniy sostoyaniya tekhnicheski vazhnykh rabochikh veshchestv [A modern approach to the development of fundamental equations of state for technically important working substances]. Sbornik nauchnykh statey. Aktual’nye voprosy issledovaniya plastovykh sistem mestorozhdeniy uglevodorodov [Relevant issues of studies of field hydrocarbon formation: collection of scientific articles. Part 2.]. M.: „Gasprom VNIIGAS”, 2011, pp. 124–137.
5.
Olchowy G.A. A simplified representation for the thermal conductivity of fluids in the critical region. G.A. Olchowy, J.V. A Sengers. Int. J. Thermophys, 1989, p. 417–426.
6. Assael M.J. Reference Correlation of the Thermal Conductivity of Benzene from the Triple Point to 725 K and up to 500 MPa. M.J. Assael, E.K. Mihailidou, M.L. Huber and R.A. Perkins. Journal of Physical and Chemical Reference Data, 2012, vol. 41, no. 4, p. 043102-1-043102-9.

Pour point depressants interaction with paraffinic hydrocarbons in diezel fuel
Oil and gas processing, chemistry of oil and gas

Authors: Valentina A. LYUBIMENKO graduated from the Faculty of Chemistry of Lomonosov Moscow State University in 1974. She is Candidate of Chemical Sciences, associate professor of the Department of Physical and Colloid Chemistry at Gubkin Russian State University of Oil and Gas. She specializes in colloid, physical chemistry and quantum-chemical calculations. She is author of about 40 publications. E-mail: ljubimenko@mail.ru

Abstract: The interaction energy of the C16–C21 paraffinic hydrocarbons molecules with pour point depressants based on copolymers of alkyl acrylates and α-olefins using semi empirical quantum-chemical method PM6 are calculated. Changes of the size and shape of crystals of n-alkanes forming from the diesel fuel at low temperatures are explained. The applicability of the method of molecular modeling and quantum chemical calculations for the study of the phenomena observed in fuels in the presence of additives is concluded

Index UDK: УДК 539.196.3:544.147:544.773:665.753.5:665.7.038.64

Keywords: diesel fuel, depressant additives, C16–C21 paraffin hydrocarbons, intermolecular interaction energy, quantum-chemical calculations

Bibliography:
1. GOST 5066—91.Topliva motornye. Metody opredelenija temperatury pomutnenija, nachala kristallizacii i kristallizacii.
2. GOST 20287–91. Nefteprodukty. Metody opredelenija temperatur tekuchesti i zastyvanija.
3. GOST 22254–92. Toplivo dizel’noe. Metod opredelenija predel’noj temperatury fil’truemosti na holodnom fil’tre.
4. Mahmotov E.S. Depressornye prisadki k nefti. Vestnik KazNTU, 2010, t. 80, no. 4, p. 619— 637. http://vestnik.kazntu.kz/files/newspapers/28/619/619.pdf
5. Kondrasheva N.K., Kondrashev D.O., Valid Nasif, Hasan Al’-Rezk C.D., Popova S.V. Nizko-temperaturnye svojstva smesevyh dizel’nyh topliv s depressornymi prisadkami. Jelektronnyj zhurnal «Neftegazovoe delo», 2007, no. 1. www.ogbus.ru/authors/.pdf
6. Patent US 4240916. Pour Point Depressant Additive for Fuels and Lubricants, 1980.
7. Patent US 7354462 B2. Systems and Methods of Improving Diezel Fuel Performance in Cold Climates. 2008.
8. Terterjan R.A. Depressornye prisadki k neftjam, toplivam i maslam. M.: Himija, 1990, 238 р.
9. Patent US no. 6172015. Copolymer derived from olefinic monomer and alpha, beta-unsa-turated carbonyl compound as polar monomer, 1999.
10. Grishina I.N. Fiziko-himicheskie osnovy i zakonomernosti sinteza, proizvodstva i primene-nija prisadok, uluchshajushhih kachestvo dizel’nyh topliv. M.: Neft’ i gaz, 2007, p. 230.
11. MOPAC 2009, James J. P. Stewart, Stewart Computational Chemistry, Version 9.03CS web: http://OpenMOPAC.net
12. Stall D., Vestram Je., Zinke G. Himicheskaja termodinamika organicheskih soedinenij. M.: Mir, 1971, p. 806.
13. Hobza P., Zagradnik R. Mezhmolekuljarnye kompleksy: rol’ vandervaal’sovyh sistem v fizicheskoj himii i biodisciplinah. M.: Mir, 1989, p. 376.
14. Ljubimenko V.A. Komp’juternoe modelirovanie struktury i svojstv mezhmolekuljarnyh kom-pleksov v dizel’nyh toplivah v prisutstvii depressorno-dispergirujushhih prisadok. Trudy Rossijskogo gosudarstvennogo universiteta nefti i gaza imeni I.M. Gubkina, 2014, no. 2, p. 43–51.

Development of new power-preservative oils based on oxidized petrolatums
Oil and gas processing, chemistry of oil and gas

Authors: Igor R. TATUR graduated from Gubkin Moscow Institute of Petrochemical and Gas Industry in 1979. He is Ph.D., assistant professor of the Department of Chemistry and Technology of Lubricants and Chemmotology. He is author of more than 80 scientific papers. E-mail: igtatur@yandex.ru
Evgenia A. TISHINA graduated from Gubkin Moscow Institute of Petrochemical and Gas Industry in 1975. She is Ph.D., senior researcher at the FAA, „25 Research Institute of Chemmotology of the Russian Ministry of Defense”. She is author of 47 scientific publications. E-mail: 25gosniihim@mil.ru
Marseille A. SADYKOV graduated from the Ufa State Aviation Technical University in 1995. He is Director of „Polytech” JSC, author 2 scientific publications. E-mail: marsvlad@rambler.ru
Dmitry N. SHERONOV graduated from Gubkin Russian State University of Oil and Gas in 2008. He is graduate student of the Department of Chemistry and Technology of Lubricants and Chemmotology. He is author of 2 scientific publications. E-mail: r75opposite@mail.ru

Abstract: An analogue of the K-17 power-preservative oil with a new composition of additives on the basis of available in Russia raw materials is proposed. The composition of the power-preservative oil comprises a mixture of transformer and aviation oil, oxidized petrolatum and viscosity index improver. The proposed composition offers high protective properties in various corrosive environments, being superior to K-17 as a moisture displacer for metal surfaces

Index UDK: УДК 665.6/7

Keywords: power-preservative oil, protective properties, atmospheric corrosion, petrolatum, temporary corrosion protection

Bibliography:
1. Gureev A.A., Shehter Ju.N., Timohin I.A. Sredstva zashhity avtomobilej ot korrozii [Agents of automobiles protection against corrosion]. Moscow, 1983, 104 p.
2. State standard 9.054–1975. Preservation oils, lubricants and inhibited film-forming oil compositions. The accelerated test methods of protective ability. Moscow, Goskomitet SSSR Publ., 1975, 15 p. (in Russian).
3. State standard 9.513–1997. Military equipment. Forecasting method of protection period by lubricants. Moscow, Standartinform Publ., 2008, 15 p. (in Russian).
4. State standard 15150–1969. Machines, instruments and other technical items. Realization for different climatic regions. Category, condition of exploitation, serving, transportation according to climatic factors of environment. Moscow, Goskomitet SSSR Publ., 1969, 50 p. (in Russian).
5. State standard 9.014–1978. Temporary anticorrosion protection of items. General requirements. Moscow, Goskomitet SSSR Publ., 1985, 55 p.