Articles Archive

№ 2/275, 2014

Title
Authors
Category
Account of osmotic swelling clays in modeling clay reservoirs for oil development
Drilling and development of hydrocarbon fields

Authors: Valery V. CADET was born 1953. He graduated from the Moscow Engineering Physics Institute in «Theoretical Nuclear Physics». He has been Head of the Department of Petroleum and Underground fluid mechanics at Gubkin Russian State University of Oil and Gas.. E-mail: trudyrgung@gubkin.ru
Pavel S. CHAGIROV was born in 1988; he graduated from Gubkin Russian State University of Oil and Gas in 2012 with Master’s Degree. He is currently doing a postgraduate course of studies at the Department of Petroleum and Underground fluid mechanics at Gubkin Russian State University of Oil and Gas. E-mail: pavel.chagirov@enconco.ru

Abstract: The analysis of osmotic swelling on the border between the injected agent and clay-containing rock allowed obtaining the dependence of the reservoir properties on the clay content and mineralization rate of injected water. The dependnces obtained show that with the decrease in salinity of the injected agent the pore space structure changes, i.e. the share of «fine» pores grows thus by reducing the share of «larg» ones, the variance of the pore radius distribution function as well as porosity decrease. On the basis of micromechanical description of the process of fluid flow in a lattice model of the porous medium analytical dependences of relative permeability curves as a function of salt concentration in the injected fluid were obtained. The process of two-phase flow of Newtonian fluids, one of which is a solution of electrolyte, in clay-containing porous medium was simulated. The influence of the parameters of the porous medium and injected saline fluid on the process of oil displacement was studied

Index UDK: УДК 622.276

Keywords: clay reservoir, flow in porous medium, osmotic swelling, percolation simulation

Bibliography:
1. Tang G.-Q. & Morrow N.R. Influence of brine composition and fines migration on crude oil/brine/rock interactions and oil recovery. Journal of Petroleum Science and Engineering, 1999, no. 24, p. 99-111.
2. Morrow N., Buckley J. Improved oil recovery by Low-Salinity Waterflooding. SPE 129421.
3. Austad T., Rezaeidoust A. & Puntervold T. Chemical Mechanism of Low Salinity Water Flooding in Sandstone Reservoirs. SPE Improved Oil Recovery Symposium. Tulsa, Oklahoma, 2010. USA: Society of Petroleum Engineers.
4. Hanin A.A. Porody i kollektory nefti i gaza i ih izuchenie. М.: Nedra, 1969. P. 140-141.
5. Wilcox R., Fisk J. Test show shale behavior, aid well planning. Oil and gas J., 1983, 12/IX, v. 81, no. 37.
6. Rumynina V.G. Ocenka vlijanija atomno-promyshlennogo kompleksa na podzemnye vody i smezhnye prirodnye ob’ekty. S-Pb.: Izdatel’stvo S.-Peterburgskogo universiteta, 2003, p. 85-90.
7. Kadet V.V. Metody teorii perkoljacii v podzemnoj gidromehanike. M.: centrlitneftegaz, 2008. — 96 p.
8. Stupochenko V.E. Vlijanie glinistosti kollektora na polnotu vytesnenija nefti vodoj. Geologo-geofizicheskie aspekty obosnovanija kojefficienta nefteotdachi. M.: VNIGNI, 1981, vyp. 228, p. 59-79.
9. Havkin A.Ja., Alishaeva O.M. O vlijanii mineralizacii plastovyh vod na fazovye pronicaemosti i vybor optimal’noj tehnologii polimernogo vozdejstvija na neftjanoj plast. Vniineft’, 1983, 11 p.
10. Basniev K.S., Kochina I.N., Maksimov V.M. Podzemnaja gidromehanika. M.: Nedra, 1993, 408 p.
11. Zareckij S.A., Suchkov V.N., Zhivotinskij P.B. Jelektrohimicheskaja tehnologija neorganicheskih veshhestv i himicheskie istochniki toka. M: Vysshaja shkola, 1980, p. 34.
12. Seljakov V.I., Kadet V.V. Perkoljacionnye modeli processov perenosa v mikroneodnorodnyh sredah. M.: 1-j topmash, 2006, 247p.
13. Uljasheva N.M., Ivenina I.V. Vlijanie ionnoj sily rastvora na skorost’ uvlazhnenija glinistyh porod. Stroitel’stvo neftjanyh i gazovyh skvazhin na sushe i na more [Construction of oil and gas wells on land and sea], 2010, no. 4, p. 28–30.
14.
Makeeva T.G. Metodicheskie novacii dlya umen’sheniya pogreshnosti opredeleniya plotnosti tverdoi fazi dispersnih gruntov standartnim metodom. Estestvennie i tehnicheskie nauki [Natural and technical sciences], 2009, no. 5, p. 231-243.
15. Khramchenkov M.G., Eirish M.V., Kornil’cev U.A. Izuchenie strukturnih izmenenii I termodinamicheskaya model’ fil’tracionnih svoistv glinistih porod. Izv. RAN. Geoekologiya [Russian Academy of Science, Geoecology], 1996, no. 5, p. 63-73.

Experimental setup for studying mechanism of elastic waves action on filtering process
Drilling and development of hydrocarbon fields

Authors: Evgeny A. MARFIN graduated from KSU (Kazan State University) named after Ulyanov-Lenin in 1999. He is PhD, Leading Researcher at the Research Center for Energy KSC of the RAS, Senior Lecturer in electronics of the KFI. He is specialist in the field of energy-saving technologies and technical means of enhanced oil recovery and oil production intensification. He is author of over 100 scientific publications. : E-mail: marfin76@mail.ru
Alexei A. ABDRASHITOV graduated from KAI (Tupolev Kazan State Technical University) in 1981. He is Junior Researcher at the Research Center for Energy of KSC of the RAS. He specializes in the field of gas dynamics. He is author of more than 10 scientific publications E-mail: abdary@mail.ru.
Evgeny V. BELYAEV is student at Kazan State Power Engineering University. He is specializes in the field of electric power supply for industrial heat engineering. He is Fellow of Presidential and Governmental Scholarship of the Russian Federation. He is author of 4 scientific public

Abstract: The action of elastic waves on the fluid flow in porous media is studied. It is shown that the impact of elastic fluctuations on the saturated porous me- dium will increase the filtration coefficient. Increased filtration coefficient under wave action can increase the rate of flow of fluid in porous media and the effectiveness of the method of production. Based on the analysis of data from dif- ferent studies an experimental setup was developed to implement various options of overlaying fields of elastic waves. Some results confirming the hypothesis of the mechanism of action of elastic waves on the filtration process were obtained

Index UDK: УДК 622.276.6

Keywords: filtration, porous medium, oil, viscosity, elastic waves, wave action, oscillator, frequency, amplitude of oscilla-tion, filter factor

Bibliography:
1. Dyblenko V.P., Kamalov R.N., Sharifullin R.Ja., Tufanov I.A. Povyshenie produktivnosti i reanimacija skvazhin s primeneniem vibrovolnovogo vozdejstvija [Productivity increase and reanimation wells with application vibrational-wave action]. Moscow: OOO “Nedra-Biznescentr”, 2000. — 381 p.
2. Kuznecov O.L., Efimova S.A. Primenenie ul’trazvuka v neftjanoj promyshlennosti [The use of ultrasound in the petroleum industry]. Moscow: Nedra, 1983. — 286 p.
3. Miheev N.I., Davletshin I.A. Method of measuring the average values of the coefficient of heat transfer in complex flows. Izvestija RAN. Jenergetika, 2005, no. 6, p. 16-19 (In Russian).
4. Davletshin I.A., Miheev N.I., Molochnikov V.M. Heat transfer in turbulent separated region with superimposed pulsations. Teplofizika i ajeromehanika [Thermophysics and Aeromechanics], 2008, vol. 15, no. 2, p. 229-236 (In Russian).
5. Mikhailov D.N., Nikolaevskii V.N. Dynamics of flow through porous media with unsteady phase permeabilities. Fluid Dynamics, 2000, vol. 35, no. 5, p. 715-724.
6. Kirsanov Ju.A., Nazipov R.A., Danilov V.A., Bashkircev G.V. Mathematical model of thermal processes and methods of research of heat transfer in a porous cylinder. Izvestija Samarskogo nauchnogo centra RAN, 2010, vol. 12, no. 4, p. 90-96 (In Russian).
7. Butorin Je.A., Zagidullina A.R. Forced vibration propagation and energy loss in the wall of vertical well. Izvestija RAN. Jenergetika, 2008, no.1, p. 131-136 (In Russian).
8. Esipov I.B., Zozulja O.M., Fokin A.V. The resonance method of measuring the shear viscoelastic properties of liquids based on the excitation of torsional oscillations in tubes. Akusticheskij zhurnal [Acoustical Physics], 2010, vol. 56, no.1, p. 124-134 (In Russian).

Analysis of accidents at booster compressor stations of gas pipelines
Design, construction and operation of pipeline transport

Authors: Alan M. REVAZOV graduated from the North-Caucasian Institute of Mining and Metallurgy in 1983. He is Doctor of Technical Sciences, professor the Department of Construction and Maintenance of Oil and Gas Pipelines and Storage Facilities of Gubkin Russian State University of Oil and Gas. He is licensed expert in industrial safety in the oil and gas industry of RosTechNadzor (Federal Service for Environmental, Technological and Nuclear Supervision). He is author 86 scientific and educational works. E-mail: alanrevazov@rambler.ru
Igor A. LEONOVICH graduated from the Department of Pipeline Transport of Polotsk State University in 2013 he is postgraduate student at the Department of Construction and Maintenance of Oil and Gas Pipelines and Storage Facilities of Gubkin Russian State University of Oil and Gas. E-mail: ned.flander@mail.ru

Abstract: The statistics of accidents at booster compressor stations of gas-main pipe- lines is considered. The factors causing the occurrence of emergencies at booster compressors are identified. The causes of fires are shown. The key affecting factors resulting from explosions and fires at booster compressors are outlined

Index UDK: УДК 622.691.4

Keywords: gas-main pipeline, booster compressor station, accident rate

Bibliography:
1. Godovye otchety o dejatel’nosti Federal’noj sluzhby po jekologicheskomu, tehnolo-gicheskomu i atomnomu nadzoru, 2004-2012. URL: http://www.gosnadzor.ru/public/annual_reports/ (data obrashhenija: 06.02.2014).
2. Diagnosticheskoe obsluzhivanie magistral’nyh gazoprovodov: Uchebnoe posobie. A.M. Angalev, B.N. Antipov, S.P. Zarickij, A.S. Lopatin. M.: MAKS Press, 2009, 112 р.
3. Butusov O.B., Meshalkin V.P. Komp’juternoe modelirovanie nestacionarnyh poto-kov v slozhnyh truboprovodah. M.: FIZMATGIZ, 2005, 550 р.
4. Revazov A.M. Analiz chrezvychajnyh i avarijnyh situacij na ob’ektah magistral’-nogo gazoprovodnogo transporta i mery po preduprezhdeniju ih vozniknovenija i snizheniju posledstvij. Upravlenie kachestvom v neftegazovom komplekse [Quality management for oil and gas industry], 2010, no. 1, р. 68-72.
5. Angalev A.M., Sokolinskij L.I., Lopatin A.S. Issledovanija vibracii i pul’sacii gaza v sistemah «centrobezhnyj nagnetatel’ truboprovod». Trudy Rossijskogo gosudar-stvennogo universiteta nefti i gaza im. I.M. Gubkina [Proceedings of Gubkin Russian State University of Oil and Gas], 2009, no. 4, р. 74-85.
6. Revazov A.M., Chuhareva N.V., Rudachenko A.V., Dmitrienko V.V. Dinamika avarijnosti ob’ektov magistral’nyh truboprovodov, jekspluatiruemyh na territorii sibirskogo i dal’nevostochnogo. Upravlenie kachestvom v neftegazovom komplekse [Quality management for oil and gas industry], 2012, no. 2, р. 35-38.

Effect of pipeline branch on mode of pumping of oil by pipeline
Design, construction and operation of pipeline transport

Authors: Vadim A. POLYAKOV graduated from Lomonosov Moscow State University majoring in „Mechanics” in 1981. He is Full Professor of the Department of Design and Operation of Oil and Gas Pipelines of Gubkin Russian State University of Oil and Gas. He is a specialist in the design and operation of pipeline transportation systems of oil and gas. He is author of 88 publications.E-mail: vapolyakov@rambler.ru
Roman A. SHESTAKOV graduated with honors from Gubkin Russian State University of Oil and Gas in 2013. He is postgraduate student of the Department of Design and Operation of Oil and Gas Pipelines of Gubkin Russian State University of Oil and Gas. He is a specialist in the design and operation of pipeline transportation systems of oil and gas. He is author of 3 publications.
E-mail: dur187@mail.ru

Abstract: The article considers the problem of branching of the trunk oil pipeline, i.e. the change of operating practices in the final cross section of the pipeline. Three-dimensional diagrams of the dependency of operating practices of the trunk pipeline in the final cross section on the structural and technological parameters of the branch are built. A software package for designing the section of the trunk pipeline with a branch is presented

Index UDK: УДК 622.691.4

Keywords: trunk pipeline, operation practices, branch, software package

Bibliography:
1. Polyakov V.A. Basics of technical diagnostics. Lectures: Textbook. Moscow: INFRA-M, 2012, p. 118.
2. Polyakov V.A., Shestakov R.A. The changing nature of technological regime of high oil pipeline transport along the length of the pipeline. Proceedings of the Gubkin Russian State University of Oil and Gas, 2013, no. 4 (273), p. 79-83.
3. RD-23.040.00-KTN-110-07. Trunk oil pipelines. Design standards. M.: ОАО „AK „Transneft”, 2007.
4. RD Unified technological calculations of objects of the main oil wires and pipelines. M.: ОАО „AK „Transneft”, 2009.

Computer modeling of structure and properties of intermolecular complexes in diesel fuels using depressor and dispersant additives
Oil and gas processing, chemistry of oil and gas

Authors: Valentina A. LYUBIMENKO graduated from the Department of Chemistry of Lomonosov Moscow State University in 1974. She is Ph.D., Associate Professor of the Department of Physical and Colloid Chemistry Gubkin Russian State University of Oil and Gas. She is a specialist in the field of colloid chemistry, physical chemistry, quantum-chemical calculations. She is author of about 40 scientific publications. E-mail: ljubimenko@mail.ru

Abstract: Computer simulation methods were used to study the structure and properties of intermolecular complexes of paraffins using components of depressor-dispersant additive in diesel fuel. The semi-empirical quantum chemical PM6 method was applied to calculate the interaction energy of molecules in intermolecular com-plexes. Based on the calculations the mechanism of action of depressor-disper-sant additive is proposed

Index UDK: УДК 539.196.3:544.147:544.773:547.74

Keywords: diesel, depressor-dispersant additives, mechanism, intermolecular complexes, interaction energy, quantum chemical calculations

Bibliography:
1. Internet-resurs http://www.creonenergy.ru/consulting/detailConf.php?ID=109871.
2. Danilov A.M. Prisadki k toplivam. Razrabotka i primenenie v 1996-2000 gg. Himija i tehnologija topliv i masel [Chemistry and Technology of Fuels and Oils], 2001, no. 6, p. 43-50.
3. Mitusova T.N., Polina E.V., Kalinina M.V. Sovremennye dizel’nye topliva i prisadki k nim. M.: Tehnika, OOO «Tuma Grup», 2002, 64 p.
4. Danilov A.M. Primenenie prisadok v toplivah. M.: Mir, 2005, p. 288.
5. Danilov A.M. Klassifikacija prisadok i dobavok k toplivam. Neftepererabotka i neftehimija [Oil Refining and Petrochemistry], 1997, no. 6, p. 11-14.
6. Bashkatova S.T. Prisadki k dizel’nym toplivam. M.: Himija, 1994, p. 256.
7. Danilov A.M. Razrabotka i primenenie prisadok k toplivam v 2006–2010 gg. Himija i tehnologija topliv i masel [Chemistry and Technology of Fuels and Oils], 2011, no. 6, p. 41-51.
8. Danilov A.M. Sovremennoe sostojanie proizvodstva i primenenija prisadok pri vyrabotke dizel’nyh topliv EVRO-3, 4, 5. Doklad na sovmestnom zasedanii uchenogo soveta VNII NP i Komiteta po toplivam i maslam ANN RF. M.: Izdatel’stvo «Sputnik+», 2009, p. 27.
9. Danilov A.M. O sovmestimosti prisadok k toplivam. Himija i tehnologija topliv i masel [Chemistry and Technology of Fuels and Oils], 1998, no. 5, p. 14-15.
10. Grishina I.N. Fiziko-himicheskie osnovy i zakonomernosti sinteza, proizvodstva i primenenija prisadok, uluchshajushhih kachestvo dizel’nyh topliv. M.: Neft’ i gaz, 2007, p. 230.
11. Grishina I.N., Ljubimenko V.A., Kolesnikov I.M., Vinokurov V.A. Mehanizm dejstvija depressorno-dispergirujushhih prisadok k dizel’nym toplivam. Materialy VI mezhdunarodnoj nauch- notehnicheskoj konferencii «Glubokaja pererabotka neftjanyh dispersnyh sistem». M., 2011, p. 118-120.
12. Grishina I.N., Ljubimenko V.A., Kolesnikov I.M., Vinokurov V.A. Vyjavlenie mehanizma dejstvija depressorno-dispergirujushhih prisadok k dizel’nym toplivam. Tez. dokl. IX Vserossijskoj na-uchno-tehnich. konf. «Aktual’nye problemy razvitija neftegazovogo kompleksa Rossii». 30 janvarja — 1 fevralja 2012 g. Ch. 1. Sekcii 1-4. M., 2012, p. 241.
13.

Danilov A.M. Primenenie prisadok v toplivah dlja avtomobilej: Sprav. M.: Himija, 2000, p. 232.
14. Borshh V.N., Kolesnikov I.M., Grishina I.N., Ljubimenko V.A. Kvantovohimicheskoe issledovanie kompleksoobrazovanija sukcinimida s uglevodorodami. Trudy RGU nefti i gaza im. I.M. Gubkina, 2009, no. 2, p. 112-119.
15. Borshh V.N., Ljubimenko V.A., Kil’janov M.Ju., Kolesnikov I.M., Vinokurov V.A. Kvantovohimicheskoe issledovanie kompleksoobrazovanija maleinimida s molekulami benzola i vody. Hi-micheskaja fizika [Chemical Physics], 2011, t. 30, no. 8, p. 11-21.

Study of oxidizability of cellulosic raw material with hydrogen peroxide over colloidal cata-lyst based on iron oxide (iii)
Oil and gas processing, chemistry of oil and gas

Authors: Yakov A. MASYUTIN completed Master’s degree Gubkin Russian State University of Oil and Gas in 2012, specializing in „Chemical Technology and Biotechnology”. He is currently doing a postgraduate course of studies at Gubkin Russian State University of Oil and Gas and occupies the position of engineer of the Department of Physical and Colloid Chemistry of the named university. He is a specialist in the sector of biofuels synthesis of ionic liquids, application of spectroscopic methods for the analysis of petroleum and petroleum products. He is author of 20 scientific publications.E-mail: YMA1989@mail.ru
Roman I. KLYUKIN completed Bachelor’s degree in Kazakhstan branch of the Lomonosov Moscow State University University (Astana) in 2012, majoring in „Ecology and NatureManagement”. He is currently doing a graduate course at Gubkin Russian State University of Oil and Gas and occupies the position of engineer of the Department of Physical and Colloid Chemistry of the named university. The area of his research includes environmental impact assessment of oil and gas industry, including pipeline transportation, as well as methods of producing alternative energy sources.E-mail: klyukin_roman@bk.ru
Andreу A. NOVIKOV completed Master’s degree of the Perm State University majoring in „Chemistrу” in 2007. In 2010, he graduated from the graduate school at Gubkin Russian State University of Oil and Gas. He is Candidate of Chemical Sciences, Head of the Laboratory „Center for Nanodiagnostics” Gubkin Russian State University of Oil and Gas. He is a specialist in the field of organic chemistry, microbiology and nanodiagnostics, author of more than 30 scientific publications. E-mail: gubkin.biotech@gmail.com
Vladimir A. VINOKUROV graduated from Gubkin Moscow Institute of Petrochemical and Gas Industry in 1972 as „Manufacturing Engineer”. He is Doctor of Chemical Sciences, Head of the Department of Physical and Colloid Chemistry at Gubkin Russian State University of Oil and Gas. He is well-known a specialist in the field of surface chemistry and disperse systems, synthesis and stabilization of nanoparticles, and biotechnology. He is author of over 200 scientific publications.:E-mail: vinok_ac@mail.ru

Abstract: We have studied the oxidation of pre-radiated and original cellulosic feedstock (pine sawdust, bamboo chips) with dilute solutions of hydrogen peroxide over a catalyst based on colloidal iron oxide (III). As a result, it was found that the combined pretreatment by radiation and catalytic oxidation with hydrogen peroxide is an effective method of preparation of lignocellulosic feedstock for hydrolysis. This is due to the reduced content of lignin, the degree of polymerization and the crystallinity of cellulose. The byproducts (water solutions of oxidative degradation products of lignin) obtained during pretreatment can be used as plant growth stimulants or additives for animal feed. Analysis of the by-products by the me- thod of capillary electrophoresis revealed single, two-and tribasic carboxylic acids, while the gas chromatography-mass spectrometry analysis confirmed the presence of aldehydes, alcohols, esters, and nitrogen-containing heteroatomic compounds besides carboxylic acids

Index UDK: УДК 663.031.7 + 544.478.42 + 66.094.3.097 + 66.097.3-039.672

Keywords: lignocellulose, irradiation pretreatment, hydrogen peroxide, colloid particles of iron (III) oxide, carboxylic acids

Bibliography:
1. Sun R.C. Cereal Straw as a Resource for Sustainable Biomaterials and Biofuels. Chemistry, Extractives, Lignins, Hemicelluloses and Cellulose. Publ.: Elsevier, 2010, 300 р.
2. Tretyakov V.F., Makarfi Yu.I., Tretyakov K.V. Catalytic conversion of bioethanol into hydrocarbon fuels. Kataliz v promyshlennosti [Catalysis in industry], 2010, no. 5, pp. 11–32. (in Russian).
3. Varfolomeev S.D., Moiseev I.I., Myasoedov B.F. Energy carriers obtained from renewable raw materials. Vestnik Rossiyskoy akademii nauk [Bulletin of Russian Academy of Sciences], 2009, vol. 79, no. 7, pp. 595–607. (in Russian).
4. Makarfi Yu.I., Trushin A.A., Tretyakov V.F. Resource-saving and energy-saving technologies in chemical and petrochemical industry: Tezisy dokladov pervoy mezhdunarodnoy konerencii RKhO imeni D.I. Mendeleeva. [Abstracts of the 1st international conference of Russian Chemical Society named after Dmitriy Mendeleev, Moscow], 2009, p. 48. (in Russian).
5. Berberov A.B., Masyutin Ya.A., Afonin D.S., Borzaev H.H. Application of the colloid catalyst based on iron (III) oxide and polymetallic nanocatalyst (Fe-Co-Ni) for modification of lignocellulose structure. Izvestiya Kabardino-Balkarskogo nauchnogo centra RAN [Proceedings of Kabardino-Balkar Scientific Center of RAS], 2013, vol. 1, no. 6 (56), pp. 72-78. (in Russian).
6. Lesin V.I., Pisarenko L.M., Kasaikina O.T. Colloid catalysts based on iron (III) oxide. 1. Hydrogen peroxide decomposition. Kolloidnyy zhurnal [Colloid journal], 2012, vol. 74, no. 1, pp. 90-95. (in Russian).
7. Kasatkina O.T., Pisarenko L.M., Lesin V.I. Colloid catalysts based on iron (III) oxide. 2. Features of catalytic oxidation of palm oil. Kolloidnyy zhurnal [Colloid journal], 2012, vol. 74, no. 4, pp. 503-508. (in Russian).
8. Kropotkina V.V., Khmelyova A.N., Vereshchagin A.L. Pod red. Leonov G.V. The mechanism of growth-promoting action of ultra-low doses of natural organic acids. Innovatsionnye tekhnologii: proizvodstvo, economika, obrazovanie: materialy Vserossiyskoy nauchno-prakticheskoy konferencii 24 Sentyabrya 2009 goda [Innovative Technologies: production, economics, education: materials of All-Rusaian scientific and practical conference. September, 24, 2009]. Altai State Technical University, BTI. — Biysk: Publishing house of Altai State Technical University, 2009, pp. 372–375. (in Russian).
9. New corrective feed additive „Ekolin-4” for high-producing cows. G.V. Naumova, A.I. Ko-zinets, N.L. Makarova, T.F. Ovchinnikova, N.A. Zhmakova, O.G. Golushko. Prirodopolzovanie [Natural management], 2011, Issue 20, pp. 117-122. (in Russian).

Applying conservation compositionsfor corrosion protection of heat exchange and storage equipment
Oil and gas processing, chemistry of oil and gas

Authors: Igor R. TATUR graduated from Gubkin Moscow Institute of Petrochemical and Gas Industry in 1979. He is Candidate of Chemical Sciences, Associate Professor of the Department of Chemistry and Technology of Lubricants and Chemmotology. He is author of more than 80 scientific publications. E-mail: igtatur@yandex.ru.
Dina V. SHARAFUTDINOVA graduated from Gubkin Russian State University of Oil and Gas in 2009. She is Candidate of Technical Sciences. She is technical a specialist at LLC „STANDARD”. She is author of 15 scientific publications. E-mail: shara-dina@yandex.ru.
Vladimir A. LAZAREV graduated from Gubkin Moscow Institute of Petrochemical and Gas Industry in 1971. He is Candidate of Chemical Sciences, Deputy Director for R&D at LLC „Palette”. He is author of 95 scientific publications.E-mail: vlanlaz@mail.ru.
Dmitry N. SHERONOV graduated from Gubkin Russian State University of Oil and Gas in 2008. He is postgraduate student of the Department of Chemistry and Technology of Lubricants and Chemmotology. He is author of 2 scientific publications. E-mail: r75opposite@mail.ru.

Abstract: A conservation composition comprising a waste protective liquid, amine-type corrosion inhibitor, demulsifier, surpassing the performance characteristics of that currently used in the VNIINM-33/80 composition. It is used to conserve heat exchangers and storage equipment at machine-building enterprises. Its high demulsibility permits to combine the process of applying this composition on the inner surface with the process of hydraulic testing of equipment.

Index UDK: УДК 665.6/7

Keywords: conservation composition, waste protection fluid, corrosion inhibitor, demulsifier, corrosion rate hydro testing of equipment

Bibliography:
1. Tatur I.R., Jakovlev D.A., Lazarev V.A. VNIINM-PAV-31/87-sostav dlja konservacii sovmestno s gidroispytanijami teploobmennogo i emkostnogo oborudovanija [VNIINM-PAV-31/87 as a reagent for simultaneous conservation and hydrotesting of heat exchanging and storage equipment]. Himicheskoe i neftjanoe mashinostroenie [Chemical and petroleum refining machinery], 1989, no. 9, p. 38–39 (in Russian).
2. Tatur I.R., Timohin I.A., Prigul’skij G.B. Prognozirovanie sroka zashhity teploobmennogo i emkostnogo oborudovanija konservacionnym maslom VNIINM-31/80 [Forecasting the protection time of heat exchanging and storage equipment by conservative oil type VNIINM-31/80]. Himicheskoe i neftjanoe mashinostroenie [Chemical and petroleum refining machinery], 1991, no. 9, p. 7–8 (in Russian).
3. Shehter Ju.N., Shkol’nikov V.M., Krjejn S.Je., Teterina L.N. Maslorastvorimye poverhnostno-aktivnye veshhestva [Oil-soluble surface-active substances]. Moscow, 1978, 304 p.
4. Frolov Ju.G. Kurs kolloidnoj himii. Poverhnostnye javlenija i dispersnye sistemy [Course of colloid chemistry. Surface properties and dispersed systems]. Moscow, 1988, 464 p.
5. Fuks I.G., Tumanjan B.P. Kolloidnaja himija nefti i nefteproduktov [Colloid chemistry of oil and oil products]. Moscow, 2001, 96 p.
6. K. Mittel. Micellobrazovanie, soljubilizacija i mikrojemul’sii [Micelles formation, solubilization and microemulsion]. Moscow, 1980, 600 p.

Near-infrared spectroscopy for monitoring quality of commodity and raw material flows of gasoline blending station
Oil and gas processing, chemistry of oil and gas

Authors: Ravilya Z. SAFIEVA graduated from Lomonosov Moscow State University in 1978. She is Doctor of Technical Sciences, Full Professor of the Department of Organic Chemistry and Petroleum Chemistry of Gubkin Russian State University of Oil and Gas. She is a specialist in the field of physical chemistry of oil disperse systems and methods of research. She is author of over 100 scientific publications. E-mail: safieva@gubkin.ru
Irina V. IVANOVA graduated from Kazan State University named after VI Ulyanov-Lenin in 2006. She is postgraduate student of the Department of Organic Chemistry and Petroleum Chemistry at Gubkin Russian State University of Oil and Gas. She is a specialist in the field of molecular spectroscopy. E-mail: irina20051984@rambler.ru

Abstract: Near-infrared spectroscopy (NIR) is becoming an effective and popular analytical technique in the petrochemical and refining industries, mainly because of the reliability and convenience for routine use. In this paper we have accumulated and systematized a large amount of spectral data obtained for the raw materials and commodity flows of gasoline blending station using near-infrared spectrometer with Fourier transform (FT-NIR) in ON-LINE mode. A correlation between the spectral data and the quality parameters, namely, octane numbers using research and motor methods, density, content: aromatic hydrocarbons, benzol and olefinic hydrocarbons; fractional composition, saturated vapors pressure. We have constructed and validated calibration models for these parameters and proposed these for use in real-time. The prediction error of the obtained gauge model lies within the reproducibility of the standard methods for each parameter

Index UDK: УДК 665.773.3

Keywords: infrared spectrometer with Fourier transform, spectroscopy of near-in-frared (NIR) range, commodity flows, commercial gasoline, gauge model, independent verification of models

Bibliography:
1. Barsamian A. Get the Most Out of Your NIR Analyzers. Hydrocarbon Processing, January, 2001, p. 69-72.
2. Espinosa M.S. et al. On-line NIR Analysis and Advanced Control Improve Gasoline Blending. Oil and Gas Journal, Oct. 17, 1994.
3. Reboucas M.V., Dos Santos J.B., Domingos D. and Massa A.R. Near-infrared spectroscopic prediction of chemical composition of a series of petrochemical process streams for aromatics production. Vibr. Spectrosc. 52, 97 (2010). oi: 10.1016/j.vibspec.2009.09.006.
4. Watari M., Ozaki Y. Du and Y. Variations in predicted values from near-infrared spectra of samples in vials by using a calibration model developed from spectra of samples in vials: causes of the variations and compensation methods, Appl. Spectrosc. 61(4), 397 (2007). doi: 10.1366/ 000370207780466244.
5. Chung H. Applications of near infrared spectroscopy in refineries and important issues to address. Appl. Spectrosc. Rev. 42(3), 251 (2007). doi: 10.1080/05704920701293778.
6. Hoeil Chung, Hyuk-Jin Choi, and Min-Sik Ku. Rapid Identification of Petroleum Products by Near-Infrared spectroscopy. Bull. Korean Chem. Soc. 1999, vol. 20, no. 9.
7. Tonkov M.V. Fourier spectroscopy —maximum information for minimum time. Sorosovskiy education journal, t. 7, no. 1, 2001. (in Russian).
8. Carlos-A. Baldrich Ferrer, Luz-Angela Novoa Mantilla. Infrared spectrophotometry, a rapid and effective tool for characterization of direct distillation naphthas. CT&F, Colombia, 2005, no. 3.
9. Chung H., Ku M.S., Lee J.S. Comparison of near-infrared and mid-infrared spectroscopy for the determination of distillation property of kerosene. Vib. Spectrosc. 1999, no. 20, p. 155–163.
10. Ingrid Komorizono de Oliveira, Werickson F. de Carvalho Rocha, Ronei J. Poppi Application of near infrared spectroscopy and multivariate control charts for monitoring biodiesel blends. Analytica Chimica Acta, 2009, 642, p. 217–221.
11. Monteiro M.R., Ferreira A.G. Determination of biodiesel blend levels in different diesel samples by 1H NMR. Fuel, 2009, no. 88, p. 691–696.
12. Peinder P., Visser T. Partial least squares modeling of combined infrared, 1H NMR and 13C NMR spectra to predict long residue properties of crude oils. Vibrational spectroscopy, 2009, p. 8.
13. Narve Aske, Harald Kallevik, and Johan Sjoblom Determination of saturate, aromatic, resin, and asphaltenic (SARA) components in crude oils by means of infrared and near-infrared spectroscopy. Energy & Fuels, 2001, no. 15, p. 1304–1312.
14.< Safieva R.Z. Physics chemistry of crude oil. М.: Chemistry, 1998, 448 с. (in Russian).
15. http://www.fda.gov/cder/OPS/PAT.htm.
16. Krichenko V.P. Near Infrared spectroscopy, M., 1997. (in Russian)
17. Burns D.A., Ciurczak E.W. Handbook of Near-Infrared Analysis; Marcel Dekker: New York, USA, 1992.
18. Belova O.A. Operativno and Dostoverno. Article in Lukoil Sintez, 2012, no. 49, 1 p. (in Russian).
19. Filatov V.M., Safieva R.Z. Chemometrics for analysis refinery and petro chemistry products; Neftepererabotka and Neftechimistry, 2009, no. 9, p. 33–38. (in Russian).
20. Purevseren Sarangerel. Express method for analysis of crude oils and crude oil fractions properties during crude oil refining. Dokt, Diss., Moscow, Gubkin Russian State University of Oil and Gas, 2003, 177 p. (in Russian).
21. Filatov V.M. Razrabotka xemometricheskix metodik express-analisa pokazateley kachestva I sostava neftyanix system s primeneniem metoda blizhney infrakarasnoy spectroscopii, Dokt, Diss., Moscow, Gubkin Russian State University of Oil and Gas, 2010, 117 p. (in Russian).
22. Balabin P.M. Sozdanie express metodov analisa pokazateley kachestva distillyatnix fracsii na osnove kolebatelnoy spectroskopii. Dokt, Diss., Moscow, Gubkin Russian State University of Oil and Gas, 2013, 110 p. (in Russian).
23. Balabin R.M., Lomakina E.I. Support vector machine regression (SVR/LS-SVM) — an alternative to neural networks (ANN) for analytical chemistry. Comparison of nonlinear methods on near infrared (NIR) spectroscopy data. Analyst 136, 1703, 2011.
24. Balabin R.M., Safieva R.Z. Near-infrared (NIR) spectroscopy for biodiesel analysis: Fractional composition, iodine value, and cold filter plugging point from one vibrational spectrum. Energy & Fuels 25, 2373, 2011.
25. Balabin R.M., Safieva R.Z., Lomakina E.I. Gasoline classification using near infrared (NIR) spectroscopy data: Comparison of multivariate techniques. Anal. Chim. Acta 671, 27, 2010.
26. Balabin R.M., Safieva R.Z. Gasoline classification by source and type based on near infrared (NIR) spectroscopy data. Fuel 87, 1096, 2008.
27. Balabin R.M., Smirnov S.V. Variable selection in near-infrared (NIR) spectroscopy: Benchmarking of feature selection methods on biodiesel data. Anal. Chem. Acta 692, 63, 2011.
28. ASTM 1655-04 Standard Practices for Infrared Multivariate Quantitative Analysis.
29. ASTM 6122 Standard Practice for Validation of Multivariate Process Infrared Spectrophotometers.
30. www.brukeroptics.com/www.bruker.ru.
31. Martens, H.; Naes, T. M. Multivariate Calibration; John Wiley and Sons: New York, USA, 1989, p. 116.
32. Massart D.L.: Chemometrics: a textbook, Elsevier, NY, 1988.

Formation of petroleum hydrocarbons from bacterial biomass
Oil and gas processing, chemistry of oil and gas

Authors: Maxim V. GIRUTS graduated from Gubkin Russian State University of Oil and Gas in 2004. He is Candidate of Chemical Sciences, Associate Professor of the Department of Organic Chemistry and Petroleum Chemistry of Gubkin Russian State University of Oil and Gas. He specializes in the field of chemistry and geochemistry of petroleum hydrocarbons. He is author of more than 50 scientific publications. E-mail: moxixh@yahoo.com
Guram N. GORDADZE graduated from the Georgian Polytechnic Institute in 1963; he is Doctor of Geological and Mineralogical Sciences and Candidate of Chemical Sciences, Full Professor of the Department of Organic Chemistry and Petroleum Chemistry of Gubkin Russian State University of Oil and Gas. He specializes in the field of chemistry and geochemistry of petroleum hydrocarbons. He is author of over 300 scientific publications. E-mail: gordadze@rambler.ru
Alexandra R. STROEVA graduated from Lomonosov Moscow State University in 2012. She is postgraduate student at the Department of Organic Chemistry and Petroleum Chemistry of Gubkin Russian State University of Oil and Gas. She specializes in the field of microbiology. She is author of 11 scientific publications. Е-mail: stroeva@inbox.ru
Vladimir N. KOSHELEV graduated from Gubkin Moscow Institute of Petrochemical and Gas Industry in 1975, he is Doctor of Chemical Sciences, Professor, Head of the Department of Organic Chemistry and Petroleum Chemistry of Gubkin Russian State University of Oil and Gas. He is a specialist in the art of synthetic organic chemistry and petro chemistry. He is author of over 280 scientific publications E-mail: koshelev.v@gubkin.ru

Abstract: The analysis of compounds of native biomass as well as of thermolysis products and biomass thermocatalisys of chemo-organo-heterotrophic bacteria Pseudomonas aeruginosa RM and Arthrobacter sp. RV. In the soluble portion of the biomass we identified marginal n-alkanes mostly with an odd number of carbon atoms (C7-C17) and with one carbon atom more than the corresponding unsaturated fatty acid n-(C8-C18), as well as high molecular n-alkanes with an even number of carbon atoms in molecules of C22, C24, C30, C32 composition. Both strains synthesized unsaturated irregular izoprenane – squalene (2,6,10,15, 19,23-geksamethyltetracosane-6,10,14,18,22-2-hexane). It is suggested that the reason for the prevalence of n-alkanes with an odd number of carbon atoms in immature oils is not only the decarboxylation of the corresponding acids, but also bacterial synthesis. The products of thermolysis and thermocatalysis of the insoluble portion of biomass of these strains of bacteria showed the same hydrocarbon biomarkers as those present in oils , i.e. n-alkanes, C13-C20 izoprenanes, including regular izoprenane of regular C17 composition, which is virtually absent in all the world oils, as well as steranes and also terpanes. The products of thermolysis of both strains of bacteria showed the prevalence of n-alkanes with an odd number of carbon atoms per molecule (n-R9, n-C11, n-C15 and n-C17), while thermocatalysts displayed n-alkanes with an even number of atoms (n-C16 n-C18 and n-C20). The distribution of regular C27-C29 steranes resembles that in marine oils generated in clay strata, whereas the ratio of adiantane to hopane (G29/G30) is characteristic of organic matter generated in carbonate strata. Thermolysis products of the insoluble portion of bacteria generated proto-adamantanes and proto-diamantanes while the products of thermocatalysis with aluminosilicate also generated C10-C13 adamantanes and C14-C16 diamantanes. It is suggested that one of the possible ways for the formation of diamond-like structure of hydrocarbons in oils can be catalytic conversion of biomass of bacteria

Index UDK: УДК 579.22:579.66:547.912

Keywords: origin of petroleum, petroleum hydrocarbons, bacteria, prokaryotes, thermolysis, thermocatalysis, proto-adamantanes, proto-diamantanes, adamantanes, diamantanes

Bibliography:
1. Sergeev V.N., Noll E.H., Zavarzin G.A. The first three billion years of life: from prokaryotes to eukaryotes. Priroda [Nature], 1996, no. 6, p. 54. (in Russian).
2. Tissot B.P., Welte, D.H. Petroleum Formation and Occurrence, Springer-Verlag, Berlin, 1978.
3. Petrov Al.A., Abryutina N.N. Isoprenoid hydrocarbons of petroleum. Uspehi himii [Russian Chemical Reviews], 1989, vol. LVIII, 983 p. (in Russian).
4. Petrov Al.A. Petroleums of the early stages of petroleum generation. Geologija nefti i gaza [Oil and gas geology], 1988, no. 10, 50 p. (in Russian).
5. Gordadze G.N., Grunis E.B., Sokolov A.V., Rusinova G.V., Gordadze T.I. On the question of exploration of oil fields using direct geochemical methods. Geologija, geofizika i razrabotka neftjanyh i gazovyh mestorozhdenij [Geology, geophysics and development of oil and gas fields], 2004, no. 4, 54 p. (in Russian).
6. Gordadze G.N. Termoliz organicheskogo veshhestva v neftegazopoiskovoj geohimii [Thermolysis of organic matter in the oil and gas geochemistry]. Moscow, 2002, 336 p. (in Russian).
7. Nazina T.N., Sokolova D.S. , Grigoryan A.A., Xue Y.F., Belyaev S.S., Ivanov M.V. Education oil-displacing compounds by microorganisms from the Daqing oilfield of China (PRC). Mikrobiologija [Microbiology], 2003, vol. 72, p. 206–211.
8. Dobrovolskaya T.G., Skvortsova I.N., Lisak L.V. Metody opredelenija i identifikacii pochvennyh bakterij [Methods of the determination and identification of soil bacteria]. Moscow, 1990, 72 p. (in Russian).
9. Petrov A.A. Uglevodorody nefti [Petroleum hydrocarbons]. Moscow, 1984, 263 p. (in Russian).
10. Petrov A.A. Geochemical typing of petroleums. Geohimija [Geochemistry International], 1994, no. 6, p. 876–891.
11. Gordadze G.N., Giruts M.V., Koshelev V.N. Organicheskaja geohimija uglevodorodov [Organic geochemistry of hydrocarbons], Moscow: Book 1, 2012, 392 p.; Book 2, 2013, 303 p.
12. Kashirtsev V.A, Moskvin V.I., Fomin A.N., Chalaia O.N. Terpanes and steranes in Siberia’s coals of different genetic types. Geologija i geofizika [Geology and Geophysics], 2010, vol. 51, no. 4, 383 p. (in Russian).
13. Melenevskii V.N., Kontorovich A.E., Kashirtsev V.A., Kim N.S. Biomarkers in the pyrolysis products of asphaltenes from ancient crude oils of East Siberia as indicators of source rock depositional environment. [Petroleum Chemistry], 2009, vol. 49, no. 4, 1 p.
14. Gordadze G.N., Arefiev O.A. Adamantanes genetically different oils. [Petroleum Chemistry], 1997, Vol. 37, No. 5, P. 381.
15. Gordadze G.N. Geochemistry of carbon frame structure (review). [Petroleum Chemistry], 2008, vol. 48, no. 4, 241 p.
16. Giruts M.V., Badmaev Ch.M., Erdnieva O.G., Stokolos O.A., Koshelev V.N., Gordadze G.N. Identification triamantans in oils. Petroleum Chemistry, 2012, vol. 52, no. 2, 65 p.
17. Giruts M.V., Derbetova N.B., Erdnieva O.G., Stokolos O.A., Koshelev V.N., Gordadze G.N. Identification tetramantans in oils. [Petroleum Chemistry], 2013, vol. 53, no. 5, 285 p.
18. Kashirtsev V.A., Nesterov I.I., Melenevskii V.N., Fursenko E.A., Kazakov M.O., Lavrenov A.V. Biomarkers and adamantanes in oils from the Cenomanian deposits north of Western Siberia. [Geology and Geophysics], 2013, vol. 54, no. 8, 1227 p.
19. Gordadze G.N., Rusinova G.V. Diamantane of C14-C15 in the organic matter of the crystalline basement. [Geochemistry], 2004, no. 11, 1228 p.
20. Giruts M.V., Gordadze G.N. Generation of adamantane and diamantan from thermal cracking of polar components of oils of different genotypes. [Petroleum Chemistry], 2007, vol. 47, no. 1, 12 p.
21. Giruts M.V, Rusinova G.V., Gordadze G.N. Generation of adamantane and diamantan of saturated boiling oil fractions of different genotypes in the presence of acid catalysts. [Petroleum Chemistry], 2005, vol. 45, no. 3, 141 p.
22. Giruts M.V., Rusinova G.V., Gordadze G.N. Generation of adamantane and diamantanov from thermal cracking of high-saturated petroleum fractions of different genotypes. [Petroleum Chemistry], 2006, vol. 46, no. 4, 225 p.
23. Gordadze G.N., Giruts M.V. Synthesis of a number of hydrocarbon adamantane and diamantane by high cracking macromolecular n-alkanes. [Petroleum Chemistry], 2008, vol. 48, no. 6, 414 p.

Identifying main source of acoustic emission under general corrosion of carbon steel
Industrial and environmental safety, occupational safety and health

Authors: Marina L. MEDVEDEVA graduated from Gubkin Moscow Institute of Petrochemical and Gas Industry in 1973. She is Doctor of Technical Sciences, full professor of the Department Metal Science and Non-Metallic Materials at Gubkin Russian State University of Oil and Gas. She is a specialist in the field of corrosion and protection of equipment of oil and gas industry. She is author of more than 80 scientific papers. E-mail: marmed04@mail.ru
Margarita D. RATANOVA is a student of Gubkin Russian State University of Oil and Gas of the Faculty of Mechanical Engineering. Since 2012 she has been a member of the Department Metal Science and Non-Metallic Materials.E-mail: rita-ratanova@rambler.ru

Abstract: The need to develop and improve corrosion monitoring systems requires consi- dering the possibility of using acoustic emission monitoring systems to control general corrosion of crude oil distillation plants. The aim of the work was to iden-tify the source of acoustic emission during corrosion of carbon steel at rates close to those in operating conditions of these facilities. It was found that under carbon steel corrosion the main source of acoustic emission is hydrogen generated during cathodic reaction. The AE method can be considered as the basis for the creation of corrosion monitoring systems designed to control on-line the corrosion of the equipment and piping lines of the heads of the crude distillation unit

Index UDK: УДК 669.018.8.001; 534.8.081.7

Keywords: corrosion, acoustic emission, signals, corrosion media

Bibliography:
1. Alyakritsky A.L., Popkov Y.S., Sorokin E.Y., Terent’ev D.A. Determination of the pitting corrosion’ depth and Acoustic emission control of corrosion development. Himicheskaja tehnika, 2008, no. 8, p. 8-10 (in Russian).
2. Spravochnik himika. T. 3. Himicheskoe ravnovesie i kinetika. Svojstva rastvorov. Jelektrodnye process [Handbook for chemist. V.3. Chemical equilibrium and kinetics. Properties of fluids. Electrode processes]. Chemistry, M., Leningrad, 1964, 1008 
р.
3.Pollock A.A. Acoustic Emission Capabilities and Applications in Monitoring Corrosion. Corrosion Monitoring in Industrial Plants Using Nondestructive Testing and Electrochemical Methods. ASTM STP 908, G.C. Moran and Р. Labine, Eds., American Society for Testing and Materials, Philadelphia, 1986, p. 30
-42.
4. Baranov V.M., Gubin
а T.V. Primenenie akusticheskoj jemissii dlja issledovanija i kontrolja korrozionnyh processov [Application of acoustic emission for research and monitoring of corrosion processes]: Textbook. MEPI, 1990, 72 p.
5. Lublinsky E.Y. Elektrohimicheskaja zashhita ot korrozii [Electrochemical corrosion protection]. Moscow
: Metallurgy, 1987, 97 p.